## **RSC** Advances



View Article Online

View Journal | View Issue

## REVIEW

Check for updates

Cite this: RSC Adv., 2022, 12, 18373

## A review on the degradation of acetaminophen by advanced oxidation process: pathway, byproducts, biotoxicity, and density functional theory calculation<sup>†</sup>

Mohammad Qutob,<sup>a</sup> Mahmoud A. Hussein, <sup>b</sup>\*<sup>b</sup> Khalid A. Alamry <sup>b</sup> and Mohd Rafatullah<sup>\*a</sup>

Water scarcity and the accumulation of recalcitrance compounds into the environment are the main reasons behind the attraction of researchers to use advanced oxidation processes (AOPs). Many AOP systems have been used to treat acetaminophen (ACT) from an aqueous medium, which leads to generating different kinetics, mechanisms, and by-products. In this work, state-of-the-art studies on ACT by-products and their biotoxicity, as well as proposed degradation pathways, have been collected, organized, and summarized. In addition, the Fukui function was used for predicting the most reactive sites in the ACT molecule. The most frequently detected by-products in this review were hydroquinone, 1.4-benzoguinone, 4-aminophenol, acetamide, oxalic acid, formic acid, acetic acid, 1.2.4-trihydroxy benzene, and maleic acid. Both the experimental and prediction tests revealed that N-(3,4-dihydroxy phenyl) acetamide was mutagenic. Meanwhile, N-(2,4-dihydroxy phenyl) acetamide and malonic acid were only found to be mutagenic in the prediction test. The findings of the  $LC_{50}$  (96 h) test revealed that benzaldehyde is the most toxic ACT by-products and hydroquinone, N-(3,4-dihydroxyphenyl)formamide, 4-methylbenzene-1,2-diol, benzoguinone, 4-aminophenol, benzoic acid, 1,2,4-trihydroxybenzene, 4nitrophenol, and 4-aminobenzene-1,2-diol considered harmful. The release of them into the environment without treatment may threaten the ecosystem. The degradation pathway based on the computational method was matched with the majority of ACT proposed pathways and with the most frequent ACT by-products. This study may contribute to enhance the degradation of ACT by AOP systems.

Received 17th April 2022 Accepted 11th June 2022

DOI: 10.1039/d2ra02469a

rsc.li/rsc-advances

## 1. Introduction

Nowadays, pharmaceutical compounds have piqued the interest of environmentalists due to the rising demand for pharmaceutical compounds, which means a continuous release of them into the environment and little understanding of their effects and their by-products on human health and the environment.<sup>1</sup> Pharmaceuticals compounds can flow to the environment from many sources like wastewater treatment plants (WWTPs), cure factories, domestic sewage, medical and research centers (unused, expired, and residual), animal husbandries, and landfills. Pharmaceuticals compounds have been detected in the surface water, groundwater, hospital effluent.<sup>2</sup> The low-efficiency of wastewater treatment leads to releases the of pharmaceuticals into the water bodies. It has been observed that around 90% of pharmaceutical compounds

that are excreted from the human body ending up in the aquatic ecosystem with passing time, these pharmaceuticals and their by-products accumulate in the fish, which is due to declining in fish fertility and cytotoxicity.<sup>3</sup>

Acetaminophen (ACT) or paracetamol ( $C_8H_9NO_2$ , MW = 151.163, DrugBank Accession Number: DB00316) is one of the most popular pain killers use without a prescription for the relief of headache, backache, and rheumatic pains.<sup>4,5</sup> It has been reported that around 6% of adults in the US consume more than 4 g per day, and more than 30 000 patients are hospitalized for ACT toxicity, which reflects the large consumption of ACT in the US.<sup>6</sup> The researcher estimated the global production of ACT around 100 tons per year.<sup>7</sup> This mass production of ACT increases the leakage opportunity into the environment, which is increases the threats of ACT and its by-products on the ecosystems.

† Electronic supplementary information (ESI) available. See https://doi.org/10.1039/d2ra02469a

<sup>&</sup>lt;sup>a</sup>Division of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia. E-mail: mrafatullah@usm.my <sup>b</sup>Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia. E-mail: mahussein74@yahoo.com; maabdo@ kau.edu.sa

In addition to pollutants accumulation into the environment,

water scarcity is one of the main economic, social, and environmental problems in the 21st century. Thus, back to many reasons like increase the population, environmental change, and industrialization.<sup>8</sup> To fulfill the rise in water demand and to avoid any further accumulation of contaminants into the environment, the researchers have proposed many water treatment approaches. These approaches are classified into three major classes (i) chemical treatment (ii) biological treatment (iii) physical treatment. Among them, advanced oxidation processes have gained attention to their ability to degrade high recalcitrance compounds.

Advanced oxidation process (AOP) is a chemical process based on activation of some molecules resulted in producing high electrophilic species or superoxide agents capable decomposing complex and highly recalcitrance pollutants. Many AOP techniques have been applied to oxidize ACT from an aqueous medium such as photocatalytic (*via* visible light or ultraviolet), ultrasound, Fenton, photo Fenton, photo-electro Fenton, AOP-based on nanomaterials, ozonation, thermal activation, and electro activation.<sup>9-17</sup> The chemical eqn (1)–(6) are an example of the formation of the radicals when Fenton and iron/PS systems applied:

$$\equiv \operatorname{Fe}(\mathrm{II}) + \operatorname{S}_2 \operatorname{O}_8^{2-} \to \equiv \operatorname{Fe}(\mathrm{III}) + \operatorname{SO}_4^{\cdot-} \tag{1}$$



Mohammad Qutob is currently a PhD student at Environmental Technology Division in the School of Industrial Technology, Universiti Sains Malaysia, Malaysia. He completed his education; a Master of Science in Environmental Science from Cyprus International University, North Cyprus and Bachelor of Science in Soil and Irrigation from Jordan University of Science and Technology, Irbd,

Jordan. His research interests are in the areas of environmental pollutants and their safe removal, bioremediation, preparation of various nanomaterials to protect the environment, water and wastewater treatment and advanced oxidation process.



M. A. Hussein is a professor of Polymer Chemistry, Polymer Chemistry Lab, Chemistry Department, Faculty of Science, Assiut University (AU), Egypt. He obtained his PhD in Organic Polymer Synthesis from Assiut University, Egypt in 2007. He got a position at Chemistry Department, King Abdulaziz University (KAU), Jeddah, Saudi Arabia from 2010 – till now. He got a postdoctoral position in the

University of Nice Sophia Antipolis, France and University Sains Malaysia, Malaysia. He visited the school of Industrial technology, University Sains Malaysia and Faculty of Engineering, University of Porto (UP) as visiting researcher. He published +150 ISI papers and numerus number of conference papers (posters and oral). His research interests are in the area of polymer synthesis, characterization and applications in different fields, polymer composites materials, polymer-doped organic and/or inorganic substances for variable industrial as well as biological interests.



K. A. Alamry is a professor of Polymer Chemistry, at Chemistry Department, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia. He obtained his PhD in Polymer Chemistry from The University of Manchester in UK in 2010. He published around 300 ISI papers in the field of polymer. His research interest in focused on the biopolymers from synthesis to applications for variable applications.



Mohd Rafatullah is working as an Associate Professor of Environmental Technology in the School of Industrial Technology, Universiti Sains Malaysia (USM), Malaysia. He completed his education; a Ph. D. in Chemistry, Master of Science in Analytical Chemistry and Bachelor of Science in Chemistry from Aligarh Muslim University, Aligarh, India. His research interest is in the areas of envi-

ronmental water pollutants and their safe removal; preparation of various nanomaterials to protect the environment; water and wastewater treatment; adsorption and ion exchange; microbial fuel cells; advance oxidation process; activated carbons and their electrochemical properties.

$$SO_4^{-} + HO^- \rightarrow SO_4^{2-} + OH$$
 (3)

(2)

$$OH + S_2 O_8^{2-} \rightarrow HO^- + S_2 O_8^{--}$$
 (4)

$$\cdot OH + S_2 O_8 \cdot \overline{\phantom{a}} \rightarrow HSO_4 \cdot \overline{\phantom{a}} + SO_4 \cdot \overline{\phantom{a}} + \frac{1}{2}O_2$$
(5)

$$SO_4^{\cdot -} + S_2O_8^{2-} \to SO_4^{2-} + S_2O_8^{\cdot -}$$
 (6)

In our previous work, we mentioned the influence of different parameters, degradation mechanism, degradation efficiency, and catalyst reusability for AOP systems that used to degrade ACT from an aqueous medium.<sup>18</sup> In this review, we are going to collect, organize, and summarize the scattered information related to ACT proposed pathways, by-products, and their biotoxicity. This study also used a computational method to anticipate the ACT degradation pathway.

## 2. ACT degradation pathways

In AOP systems, many different treatment techniques have been applied to remove persistent organic pollutants from an aqueous medium, which generates several kinetics reactions and by-products. These by-products could be the same or different in types or concentrations. Since most remediation technologies are based on the application of appropriate degradation pathways, so, it is necessary to identify the degradation pathway of the target pollutant. There are many benefits to the determination of the degradation pathway like control the effectiveness of remediation system, the influence of degradation on analytical results can be eliminated, and the knowledge of degradation pathways for particular compounds can facilitate the assessment of environmental pollution based on the presence of degradation products. In addition, the identification of the degradation pathway is useful for the future development of a reaction mechanism and a kinetic model.19 Many studies have proposed degradation pathways of ACT based on the identification of the by-products during and after the chemical reaction. Table 1 represents the most frequent by-product molecules that proposed to build ACT degradation pathways.

According to the literature, we can classify the majority of the proposed ACT degradation pathways into three (i) coupling, which is the combination of phenoxyl radical and ACT to form ACT dimer P13, further oxidation of ACT dimer produces carboxylic acid.<sup>20–23</sup> (ii) Direct cleavages of the ACT ring leading to form P54 then P55  $\rightarrow$  carboxylic acid  $\rightarrow$  CO<sub>2</sub> + H<sub>2</sub>O.<sup>24–26</sup> (iii) Hydroxylation is the most dominant proposed pathway of ACT. The radical may attack *para*, *ortho*, or *meta* positions in the ACT ring leads to form *N*-(3,4-dihydroxyphenyl) acetamide P7 or *N*-(2,4-dihydroxyphenyl)acetamide P3. Further oxidation of P7 and P3 thus leads to produce hydroquinone P4, 1,4-benzoquinone 8, and acetamide P5, further oxidation of P4, P8, and P5 leads to forms carboxylic acid. Complete mineralization of carboxylic acid leading to form CO<sub>2</sub> + H<sub>2</sub>O. In addition, if the radical attacks the N atom in the ACT molecule, thus due to form 4-

aminophenol P6 then 4-nitrophenol P12, further oxidation of P12 leading to form P4 and P8. If the radical attacks para position in the ACT ring, this leading to produce P4 and P5, further oxidation of P4 produce P8 more oxidation of P8 leading to form carboxylic acid then CO<sub>2</sub> and H<sub>2</sub>O, also further oxidation of p5 may producing acetic acid P36, formic acid P38, ammonium P23. It should be mentioned that hydroxylation pathways were the most abundant proposed degradation of the ACT pathway, especially hydroquinone and 4-aminophenol pathways. Skoumal et al.<sup>5</sup> examined O<sub>3</sub>/Fe<sup>2+</sup> + Cu<sup>2+</sup>/UV system to oxidize ACT. They proposed the degradation pathway based on the detected by-products. The radicals may target C2 in the ACT molecule, resulting in 2-hydroxyl-4-(4-acetyl)aminophenol production. Furthermore, the radicals may target C4, resulting in hydroquinone and acetamide. Further degradation of 2hydroxyl-4-(4-acetyl)aminophenol generated glyoxylic acid and ketomalonic acid. The oxidation of hydroquinone leads to the formation of 1,4-benzoquinone, then the ring cleavages produced carboxylic acids and that, the acids were converted into CO<sub>2</sub> and H<sub>2</sub>O. Ganiyu et al.<sup>27</sup> applied the electrochemical system for ACT decomposition from an aqueous medium. In this study, three degradation pathways were proposed. (i) N-Dealkylation process for the ACT, which generated hydroquinone and acetamide. Further oxidation of hydroquinone giving carboxylic acids and ammonium then CO2 and H2O. (ii) The radicals attacked peptide bond giving 4-aminophenol, the hydroxylation of 4-aminophenol leading to formation hydroquinone then benzene ring cleavage giving carboxylic acids. (iii) Hydroxylation of ACT molecules produced 2-hydroxyl-4-(4acetyl)aminophenol, further oxidation of 2-hydroxyl-4-(4acetyl)aminophenol leading to formation hydroquinone. Gao et al.28 proposed three degradation pathways of ACT, pathway (i) was formed when the aromatic ring of ACT was hydroxylated, resulting in the creation of N-(3,4-dihydroxyphenyl) acetamide, then the aromatic ring of N-(3,4-dihydroxyphenyl) acetamide is cleaved, resulting in the creation of a ring opening product. Pathway (ii) began with the attack of the 'OH on the para position of the phenolic functional group, resulting in the synthesis of hydroquinone, which was then oxidized to generate 1,2,4-trihydroxybenzene. Pathway III initiated the attack of 'OH on the acetyl-amino group, leading to the formation of 4-aminophenol, which was then oxidized to 4-nitrophenol. Fan et al.29 implemented the Ag/AgCl@ZIF-8/visible light system to degrade ACT. They mentioned that hydroxylation and photolysis were the first steps of ACT oxidation. The radical attacked C1 and C4 parallelly, which led to the formation of 1,4-benzoquinone. Further oxidation of 1,4-benzoquinone leads to producing carboxylic acids then CO<sub>2</sub> and H<sub>2</sub>O. Moreover, De Luna et al.<sup>30</sup> studied electrochemical system for ACT degradation. They proposed that 'OH prefers to attack para position in the aromatic ring in ACT, which leads to produce hydroquinone and acetamide. Further oxidation of hydroquinone giving benzaldehyde then turned into benzoic acid leading to ring cleavages and giving alcohols and small carboxylic acids. Table 2 represents the proposed oxidation pathways of ACT by different AOP systems and their active oxidation agents.

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc) BY

Open Access Article. Published on 22 June 2022. Downloaded on 7/13/2025 8:36:49 PM.

### Table 1 List of main proposed by-products to build ACT degradation pathways

| Product<br>number | Chemical formula<br>and<br>molecular weight                                 | Chemical<br>structure | Product<br>number | Chemical formula<br>and<br>molecular weight                     | Chemical<br>structure                     |
|-------------------|-----------------------------------------------------------------------------|-----------------------|-------------------|-----------------------------------------------------------------|-------------------------------------------|
| P1                | C <sub>6</sub> H <sub>5</sub> Cl <sub>2</sub> NO, <i>m</i> / <i>z</i> : 180 |                       | P31               | C <sub>2</sub> H <sub>2</sub> O <sub>4</sub> , <i>m</i> /z: 90  |                                           |
| P2                | C <sub>8</sub> H <sub>11</sub> NO <sub>3</sub> , <i>m/z</i> : 169           | H <sub>3</sub> C NH   | P32               | C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> , <i>m/z</i> : 88  |                                           |
| Р3                | C <sub>8</sub> H <sub>9</sub> NO <sub>3</sub> , <i>m/z</i> : 167            |                       | P33               | C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> , <i>m/z</i> : 116 |                                           |
| P4                | C <sub>6</sub> H <sub>6</sub> O <sub>2</sub> , <i>m/z</i> : 110             |                       | P34               | C <sub>4</sub> H <sub>6</sub> O <sub>6</sub> , <i>m/z</i> : 148 |                                           |
| Р5                | C <sub>2</sub> H <sub>5</sub> NO, <i>m/z</i> : 59                           |                       | P35               | C <sub>4</sub> H <sub>6</sub> O <sub>5</sub> , <i>m/z</i> : 134 |                                           |
| Р6                | C <sub>6</sub> H <sub>7</sub> NO, <i>m</i> / <i>z</i> : 109                 |                       | P36               | C <sub>2</sub> H <sub>4</sub> O <sub>2</sub> , <i>m/z</i> : 60  |                                           |
| Р7                | C <sub>8</sub> H <sub>9</sub> NO <sub>3</sub> , <i>m</i> / <i>z</i> : 167   |                       | P37               | NO <sub>3</sub> <sup>-</sup> , <i>m/z</i> : 62                  | 0<br>II<br>0 <sup>N</sup> *0 <sup>-</sup> |
| Р8                | C <sub>6</sub> H <sub>4</sub> O <sub>2</sub> ( <i>m</i> / <i>z</i> : 108)   |                       | P38               | CH <sub>2</sub> O <sub>2</sub> , <i>m/z</i> : 46                | O <mark>↓ O</mark> ↓<br>H                 |

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc) BY

Open Access Article. Published on 22 June 2022. Downloaded on 7/13/2025 8:36:49 PM.

### Table 1 (Contd.)

| Product<br>number | Chemical formula<br>and<br>molecular weight                                      | Chemical<br>structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Product<br>number | Chemical formula<br>and<br>molecular weight                                    | Chemical<br>structure               |
|-------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------|-------------------------------------|
| Р9                | C <sub>8</sub> H <sub>11</sub> NO <sub>4</sub> , <i>m/z</i> : 185                | HO<br>H <sub>3</sub> C<br>NH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P39               | C <sub>2</sub> H <sub>7</sub> N, <i>m/z</i> : 45                               |                                     |
| P10               | C <sub>6</sub> H <sub>6</sub> ClNO, <i>m/z</i> : 145                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P40               | C <sub>8</sub> H <sub>9</sub> NO <sub>2</sub> , <i>m/z</i> : 151               | H <sub>2</sub> N<br>CH <sub>3</sub> |
| P11               | C <sub>6</sub> H <sub>6</sub> O <sub>3</sub> , <i>m/z</i> : 126                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P41               | C <sub>7</sub> H <sub>8</sub> O <sub>2</sub> , <i>m</i> / <i>z</i> : 124       |                                     |
| P12               | C <sub>6</sub> H <sub>5</sub> NO <sub>3</sub> , <i>m/z</i> : 139                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P42               | C <sub>6</sub> H <sub>4</sub> N <sub>2</sub> O <sub>5</sub> , <i>m/z</i> : 184 |                                     |
| P13               | C <sub>16</sub> H <sub>16</sub> N <sub>2</sub> O <sub>4</sub> , <i>m/z</i> : 301 | H <sub>3</sub> C CH <sub>3</sub> C H <sub>3</sub> C CH <sub>3</sub> | P43               | C <sub>5</sub> H <sub>11</sub> NO, <i>m</i> / <i>z</i> : 101                   | H <sub>2</sub> N CH <sub>3</sub>    |
| P14               | C <sub>5</sub> H <sub>7</sub> NO <sub>3</sub> , <i>m/z</i> : 129                 | H <sub>3</sub> C NH<br>H <sub>2</sub> C OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P44               | C <sub>7</sub> H <sub>5</sub> ClO <sub>2</sub> , <i>m/z</i> : 157              | O OH<br>CI                          |
| P15               | C <sub>8</sub> H <sub>7</sub> NO <sub>2</sub> , <i>m</i> /z: 149                 | H <sub>3</sub> C N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P45               | C <sub>6</sub> H <sub>6</sub> O <sub>2</sub> , <i>m/z</i> : 110                | OH                                  |

Table 1 (Contd.)

Open Access Article. Published on 22 June 2022. Downloaded on 7/13/2025 8:36:49 PM.

(cc) BY

| Product<br>number | Chemical formula<br>and<br>molecular weight                               | Chemical<br>structure | Product<br>number | Chemical formula<br>and<br>molecular weight                      | Chemical<br>structure             |
|-------------------|---------------------------------------------------------------------------|-----------------------|-------------------|------------------------------------------------------------------|-----------------------------------|
| P16               | C <sub>6</sub> H <sub>6</sub> O, <i>m/z</i> : 94                          |                       | P46               | C <sub>7</sub> H <sub>8</sub> O <sub>2</sub> , <i>m/z</i> : 124  | H <sub>3</sub> C                  |
| P17               | C <sub>8</sub> H <sub>9</sub> NO <sub>2</sub> , <i>m/z</i> : 151          | CH <sub>3</sub>       | P47               | C <sub>4</sub> H <sub>9</sub> NO <sub>2</sub> , <i>m/z</i> : 103 | H <sub>2</sub> N OH               |
| P18               | C <sub>7</sub> H <sub>7</sub> NO <sub>3</sub> , <i>m</i> / <i>z</i> : 153 |                       | P48               | CH <sub>3</sub> NO <sub>2</sub> , <i>m/z</i> : 61                | H <sub>2</sub> N OH               |
| P19               | C <sub>2</sub> H <sub>3</sub> NO <sub>3</sub> , <i>m/z</i> : 89           | H N H O H             | P49               | C <sub>8</sub> H <sub>9</sub> NO <sub>3</sub> , <i>m/z</i> : 167 |                                   |
| P20               | C <sub>8</sub> H <sub>8</sub> O <sub>2</sub> , <i>m/z</i> : 136           | CH <sub>3</sub>       | P50               | C <sub>4</sub> H <sub>11</sub> N, <i>m/z</i> : 73                | H <sub>2</sub> N, CH <sub>3</sub> |
| P21               | C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> , <i>m</i> / <i>z</i> : 122  |                       | P51               | C <sub>7</sub> H <sub>9</sub> NO, <i>m/z</i> : 123               | H <sub>3</sub> C-NH               |
| P22               | C <sub>7</sub> H <sub>8</sub> O <sub>2</sub> , <i>m/z</i> : 124           | CH <sub>3</sub><br>OH | P52               | С <sub>6</sub> Н <sub>8</sub> NO, <i>m/z</i> : 110               | H <sub>3</sub> C-NH               |
| P23               | NH4 <sup>+</sup> , <i>m/z</i> : 18                                        |                       | Р53               | C <sub>4</sub> H <sub>6</sub> O <sub>4</sub> , <i>m/z</i> : 118  |                                   |

### Table 1 (Contd.)

| Product<br>number | Chemical formula<br>and<br>molecular weight                                      | Chemical<br>structure | Product<br>number | Chemical formula<br>and<br>molecular weight                      | Chemical<br>structure                    |
|-------------------|----------------------------------------------------------------------------------|-----------------------|-------------------|------------------------------------------------------------------|------------------------------------------|
| P24               | C <sub>8</sub> H <sub>7</sub> Cl <sub>2</sub> NO <sub>2</sub> , <i>m/z</i> : 220 |                       | P54               | C <sub>8</sub> H <sub>9</sub> NO <sub>5</sub> , <i>m/z</i> : 200 | HO<br>H <sub>3</sub> C<br>NH             |
| P25               | C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> , <i>m/z</i> : 116                  |                       | P55               | C <sub>6</sub> H <sub>6</sub> O <sub>4</sub> , <i>m/z</i> : 142  | HOH                                      |
| P26               | C <sub>2</sub> H <sub>4</sub> O <sub>3</sub> , <i>m/z</i> : 76                   |                       | P56               | C <sub>6</sub> H <sub>7</sub> NO <sub>2</sub> , <i>m/z</i> : 111 | HO OH                                    |
| P27               | C <sub>7</sub> H <sub>7</sub> NO <sub>3</sub> , <i>m/z</i> : 153                 | HN OH<br>OH           | P57               | C <sub>7</sub> H <sub>16</sub> O, <i>m/z</i> : 116               | H <sub>3</sub> CCH                       |
| P28               | C <sub>3</sub> H <sub>4</sub> O <sub>4</sub> , <i>m</i> / <i>z</i> : 104         |                       | P58               | C <sub>6</sub> H <sub>12</sub> O, <i>m/z</i> : 100               | HO<br>CH <sub>3</sub><br>CH <sub>2</sub> |
| P29               | C <sub>7</sub> H <sub>6</sub> O, <i>m</i> / <i>z</i> : 106                       |                       |                   |                                                                  | HO                                       |
| P30               | C <sub>6</sub> H <sub>5</sub> ClO <sub>2</sub> , <i>m</i> / <i>z</i> : 145       | OH<br>CI<br>OH        | P59               | C <sub>3</sub> H <sub>6</sub> O <sub>3</sub> , <i>m/z</i> : 90   | ö                                        |

### **RSC Advances**

 Table 2
 Proposed oxidation pathways of ACT for more than 40 studies for different AOP systems

| Systems                                                                      | Proposed pathways                                                                                                                                                                                                                                                                                                                                                                               | Active radicals                                   | Reference |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------|
| $O_3/Fe^{2+} + Cu^{2+}/UV$                                                   | ACT $\rightarrow$ P4 $\rightarrow$ P8 $\rightarrow$ carboxylic acids $\rightarrow$ H <sub>2</sub> O + CO <sub>2</sub>                                                                                                                                                                                                                                                                           | ЮН                                                | 5         |
| 7e <sup>2+</sup> /PS                                                         | P5 $\rightarrow$ P36, P38, or P23<br>(1) ACT $\rightarrow$ P6 $\rightarrow$ P4 $\rightarrow$ carboxylic acids $\rightarrow$ H <sub>2</sub> O +<br>CO <sub>2</sub><br>(2) ACT $\rightarrow$ P7 $\rightarrow$ P22 + P5                                                                                                                                                                            | $SO_4$ ' <sup>-</sup> and 'OH                     | 15        |
| MgO/O <sub>3</sub>                                                           | P22 $\rightarrow$ carboxylic acids $\rightarrow$ H <sub>2</sub> O + CO <sub>2</sub><br>P7 $\rightarrow$ P21 + P5<br>P21 $\rightarrow$ carboxylic acids $\rightarrow$ H <sub>2</sub> O + CO <sub>2</sub><br>P5 $\rightarrow$ P36, P38, or P23<br>(1) ACT $\rightarrow$ P7 $\rightarrow$ P5 + P11<br>P11 $\rightarrow$ P25 $\rightarrow$ P28 $\rightarrow$ P38                                    | .0Н                                               | 31        |
|                                                                              | P5 $\rightarrow$ P36, P38, or P23<br>(2) ACT $\rightarrow$ P2 $\rightarrow$ P5 + P4<br>P4 $\rightarrow$ P11 $\rightarrow$ P25 $\rightarrow$ P28 $\rightarrow$ P38<br>P5 $\rightarrow$ P36, P38, or P23                                                                                                                                                                                          |                                                   |           |
| Photocatalytic degradation                                                   | (1) ACT $\rightarrow$ P2 $\rightarrow$ P5 + P4<br>P4 $\rightarrow$ carboxylic acid $\rightarrow$ H <sub>2</sub> O + CO <sub>2</sub><br>(2) ACT $\rightarrow$ P49 $\rightarrow$ P4 $\rightarrow$ P5 $\rightarrow$ carboxylic acid $\rightarrow$<br>H <sub>2</sub> O + CO <sub>2</sub>                                                                                                            | он                                                | 32        |
| ron–copper/persulfate/PS                                                     | (1) ACT $\rightarrow$ P6 $\rightarrow$ P4 + P5<br>P4 $\rightarrow$ carboxylic acid $\rightarrow$ H <sub>2</sub> O + CO <sub>2</sub><br>(2) ACT $\rightarrow$ P7 $\rightarrow$ P5 + P11<br>P11 $\rightarrow$ carboxylic acid $\rightarrow$ H <sub>2</sub> O + CO <sub>2</sub>                                                                                                                    | $\mathrm{SO}_4$ <sup>•–</sup> and <sup>•</sup> OH | 33        |
| ΓίΟ <sub>2</sub> /Fe <sub>2</sub> O <sub>3</sub> core–shell<br>nanostructure | <ul> <li>(1) ACT → P3 → P11 → carboxylic acid → H<sub>2</sub>O + CO<sub>2</sub></li> <li>(2) ACT → P4 → P11 → carboxylic acid → H<sub>2</sub>O + CO<sub>2</sub></li> <li>(3) ACT → P7 → P11 → carboxylic acid → H<sub>2</sub>O +</li> </ul>                                                                                                                                                     | .0Н                                               | 34        |
| Electro-Fenton and<br>hotoelectro-Fenton                                     | $CO_2$ $ACT \rightarrow P2 \rightarrow P4 + P5$ $P4 \rightarrow P29 \rightarrow P21 \rightarrow carboxylic acid \rightarrow H_2O + CO_2$ $P5 \rightarrow P39 \rightarrow P23 \rightarrow P37$                                                                                                                                                                                                   | ЮН                                                | 30        |
| Catalytic wet peroxide<br>oxidation (CWPO)                                   | (1) ACT $\rightarrow$ P8 $\rightarrow$ P21 or P29 $\rightarrow$ P28, P36, P38, or P3<br>$\rightarrow$ H <sub>2</sub> O + CO <sub>2</sub>                                                                                                                                                                                                                                                        | .ОН                                               | 35        |
| Solar light/Ag-g-C <sub>3</sub> N <sub>4</sub> /O <sub>3</sub>               | ACT $\rightarrow$ P7 $\rightarrow$ P54 $\rightarrow$ P55 $\rightarrow$ carboxylic acids $\rightarrow$ H <sub>2</sub> O + CO <sub>2</sub>                                                                                                                                                                                                                                                        | $h^+$ and 'OH                                     | 24        |
| .a-doped<br>2nO photocatalyst                                                | (1) ACT $\rightarrow$ P7 $\rightarrow$ P40 $\rightarrow$ P21 $\rightarrow$ H <sub>2</sub> O + CO <sub>2</sub><br>(2) ACT $\rightarrow$ P9 $\rightarrow$ P8 + P5<br>P8 $\rightarrow$ P4 $\rightarrow$ P19 $\rightarrow$ H <sub>2</sub> O + CO <sub>2</sub><br>P5 $\rightarrow$ P23                                                                                                               | ЮН                                                | 36        |
| g/AGCl@ZIF8/visible light                                                    | (1) ACT $\rightarrow$ P8 $\rightarrow$ carboxylic acid $\rightarrow$ H <sub>2</sub> O + CO <sub>2</sub><br>(2) ACT $\rightarrow$ P16 + P5<br>P16 $\rightarrow$ carboxylic acid $\rightarrow$ H <sub>2</sub> O + CO <sub>2</sub>                                                                                                                                                                 | 02 <sup></sup>                                    | 29        |
| Peracetic acid/UVC-LED/<br>Fe(11)                                            | (1) ACT $\rightarrow$ P4 + P5<br>(2) ACT $\rightarrow$ P56 $\rightarrow$ P4 $\rightarrow$ carboxylic acid $\rightarrow$ H <sub>2</sub> O +<br>CO <sub>2</sub><br>(3) ACT $\rightarrow$ P12 or P4 $\rightarrow$ carboxylic acid $\rightarrow$ H <sub>2</sub> O +<br>CO <sub>2</sub><br>(4) ACT $\rightarrow$ P7 $\rightarrow$ P56 $\rightarrow$ carboxylic acid $\rightarrow$ H <sub>2</sub> O + | .0Н                                               | 37        |
| ZVAl/H <sup>+</sup> /air system                                              | $CO_2$<br>$ACT \rightarrow P2 \rightarrow P4 + P5$<br>$P4 \rightarrow carboxylic acids \rightarrow H_2O + CO_2$<br>$P5 \rightarrow P26 P26 ar P22$                                                                                                                                                                                                                                              | ЮН                                                | 38        |
| CS-Fe/PS                                                                     | P5 $\rightarrow$ P36, P38, or P23<br>(1) ACT $\rightarrow$ P16 + P5<br>P16 $\rightarrow$ P4 $\rightarrow$ P8 $\rightarrow$ carboxylic acid $\rightarrow$ H <sub>2</sub> O + CO <sub>2</sub><br>P5 $\rightarrow$ P39 $\rightarrow$ P23<br>(2) ACT $\rightarrow$ P6 + P36<br>P39 $\rightarrow$ P43 + P39<br>P42 $\rightarrow$ carboxylic acid $\rightarrow$ U O + CO                              | 'OH and SO <sub>4</sub> '-                        | 39        |
| Cobalt-impregnated<br>biochar/PMS                                            | P43 $\rightarrow$ carboxylic acid $\rightarrow$ H <sub>2</sub> O + CO <sub>2</sub><br>(1) ACT $\rightarrow$ P7 $\rightarrow$ P56 $\rightarrow$ P6 or P11<br>(2) ACT $\rightarrow$ P56 $\rightarrow$ P6 or P11<br>(3) ACT $\rightarrow$ P6 $\rightarrow$ P4 $\rightarrow$ carboxylic acid $\rightarrow$ H <sub>2</sub> O + CO <sub>2</sub>                                                       | 'OH and SO4                                       | 40        |

### Table 2 (Contd.)

| Systems                          | Proposed pathways                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Active radicals                     | Reference |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------|
|                                  | P11 $\rightarrow$ P4 $\rightarrow$ carboxylic acid $\rightarrow$ H <sub>2</sub> O + CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     |           |
|                                  | $P6 \rightarrow P4 \rightarrow carboxylic acid \rightarrow H_2O + CO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |           |
| Heat/peroxymonosulfate           | ACT $\rightarrow$ P6 $\rightarrow$ P56 or P12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $^{1}O_{2}$ and $^{\cdot}OH$        | 41        |
| system                           | P12 $\rightarrow$ P25 or P28 $\rightarrow$ P36, P38, or P31 $\rightarrow$ CO <sub>2</sub> + H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |           |
|                                  | $P56 \rightarrow P31 \rightarrow CO_2 + H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |           |
| Ferrous ion/copper oxide         | $ACT \rightarrow P2 \rightarrow P4 \rightarrow +P5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | юн                                  | 42        |
| $O_2$                            | $P4 \rightarrow P3 \rightarrow P38 \text{ or } P36 \rightarrow H_2O + CO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |           |
| Fenton process by plasma         | (1) ACT $\rightarrow$ P4 $\rightarrow$ P8 $\rightarrow$ carboxylic acid $\rightarrow$ H <sub>2</sub> O +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .OH                                 | 43        |
| liding arc discharge             | $CO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |           |
|                                  | (2) ACT $\rightarrow$ P42 $\rightarrow$ P8 $\rightarrow$ carboxylic acid $\rightarrow$ H <sub>2</sub> O +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |           |
|                                  | $CO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |           |
| $SnO_2/O_3$                      | (1) ACT $\rightarrow$ P7 $\rightarrow$ carboxylic acid $\rightarrow$ H <sub>2</sub> O + CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 'OH                                 | 44        |
|                                  | (2) ACT $\rightarrow$ P4 + P5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |           |
|                                  | $P4 \rightarrow carboxylic acid \rightarrow H_2O + CO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |           |
|                                  | $P5 \rightarrow P36 \rightarrow P23$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |           |
| OVPTCN/visible light             | (1) ACT $\rightarrow$ P4 $\rightarrow$ P8 or P41 $\rightarrow$ P35 $\rightarrow$ H <sub>2</sub> O + CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ОН                                  | 45        |
| $JV/H_2O_2$                      | ACT $\rightarrow$ P11, P7, P8, or P4 $\rightarrow$ carboxylic acid $\rightarrow$ H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 'OH and halide radicals             | 46        |
|                                  | $+ CO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |           |
| JV-LED/NH <sub>2</sub> Cl and PS | (1) ACT $\rightarrow$ P4 or P6 $\rightarrow$ P8 or P11 $\rightarrow$ carboxylic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 'OH, Cl' and $SO_4$ '               | 47        |
|                                  | $\rightarrow$ H <sub>2</sub> O + CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |           |
|                                  | (2) ACT $\rightarrow$ P7 $\rightarrow$ P21 $\rightarrow$ P44 $\rightarrow$ carboxylic acid $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |           |
|                                  | $H_2O + CO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - <b>-</b>                          |           |
| Photo Fenton-like                | (1) ACT $\rightarrow$ P13<br>(2) ACT $\rightarrow$ P25 P26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $O_2$                               | 21        |
| oxidation process                | (2) ACT $\rightarrow$ P7 $\rightarrow$ P31 or P28 $\rightarrow$ P36 or P38 $\rightarrow$ H <sub>2</sub> O +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |           |
|                                  | $CO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |           |
| hotocatalytic degradation        | (1) ACT $\rightarrow$ P13<br>(2) ACT $\rightarrow$ P13 P22 P22 P22 P22 P22 P22 P22 P22 P22 P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $O_2^{\bullet-}$ and $^{\bullet}OH$ | 22        |
|                                  | (2) ACT $\rightarrow$ P50, P28, or P33 $\rightarrow$ P36 or P38 $\rightarrow$ H <sub>2</sub> O +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |           |
|                                  | $CO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     | 10        |
| Photocatalytic degradation       | $ACT \rightarrow P4 + P5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $h^+$ and $O_2$ .                   | 48        |
|                                  | $P4 \rightarrow P11 \rightarrow P38 \text{ or } P25 \rightarrow CO_2 + H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |           |
|                                  | $P5 \rightarrow P37 + CO_2 + H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | o = 10 How                          | 10        |
| Photocatalytic degradation       | $ACT \rightarrow P51 \rightarrow P6 \rightarrow P52 \rightarrow P8 \rightarrow P38 \rightarrow P36 \rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $O_2$ · -, $^1O_2$ and 'OH          | 49        |
|                                  | $CO_2 + H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .011                                | 50        |
| Photocatalytic                   | $ACT \rightarrow P6 \rightarrow P16 \rightarrow P4 \rightarrow CO_2 + H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OH                                  | 50        |
| Electro-Fenton process           | (1) ACT $\rightarrow$ P4 + P5<br>P4 $\rightarrow$ P8 or P11 $\rightarrow$ carboxylic acid $\rightarrow$ H <sub>2</sub> O + CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ЮН                                  | 51        |
|                                  | · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |           |
|                                  | (2) ACT $\rightarrow$ P3 $\rightarrow$ P8 $\rightarrow$ carboxylic acid $\rightarrow$ H <sub>2</sub> O +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |           |
| Electrochemical                  | $CO_2$ (1) ACT > $PC > P4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .OH                                 | 27        |
|                                  | (1) ACT $\rightarrow$ P6 $\rightarrow$ P4<br>(2) ACT $\rightarrow$ P4+P5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ЮН                                  | 27        |
| legradation                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     |           |
|                                  | $P4 \rightarrow P8 \rightarrow carboxylic acid \rightarrow H_2O + CO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |           |
| Electro-Fenton                   | P5 → P36, P38, or P23<br>(1) ACT → P8 → P21 or P29 → carboxylic acid →                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •ОН                                 | 52        |
| sectro-renton                    | $H_2O + CO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | on                                  | 52        |
|                                  | (2) ACT $\rightarrow$ P7 $\rightarrow$ P21 or P29 $\rightarrow$ carboxylic acid $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |           |
|                                  | $H_2O + CO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |           |
| Electrocatalytic                 | (1) ACT $\rightarrow$ P7 or P3 $\rightarrow$ P5 + P21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | юн                                  | 53        |
| legradation                      | P21 $\rightarrow$ carboxylic acid $\rightarrow$ H <sub>2</sub> O + CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | on                                  | 55        |
| legradation                      | (2) ACT $\rightarrow$ P4 + P5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |           |
|                                  | $P4 \rightarrow P11 \text{ or } P8 \rightarrow \text{ carboxylic acid } \rightarrow H_2O + CO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |           |
|                                  | $P_{1} \rightarrow P_{2} \rightarrow P_{3} \rightarrow P_{3} \rightarrow P_{2} \rightarrow P_{2} \rightarrow P_{3} \rightarrow P_{3$ |                                     |           |
| Electro-catalytic activation     | $ACT \rightarrow P6 \rightarrow P4 \rightarrow P8 \rightarrow P31 \rightarrow CO_2 + H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | юн                                  | 54        |
| Ieterogeneous electro-           | $ACT \rightarrow P5 \rightarrow P16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ЮН                                  | 55        |
| enton process                    | P16 $\rightarrow$ P57 or P58 $\rightarrow$ carboxylic acid $\rightarrow$ H <sub>2</sub> O + CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     | 50        |
| Photo-Fenton                     | $ACT \rightarrow P4 + P5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ЮН                                  | 19        |
|                                  | $P4 \rightarrow P8 \rightarrow carboxylic acid \rightarrow H_2O + CO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ~~~                                 |           |
|                                  | $P5 \rightarrow P19 \rightarrow P23 \rightarrow CO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |           |
| ligh active amorphous            | (1) ACT $\rightarrow$ P13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 'OH and $SO_4$ '                    | 26        |
| Co(OH) <sub>2</sub> /PMS         | (1) ACT $\rightarrow$ P6 $\rightarrow$ P4 + P5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 011 unu 004                         | 20        |
|                                  | $P4 \rightarrow P8 \rightarrow P28 \rightarrow CO_2 + H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |           |
|                                  | $P5 \rightarrow P36 \text{ or } P38$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |           |
|                                  | (3) ACT $\rightarrow$ P7 $\rightarrow$ P56 or P54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |           |
|                                  | $P56 \rightarrow P11 \rightarrow P53 \rightarrow CO_2 + H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |           |

### **RSC Advances**

Table 2 (Contd.)

| Systems                                                                                                             | Proposed pathways                                                                                                                                                                                                                                                                        | Active radicals            | References |
|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------|
|                                                                                                                     | $P54 \rightarrow P55 \rightarrow P53 \rightarrow CO_2 + H_2O$                                                                                                                                                                                                                            |                            |            |
| BaTiO <sub>3</sub> /TiO <sub>2</sub> composite-                                                                     | ACT $\rightarrow$ P2 $\rightarrow$ P4 $\rightarrow$ P8 $\rightarrow$ carboxylic acid $\rightarrow$ H <sub>2</sub> O +                                                                                                                                                                    | 'OH                        | 56         |
| assisted photocatalytic                                                                                             | $CO_2$<br>ACT $\rightarrow$ P6 + P36                                                                                                                                                                                                                                                     | .011                       |            |
| Fuel cell-Fenton system                                                                                             | $AC1 \rightarrow P6 + P36$<br>$P6 \rightarrow P12 \rightarrow P25 \rightarrow P35 \text{ or } P28$                                                                                                                                                                                       | 'OH                        | 57         |
| Electrochemical oxidation                                                                                           | $ACT \rightarrow P3 + P36$                                                                                                                                                                                                                                                               | 'OH and SO <sub>4</sub> '- | 58         |
|                                                                                                                     | P6 $\rightarrow$ P4 or P12 $\rightarrow$ P8 $\rightarrow$ carboxylic acid $\rightarrow$ H <sub>2</sub> O + CO <sub>2</sub>                                                                                                                                                               | 011 and 504                |            |
| Photo-electrooxidation                                                                                              | $ACT \rightarrow P4 + P5$                                                                                                                                                                                                                                                                | юн                         | 59         |
|                                                                                                                     | $P4 \rightarrow P8 \rightarrow carboxylic acid \rightarrow H_2O + CO_2$                                                                                                                                                                                                                  |                            | 0,0        |
| Biotemplated copper oxide<br>catalysts over graphene<br>oxide for ACT removal                                       | $ACT \rightarrow P4 \rightarrow P8 \rightarrow carboxylic acid \rightarrow H_2O + CO_2$                                                                                                                                                                                                  | .0Н                        | 60         |
| Gas phase dielectric barrier<br>discharge plasma<br>combined with the<br>titanium dioxide-reduced<br>graphene oxide | ACT $\rightarrow$ P4 $\rightarrow$ P46 $\rightarrow$ carboxylic acid $\rightarrow$ H <sub>2</sub> O + CO <sub>2</sub>                                                                                                                                                                    | ЮН                         | 61         |
| Photocatalytic degradation                                                                                          | (1) ACT $\rightarrow$ P13                                                                                                                                                                                                                                                                | юн                         | 62         |
| of acetaminophen                                                                                                    | <ul> <li>(2) ACT → P4 → P8 → carboxylic acid → H<sub>2</sub>O +<br/>CO<sub>2</sub></li> <li>(3) ACT → P7 → P11 → carboxylic acid → H<sub>2</sub>O +<br/>CO<sub>2</sub></li> <li>(4) ACT → P3 → P11 → carboxylic acid → H<sub>2</sub>O +</li> </ul>                                       |                            |            |
|                                                                                                                     | $(4) \text{ ACT} \rightarrow \text{FS} \rightarrow \text{FTT} \rightarrow \text{carboxylic actd} \rightarrow \text{H}_2\text{O} + \text{CO}_2$                                                                                                                                           |                            |            |
| Degradation of<br>acetaminophen by ferrate<br>(v1)                                                                  | $ACT \rightarrow P16 \text{ or } P52 \rightarrow P25 \rightarrow P38 \rightarrow P31 \rightarrow H_2O + CO_2$                                                                                                                                                                            | Direct oxidation           | 63         |
| Photocatalytic degradation<br>of paracetamol                                                                        | (1) ACT $\rightarrow$ P2 $\rightarrow$ P4 + P5<br>P4 $\rightarrow$ P8 $\rightarrow$ carboxylic acid $\rightarrow$ H <sub>2</sub> O + CO <sub>2</sub><br>(2) ACT $\rightarrow$ P5 + P6 $\rightarrow$ P8 $\rightarrow$ carboxylic acid $\rightarrow$ H <sub>2</sub> O<br>+ CO <sub>2</sub> | ЮН                         | 64         |

# 3. ACT degradation pathway based on computational method

In the treatment systems that are based on chemical oxidation, there are two major degradation mechanism pathways (1) nonradical pathway in this pathway, factors such as (irradiation, ultrasonic wave, electron transfer process, etc.) responsible for the degradation of the target pollutant, these factors can oxidize the pollutant spontaneously from any site, which increase the difficulty to predict the degradation pathway through a computational method, (2) radical pathway in this pathway, the radicals such as ('OH, SO4''-, and O2''-) are responsible on the pollutant oxidation. In AOP systems, the radical pathway is mostly dominant and the radicals prefer to attack the highest occupied molecular orbital (HOMO) site on the target pollutant, which can predict the degradation pathway by computational method. Density functional theory (DFT) has been using to calculate the nucleophilic  $(f^{\dagger})$ , electrophilic  $(f^{-})$ , and radical attack (f°) of each atom within the molecule.<sup>65</sup> Fukui function f(r) is the best descriptor method for DFT.<sup>66</sup> The following eqn (7)-(10) represents the Fukui functions.

$$f(r) = \left[\frac{\partial p_{(r)}}{\partial N}\right]_{V}$$
(7)

$$f^{+} = [q_{i}(N+1) - q_{i}(N)]$$
(8)

$$f^{-} = [q_i(N) - q_i(N-1)]$$
(9)

$$f^{\circ} = \left[\frac{q_i(N-1) - q_i(N+1)}{2}\right]$$
(10)

p(r) is the electron density at point (r) in the space, qi is the atomic charge, and N is the number of electrons. The previous studies which investigated the active sites of ACT by using DFT or frontier orbital theory did not provide enough information to build the degradation pathway of ACT.<sup>25,26</sup> In this study, GaussView 6.0 and Gaussian 09 were used to execute the obtained data. Additionally, as a basis set, 6-31 G (d,p) and B3LYP (Becke's three parameters and Lee-Yang-Parr functional) were utilised.<sup>67</sup> Fig. 1 depicted the  $f^-$ ,  $f^+$ , and  $f^\circ$  values for each ACT, hydroquinone, and 1,4-benzoquinone and their chemical structure.

Based on the values illustrated in Fig. 1, the highest ( $f^{\circ}$ ) and ( $f^{-}$ ) values represent HOMO which is easier to lose an electron

| Atom | $q_i(N)$ | $q_i(N+1)$ | $q_i(N-1)$ | $f^+$    | <i>f</i> <sup>-</sup> | ſ°       |
|------|----------|------------|------------|----------|-----------------------|----------|
| C 1  | -0.19046 | -0.17031   | 0.609566   | 0.020149 | -0.80003              | 0.38994  |
| C 2  | 0.24367  | 0.309516   | 0.253226   | 0.065846 | -0.00956              | -0.02815 |
| C 3  | -0.49634 | -0.40911   | -0.49209   | 0.087227 | -0.00425              | -0.04149 |
| C 4  | 0.321367 | 0.353444   | 0.328393   | 0.032077 | -0.00703              | -0.01253 |
| C 5  | -0.14377 | -0.16794   | -0.26637   | -0.02417 | 0.122599              | -0.04922 |
| C 6  | 0.042112 | 0.131645   | -1.02505   | 0.089533 | 1.06716               | -0.57835 |
| H 7  | 0.162836 | 0.197821   | 0.176287   | 0.034985 | -0.01345              | -0.01077 |
| H 8  | 0.138625 | 0.199078   | 0.106953   | 0.060453 | 0.031672              | -0.04606 |
| H 9  | 0.137588 | 0.196175   | 0.102866   | 0.058587 | 0.034722              | -0.04665 |
| H 10 | 0.137693 | 0.191105   | 0.1177     | 0.053412 | 0.019993              | -0.0367  |
| O 11 | -0.58351 | -0.50627   | -0.60983   | 0.077236 | 0.026323              | -0.05178 |
| H 12 | 0.369104 | 0.402711   | 0.352929   | 0.033607 | 0.016175              | -0.02489 |
| N 13 | -0.51181 | -0.4137    | -0.12551   | 0.098114 | -0.3863               | 0.144092 |
| H 14 | 0.339327 | 0.389606   | 0.269421   | 0.050279 | 0.069906              | -0.06009 |
| C 15 | 0.27638  | 0.26187    | -0.55238   | -0.01451 | 0.828761              | -0.40713 |
| C 16 | -0.48529 | -0.45704   | -0.08971   | 0.028248 | -0.39558              | 0.183665 |
| H 17 | 0.18042  | 0.215687   | 0.117112   | 0.035267 | 0.063308              | -0.04929 |
| H 18 | 0.174291 | 0.215425   | 0.127416   | 0.041134 | 0.046875              | -0.044   |
| H 19 | 0.169958 | 0.201562   | 0.116983   | 0.031604 | 0.052975              | -0.04229 |
| O 20 | -0.2822  | -0.14128   | -0.51792   | 0.140921 | 0.235716              | -0.18832 |

(B) Hydroquinone

(A)ACT

| Atom | $q_i(N)$ | $q_i(N + 1)$ | $q_i(N+1)$ | <i>f</i> <sup>+</sup> | <i>f</i> <sup>-</sup> | ſ°       |
|------|----------|--------------|------------|-----------------------|-----------------------|----------|
| C 1  | 0.162598 | 0.205591     | 0.098674   | 0.042993              | 0.063924              | -0.05346 |
| C 2  | 0.162282 | 0.20508      | 0.100237   | 0.042798              | 0.062045              | -0.05242 |
| C 3  | -0.38751 | -0.27889     | -0.59147   | 0.108619              | 0.203958              | -0.15629 |
| C 4  | 0.162192 | 0.205256     | 0.099388   | 0.043064              | 0.062804              | -0.05293 |
| C 5  | 0.162841 | 0.205485     | 0.101585   | 0.042644              | 0.061256              | -0.05195 |
| C 6  | -0.38952 | -0.28057     | -0.59383   | 0.108956              | 0.204305              | -0.15663 |
| Н 7  | 0.140864 | 0.215938     | 0.082257   | 0.075074              | 0.058607              | -0.06684 |
| H 8  | 0.140875 | 0.215935     | 0.08228    | 0.07506               | 0.058595              | -0.06683 |
| H 9  | 0.140895 | 0.215951     | 0.082336   | 0.075056              | 0.058559              | -0.06681 |
| H 10 | 0.140896 | 0.215937     | 0.082345   | 0.075041              | 0.058551              | -0.0668  |
| O 11 | -0.58858 | -0.47814     | -0.621     | 0.11044               | 0.032414              | -0.07143 |
| H 12 | 0.370371 | 0.415266     | 0.349078   | 0.044895              | 0.021293              | -0.03309 |
| O 13 | -0.58859 | -0.47814     | -0.62097   | 0.110451              | 0.032379              | -0.07142 |
| H 14 | 0.370387 | 0.415297     | 0.349077   | 0.04491               | 0.02131               | -0.03311 |

### (C) 1,4-Benzoquinone

| 48 47 |
|-------|

| Atom | <b>q</b> <sub>i</sub> ( <b>N</b> ) | $q_i(N+1)$ | $q_i(N-1)$ | $f^+$    | <i>f</i> <sup>-</sup> | f°       |
|------|------------------------------------|------------|------------|----------|-----------------------|----------|
| 1 C  | 0.171924                           | 0.206406   | 0.164581   | 0.034482 | 0.007343              | -0.02091 |
| 2 C  | 0.172008                           | 0.2064     | 0.164772   | 0.034392 | 0.007236              | -0.02081 |
| 3 C  | -0.21561                           | -0.18187   | -0.3735    | 0.033744 | 0.157894              | -0.09582 |
| 4 C  | 0.171755                           | 0.206351   | 0.164323   | 0.034596 | 0.007432              | -0.02101 |
| 5 C  | 0.171832                           | 0.20632    | 0.16464    | 0.034488 | 0.007192              | -0.02084 |
| 6 C  | -0.21567                           | -0.18192   | -0.37361   | 0.033751 | 0.157938              | -0.09584 |
| 7 H  | 0.166542                           | 0.229169   | 0.097145   | 0.062627 | 0.069397              | -0.06601 |
| 8 H  | 0.166538                           | 0.229167   | 0.097136   | 0.062629 | 0.069402              | -0.06602 |
| 9 H  | 0.166523                           | 0.229152   | 0.097165   | 0.062629 | 0.069358              | -0.06599 |
| 10 H | 0.166533                           | 0.22917    | 0.097171   | 0.062637 | 0.069362              | -0.066   |
| 11 0 | -0.46118                           | -0.18914   | -0.64991   | 0.272045 | 0.188725              | -0.23039 |
| 12 O | -0.46119                           | -0.18921   | -0.64992   | 0.27198  | 0.188722              | -0.23035 |



and readily attacked by electrophilic or oxidizing agents.<sup>61,68</sup> This study revealed the highest value of  $(f^-)$  was C6  $(f^- = 1.06716)$  which means that the first attack of radical is C6

position. The radical attack on C6 results in the hydroxylation of the C6 position, resulting in the release of acetamide and the substitution of a hydroxyl group. Thus, leading to form hydroquinone and acetamide, the same results were obtained by ref. 69. According to Fig. 2, further degradation of acetamide leading to form acetic acid and ammonium, more oxidation of acetic acid and ammonium produce formic acid and nitrate, respectively. The highest  $(f^{-})$  value of hydroquinone were  $(f^{-})$ 0.203958) and  $(f^- = 0.204305)$  for C3 and C6, respectively. In this case, there are three possible pathways (i) quick hydroxylation of C3 and C6 leading to formation 1,4-benzoquinone, (ii) if the radical attack C3 and C6 leading to the cleavage of the benzene ring, which is due to the form of small carboxylic acid such as glycolic acid, acetic acid, formic acid, pyruvic acid, oxalic acid, (iii) the values of  $(f^{-})$  for C6 was little bet higher than C3 which leading to ring cleavage from C6 position, leading to form carboxylic acids like malic acid, maleic acid, succinic acid, butenedionic acid, and tartaric acid. For pathway (i) further oxidation of 1,4-benzoquinone due to a reversible chemical reaction between hydroquinone and 1,4-benzoquinone. Since the highest values  $(f^{-})$  for 1,4-benzoquinone were  $(f^{-})$ 0.188725) for O11 atom and  $(f^- = 0.188722)$  for O12 atom, in this case, the radical attack (O=C) bond for O11 and O12, resulting to reform of hydroquinone, this agreed with.27,36,59,70 For pathway (ii) further oxidation of the small carboxylic acid leading to completely mineralization and produce CO2 and H<sub>2</sub>O. Pathway (iii) more decomposition of carboxylic acid due to form small carboxylic acid such as glycolic acid, acetic acid, formic acid, pyruvic acid, oxalic acid, then convert to CO<sub>2</sub> and H<sub>2</sub>O. Fig. 2 illustrate the degradation pathway of ACT based on the computational method. The predicted ACT pathway is matched with the majority of the proposed degradation pathways in the Table 2. In addition, the most frequent by-products of ACT that have been detected as hydroquinone, 1,4-benzoquinone, acetamide, formic acid, acetic acid, oxalic acid, and

maleic acid, was predicted in this study by using computational method. Finally, computational chemistry assists the researchers in predicting the degradation pathway, especially for large organic molecules.

## 4. By-products of ACT

The specific objective of the chemical oxidation treatment is to mineralize the pollutant completely and convert them into  $CO_{2}$ , NO<sub>3</sub><sup>-</sup>, and H<sub>2</sub>O or convert them into harmless molecules. On the other hand, some AOP systems have partially mineralized the pollutant, which leads to producing by-products (also known as transformation products and intermediate products). These by-products could be threatened and toxic for the environment and public health more than the parent pollutant itself.<sup>71</sup> The researcher illustrated the threaten of by-products that are released from WWTPs into the environment like an iceberg the pollutants themselves are just the tip of the iceberg while the by-products represent the majority of the iceberg that hidden underwater. As mentioned, many AOP systems have been applied to oxidize ACT from a liquid medium. Thus, leading to generate many of by-products. Many reductionoxidation agents have been observed during the degradation of ACT, such as holes, photon, halide radicals, ozone, methyl radical, singlet oxygen, hydroxyl radical, sulfate radical, superoxide radical. These radicals may attack different sites of ACT, which leading to the formation of different and unique byproducts. For example, Mashayekh-Salehi et al.,31 observed that the ozone molecule attacked the ACT molecule leading to formation 2-hydroxy-4-(N-acetyl)-aminophenol the of compounds. On the other hand, ozone molecules could not fully mineralized ACT because ozone does not have sufficient



Fig. 2 Illustrated the proposed degradation pathway based on computational method.

energy to do that. In addition, many studies observed that ACT dimer have been formed during ACT degradation. The mechanism behind the formation of ACT dimer was losing one electron, which changes the ACT molecule to cationic form (phenoxyl radical), then the self-combination of ACT with the neighbor phenoxyl radical leading to form ACT dimer.20,32 Methyl radicals and N-(3,4-dihydroxylphenyl)formamide were produced through the attack of ACT by OH° and methyl radicals attacked N-(3,4-dihydroxylphenyl)formamide and formed 4methylbenzene-1,2-diol.33 Zhang et al.72 examined S-doped graphene/Pt/TiO<sub>2</sub> to degrade ACT from an aqueous medium. They observed that chlorinated by-products such as 2-chlorohydroquinone and 4-chlorobenzene-1,2 diol were formed after attacking the ACT molecule by halides radicals. Abdel-Wahab et al.34 examined magnetic flower-like TiO<sub>2</sub>/Fe<sub>2</sub>O<sub>3</sub> core-shell nanomaterials activated by irradiation. After the end of ACT degradation, the by-products were ACT, 4-acetamidocatechol, 4acetamidoresorcinol, hydroquinone, 1,2,4-benzetiol, maleic acid, tartaric acid, malic acid, succinic acid, malonic acid, oxalic acid, oxamic acid, and acetamide. Kohantorabi et al.73 studied the oxidation of ACT by using Ag/ZnO@NiFe3O4 nanorods promoted by UVA/PMS. The by-products were hydroquinone, glycolic acid, 1,4-benzoquinone, and 3-hydroxypropanic acid. Zhang et al.74 were identified acetamide and benzoquinone. Then Benzoquinone was further oxidized to produce acetyl methyl carbinol, 2-pentanone, and methyl vinyl ketone as intermediates. Additionally, De Luna et al.30 applied photoelectro-Fenton using a double cathode electrochemical cell to decompose ACT from an aqueous medium. Acetic acid, formic acid, oxalic acid, malonic acid, hydroquinone, and amide were detected after 120 min of reaction. In addition, oxalic acid, formic acid, and acetic acid were the main transformation products when metal-loaded mesoporous for the catalytic wet peroxide oxidation of ACT.35 Fenton oxidation applied by De Luna et al.75 to degrade ACT. The by-products were hydroquinone, benzoic acid, benzaldehydes and some non-aromatic products like carboxylic acid, alcohols, ketones, and aldehydes. Yunfei Zhang et al.76 applied ferrous ion and copper oxide/O<sub>2</sub> system to remove ACT from a liquid medium. The main by-products were hydroquinone, ammonium, formic acid, acetic acid, and oxalic acid. Furthermore, small carboxylic acid like formic acid, oxamic acid, and oxalic acid were detected when TiO<sub>2</sub> nanotube activated by UV light was applied. Peng et al.77 used pyrite to activate persulfate and H2O2 for ACT degradation. In this system, the by-products were hydroquinone, acetamide, nitrate, and acetic acid. Platinum doped TiO<sub>2</sub>/ photocatalytic systems were used to degrade ACT. After 60 min the transformation products were oxalic acid, acetic acid, and formic acid.78 Furthermore, Mashayekh-Salehi et al.31 applied MgO nanoparticles activated/O<sub>3</sub> system to oxidize ACT from an aqueous medium. Malonic acid, succinic acid, malic acid, formic hydroxy acetic acid, acetamide, and nitrite were the major intermediate products in this system. Ling et al.24 carried out

remove ACT from an aqueous atmosphere. Few by-products were produced in this system like hydroquinone, oxamic acid, acetic acid, butyric acid, and 2-amino-5-methyl benzoic acid. Moreover, G. Fan et al.29 pointed out that salicylaldehyde, acetamide, phenol, lactic acid, succinic acid, malic acid, and maleic acid were generated when Ag/AgCl@ZIF-8/visible light system was applied to oxidize ACT. In addition, hydroquinone, 1,4-benzoquinone, 4-methoxyphenol, 2-hexenic, and malic acid were monitored when oxygen vacancies and phosphorus coded black titania coated carbon nanotube composite activated by visible light was applied. Ghanbari et al.37 studied a synergistic peracetic acid/UVC-LED system to oxidize ACT. 4-Nitrophenol and hydroquinone were the transformation compounds in this system. H. Zhang et al.38 applied a zero valent aluminum-acid system to degrade ACT from a liquid medium. The main byproducts were hydroquinone and anionic derivatives like acetate and nitrate. S. Wang et al.15 examined Fe2+/PS system to remove ACT. They detected hydroquinone, 1,4-benzoquinone, N-(3,4-dihydroxyphenyl)formamide, and 4-aminophenol, 4methylbenzene-1,2-diol after 30 minutes of reaction. Pham et al.79 detected oxaloacetic acid and 4-nitrophenol were the major transformation products when Fe and N co-doped carbon nanotube system was applied. In this review, the by-products of 64 studies related to the oxidation of ACT from an aqueous medium by using different AOP systems were collected and summarized in the Table 3. This study revealed that hydroquinone, 1,4-benzoquinone, acetamide, oxalic acid, formic acid, 1,2,4-trihydroxybenzene, and maleic acid were the most frequent by-products of ACT.

# 5. The toxicity assessment of ACT and its by-products

The toxicity evaluation of ACT and its by-products is important to increase the system efficiency. It has been reported that byproducts could be threatened and toxic for the environment and public health more than the parent pollutant itself. The toxicity assessment of ACT and its by-products were carried out by using the United States Environmental Protection Agency software called Toxicity Estimation Software Tool (TEST) version 5.1. This software is capable to apply mathematical models to predict pollutant toxicity based on Quantitative Structure Activity Relationship (QSAR) methodology. The data was introduced by inputting the name of each by-product. The Lethal concentration 50% (LC50) (96 h) fathead minnow and Ames mutagenicity were the considered toxicity text. The LC<sub>50</sub> of prediction values for ACT was 813.76, and 123.08 mg  $L^{-1}$ , respectively, and the mutagenicity test showing negative for both experimental and prediction tests. However, N-(3,4-dihydroxyphenyl) acetamide showed positive mutagenicity for both experimental and prediction tests. Meanwhile N-(2,4-dihydroxyphenyl) acetamide and malonic acid showed positive mutagenicity only for the prediction test. Table 4 represents the results of LC<sub>50</sub> (96 h) fathead minnow and the mutagenicity tests for the most frequent by-product out of 64 studies collected in this work.

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 22 June 2022. Downloaded on 7/13/2025 8:36:49 PM.

Ag-g-C<sub>3</sub>N<sub>4</sub>/O<sub>3</sub> catalyzed by vis-UV light to oxidize ACT. Hydro-

quinone, di-hydroxyphenyl, and tri-hydroxyphenyl were the

main by-products generated from this system. Thi & Lee<sup>36</sup>

implemented photocatalytic of 1%-La doped ZnO system to

| Open Access Article. Published on 22 June 2022. Downloaded on 7/13/2025 8:36:49 PM. | This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Open Acce                                                                           | (cc)) BY                                                                            |

 Table 3
 Number of detections of the most frequent by-products for different AOP systems

| Carboxylic acids<br>compounds and small       | Number of  | -                                                                                                               | Quinone derivatives<br>and aromatic by- | Number of  |                                                                                                                 |                                                                                                 |
|-----------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| by-products                                   | detections | Remark                                                                                                          | products                                | detections | Remark                                                                                                          | References                                                                                      |
| Acetamide                                     | 15         | Acetamide one of the most<br>frequent by products in all AOP<br>systems                                         | Hydroquinone                            | 43         | Is the most frequent by products<br>in all AOP systems                                                          | 15, 17, 31, 20, 32, 33, 72, 34, 30, 35, 76, 36, 29, 37, 38, 79, 80, 81, 82, 39, 83, 41, 40, 41, |
| Oxalic acid                                   | 14         | Detected in all AOP systems except<br>systems that based persulfate and<br>peroxymonosulfate as an oxidant      | 1,4-Benzoquinone                        | 26         | Was detected after treatment of<br>ATC by different AOP systems                                                 | 84, 42, 85, 43, 86, 87, 44, 88, 89, 45, 40, 60, 47, 91, 21, 92, 22, 93, 48, 49, 94, 50,         |
| Formic acid                                   | 10         | Detected in all AOP systems except<br>systems that based irradiation as<br>a catalyst                           | 4-Aminophenol                           | 16         | Detected in all AOP systems except<br>systems that based persulfate and<br>peroxymonosulfate as an oxidant      | 95–99, 27, 51, 52, 58, 53–55<br>and 100–103                                                     |
| Acetic acid                                   | 6          | Mostly detected after oxidation of<br>ACT by electrooxidation systems                                           | 1,2,4-<br>Trihydroxybenzene             | Ŋ          | This by-product was frequently<br>detected after oxidation of ACT by<br>photodegradation systems                |                                                                                                 |
| Oxamic acid                                   | 7          | Detected in all AOP systems except<br>systems that based persulfate and<br>peroxymonosulfate as an oxidant      | 4-Methylbenzene-1,2-<br>diol            | 2          | Only observed after ACT treatment<br>by systems that based persulfate<br>and peroxymonosulfate as an<br>oxidant |                                                                                                 |
| Maleic acid                                   | Ŋ          | Only observed after ACT treatment<br>by systems that photodegradation<br>systems                                | Benzoic acid                            | 7          | Benzoic acid frequently detected<br>after electrooxidation of ACT                                               |                                                                                                 |
| Malonic acid                                  | 7          | Mostly detected after oxidation of<br>ACT by electrooxidation systems                                           | <i>N</i> -(3,4-<br>Dihydroxyphenyl)     | 7          | Only observed after ACT treatment<br>by systems that based persulfate                                           |                                                                                                 |
| 4-Heptanol<br>Butanoic acid<br>Hydroxyacetone | 000        | Mostly detected after oxidation of<br>ACT by electrooxidation systems                                           | formamide                               |            | and peroxymonosulfate as an<br>oxidant                                                                          |                                                                                                 |
| 2-(Acetylamino)-2-<br>propenoic acid          | 2          | Only observed after ACT treatment<br>by systems that based persulfate<br>and peroxymonosulfate as an<br>oxidant |                                         |            |                                                                                                                 |                                                                                                 |

| Open Acces | ess Article. Published on 22 June 2022. Downloaded on 7/13/2025 8:36:49 PM. | This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. |
|------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| (cc)       | A.                                                                          | (cc)) BY                                                                            |
|            |                                                                             |                                                                                     |

| cts <sup>a</sup>          |
|---------------------------|
| CT by-produ               |
| ACT                       |
| for                       |
| ow and Ames mutagenicity  |
| id Ames                   |
| minnow an                 |
| fathead                   |
| 6 h)                      |
| 6) (                      |
| f (LC <sub>50</sub> ) (96 |
| values o                  |
| Prediction                |
| Table 4                   |

© 2022 The Author(s). Published by the Royal Society of Chemistry

|                                     |                    | The percenta<br>studies | ge of the freq              | uent by-prod | The percentage of the frequent by-products out of 64 studies | Fathead minn         | Fathead minnow, LC <sub>50</sub> (96 h) | Ames mutagenicity        | icity                    |
|-------------------------------------|--------------------|-------------------------|-----------------------------|--------------|--------------------------------------------------------------|----------------------|-----------------------------------------|--------------------------|--------------------------|
| Name                                | Chemical structure | Photo<br>catalytic%     | Sulfate<br>radical-<br>AOP% | EO%          | Other AOP<br>process%                                        | $-\log (mol L^{-1})$ | Predicted value $(mg L^{-1})$           | Experimental<br>result   | Predicted<br>result      |
| Toxic compounds                     | H<br>H             |                         |                             |              |                                                              |                      |                                         |                          |                          |
| Benzaldehyde                        |                    | a                       | ø                           | 8%           | 8%                                                           | 2.98                 | 6.82                                    | в                        | Mutagenicity<br>negative |
| Harmful compounds                   | T                  |                         |                             |              |                                                              |                      |                                         |                          |                          |
| Hydroquinone                        |                    | 66%                     | 67%                         | 62%          | 58%                                                          | 3.81                 | 17.16                                   | Mutagenicity<br>negative | Mutagenicity<br>negative |
| <i>N</i> -(3,4-<br>Dihvdroxvbhenvl) |                    | ø                       | 17%                         | a            | a                                                            | 3.52                 | 45.86                                   | ø                        | Mutagenicity             |
| formamide                           |                    |                         |                             |              |                                                              |                      |                                         |                          | negative                 |
|                                     |                    |                         |                             |              |                                                              |                      |                                         |                          |                          |
| 4-Methylbenzene-<br>1,2-diol        |                    | a                       | 17%                         | а            | a                                                            | 3.65                 | 27.57                                   | Mutagenicity<br>negative | Mutagenicity<br>negative |
|                                     |                    |                         |                             |              |                                                              |                      |                                         |                          |                          |
| Benzoquinone                        |                    | 37%                     | 33%                         | 62%          | 33%                                                          | 3.49                 | 35.11                                   | Mutagenicity<br>negative | Mutagenicity<br>negative |
|                                     | D                  |                         |                             |              |                                                              |                      |                                         |                          |                          |

| Table 4 (Contd.)                          |                    |                                                              |                             |              |                       |                        |                                                       |                          |                          |
|-------------------------------------------|--------------------|--------------------------------------------------------------|-----------------------------|--------------|-----------------------|------------------------|-------------------------------------------------------|--------------------------|--------------------------|
|                                           |                    | The percentage of the frequent by-products out of 64 studies | ge of the freq              | uent by-prod | acts out of 64        | Fathead min            | Fathead minnow, LC <sub>50</sub> (96 h)               | Ames mutagenicity        | icity                    |
| Name                                      | Chemical structure | Photo<br>catalytic%                                          | Sulfate<br>radical-<br>AOP% | EO%          | Other AOP<br>process% | $-\log (mol \ L^{-1})$ | Predicted value $(\operatorname{mg} \mathrm{L}^{-1})$ | Experimental<br>result   | Predicted<br>result      |
| 4-Aminophenol                             |                    | 30%                                                          | 42%                         | 8%           | 25%                   | 3.30                   | 54.55                                                 | Mutagenicity<br>negative | Mutagenicity<br>negative |
| Benzoic acid                              | 00                 | 11%                                                          | æ                           | 15%          | 8%                    | 3.21                   | 75.43                                                 | Mutagenicity<br>negative | Mutagenicity<br>negative |
| 1,2,4-<br>Trihydroxybenzene               |                    | 18%                                                          | 8%                          | 8%           | ø                     | 3.01                   | 24.64                                                 | Mutagenicity<br>negative | Mutagenicity<br>negative |
| 4-Nitrophenol                             |                    | 7%                                                           | 25%                         | ø            | ø                     | 1.93                   | 19.02                                                 | Mutagenicity<br>negative | Mutagenicity<br>negative |
| 4-Aminobenzene-<br>1,2-diol               |                    | a                                                            | 16%                         | ø            | U                     | 3.86                   | 43.18                                                 | Mutagenicity<br>negative | Mutagenicity<br>negative |
| Harmless compounds<br>Hydroxy-acetic acid |                    | 7%                                                           | ø                           | 8%           | 17%                   | 1.60                   | 1904.50                                               | Mutagenicity<br>negative | Mutagenicity<br>negative |

Open Access Article. Published on 22 June 2022. Downloaded on 7/13/2025 8:36:49 PM.

(cc) BY

Review

| Table 4 (Contd.) |                                       |                                                              |                             |              |                       |                         |                                                                                         |                          |                          |
|------------------|---------------------------------------|--------------------------------------------------------------|-----------------------------|--------------|-----------------------|-------------------------|-----------------------------------------------------------------------------------------|--------------------------|--------------------------|
|                  |                                       | The percentage of the frequent by-products out of 64 studies | ge of the freq              | uent by-prod | ucts out of 64        | Fathead minr            | Fathead minnow, LC <sub>50</sub> (96 h)                                                 | Ames mutagenicity        | icity                    |
| Name             | Chemical structure                    | Photo<br>catalytic%                                          | Sulfate<br>radical-<br>AOP% | EO%          | Other AOP<br>process% | $-\log$ (mol $L^{-1}$ ) | $\begin{array}{l} \mbox{Predicted} \\ \mbox{value} \\ \mbox{(mg $L^{-1}$)} \end{array}$ | Experimental<br>result   | Predicted<br>result      |
| Malonic acid     | H H H H H                             | 15%                                                          | 8%                          | 15%          | 8%                    | 2.17                    | 704.59                                                                                  | Mutagenicity<br>negative | Mutagenicity<br>positive |
| Succinic acid    | H H H H                               | a                                                            | a                           | a            | 8%                    | 2.51                    | 367.61                                                                                  | ъ                        | Mutagenicity<br>negative |
| Malic acid       | H H H H H H H H H H H H H H H H H H H | 11%                                                          | в                           | 8%           | 8%                    | 2.40                    | 529.53                                                                                  | ø                        | Mutagenicity<br>negative |
| Acetamide        |                                       | 26%                                                          | 8%                          | 31%          | 33%                   | 1.97                    | 637.40                                                                                  | Mutagenicity<br>negative | Mutagenicity<br>negative |
| Tartronic acid   |                                       | 4%                                                           | в                           | a            | 8%                    | 2.27                    | 644.64                                                                                  | ø                        | Mutagenicity<br>negative |
| Maleic acid      |                                       | 19%                                                          | a                           | 8%           | 17%                   | 2.59                    | 298.69                                                                                  | Mutagenicity<br>negative | Mutagenicity<br>negative |
| Oxalic acid      |                                       | 19%                                                          | в                           | 38%          | a                     | 2.18                    | 592.91                                                                                  | Mutagenicity<br>negative | Mutagenicity<br>negative |

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)) BY

Open Access Article. Published on 22 June 2022. Downloaded on 7/13/2025 8:36:49 PM.

© 2022 The Author(s). Published by the Royal Society of Chemistry

### View Article Online RSC Advances

| Table 4 (Contd.)                                             |                                      |                                                                 |                             |              |                       |                       |                                                                                         |                          |                          |
|--------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------|-----------------------------|--------------|-----------------------|-----------------------|-----------------------------------------------------------------------------------------|--------------------------|--------------------------|
|                                                              |                                      | The percentage of the frequent by-products out of 64<br>studies | ge of the freq              | uent by-prod | ucts out of 64        | Fathead minn          | Fathead minnow, LC <sub>50</sub> (96 h)                                                 | Ames mutagenicity        | icity                    |
| Name                                                         | Chemical structure                   | Photo<br>catalytic%                                             | Sulfate<br>radical-<br>AOP% | EO%          | Other AOP<br>process% | $-\log \pmod{L^{-1}}$ | $\begin{array}{c} \mbox{Predicted} \\ \mbox{value} \\ \mbox{(mg $L^{-1}$)} \end{array}$ | Experimental<br>result   | Predicted<br>result      |
| Oxamic acid                                                  | H<br>H<br>H                          | 19%                                                             | a                           | 15%          | 8%                    | 2.23                  | 520.93                                                                                  | p                        | Mutagenicity<br>negative |
| Butyric acid                                                 | H<br>H<br>H<br>H<br>H<br>H<br>H<br>H | 7%                                                              | a                           | a            | ø                     | 2.29                  | 448.12                                                                                  | Mutagenicity<br>negative | Mutagenicity<br>negative |
| Acetic acid                                                  |                                      | 15%                                                             | ø                           | 23%          | 50%                   | 2.66                  | 132.49                                                                                  | Mutagenicity<br>negative | Mutagenicity<br>negative |
| <i>N</i> <sup>-</sup> (3,4-<br>Dihydroxyphenyl)<br>acetamide |                                      | 14%                                                             | 8%                          | %8           | ø                     | 3.71                  | 125.65                                                                                  | Mutagenicity<br>positive | Mutagenicity<br>negative |
| 4-Heptanol                                                   |                                      | v                                                               | ø                           | 15%          | p                     | a                     | 122.16                                                                                  | p                        | p                        |
| Bthylamine                                                   |                                      | a                                                               | a                           | 8%           | 8%                    | 4.19                  | 525.21                                                                                  | Mutagenicity<br>negative | Mutagenicity<br>negative |
| Hydroxyacetone                                               |                                      | ø                                                               | a                           | 15%          | ۵                     | a                     | 3589.95                                                                                 | ø                        | ą                        |

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)) BY

Open Access Article. Published on 22 June 2022. Downloaded on 7/13/2025 8:36:49 PM.

Review

Table 4 (Contd.)

© 2022 The Author(s). Published by the Royal Society of Chemistry

|                                                  |                    | The percentage of the frequent by-products out of 64 studies | e of the frequ              | ient by-produ | cts out of 64         | Fathead minn            | Fathead minnow, LC <sub>50</sub> (96 h)                                                      | Ames mutagenicity        | icity                    |
|--------------------------------------------------|--------------------|--------------------------------------------------------------|-----------------------------|---------------|-----------------------|-------------------------|----------------------------------------------------------------------------------------------|--------------------------|--------------------------|
| Name                                             | Chemical structure | Photo<br>catalytic%                                          | Sulfate<br>radical-<br>AOP% | EO%           | Other AOP<br>process% | $-\log$ (mol $L^{-1}$ ) | $\begin{array}{l} \mbox{Predicted} \\ \mbox{value} \\ \mbox{(mg } {\rm L}^{-1}) \end{array}$ | Experimental<br>result   | Predicted<br>result      |
| <i>N</i> -[2,4-<br>Dihydroxyphenyl)<br>acetamide |                    | ۵                                                            | ۵                           | 8%            | 8%                    | 1.31                    | 113.70                                                                                       | ۲                        | Mutagenicity<br>positive |
| Unknown toxicity values<br>ACT dimer             | U<br>U<br>U<br>H   | 11%                                                          | a                           | ø             | 8%                    | 3.46                    | ø                                                                                            | ø                        | Mutagenicity<br>negative |
| 2-(Acetylamino)-2-<br>propenoic acid             |                    | ۵                                                            | 16%                         | ۵             | ۵                     | ۵                       | ø                                                                                            | ۲                        | ۵                        |
| 2-Hydroxy-4-( <i>N</i> -<br>acetyl) aminophenol  | он                 | 7%                                                           | ø                           | ø             | ø                     | e                       | æ                                                                                            | p                        | ø                        |
| Formic acid<br><sup>a</sup> Data not available.  |                    | 11%                                                          | 17%                         | 15%           | 50%                   | ۵                       | a                                                                                            | Mutagenicity<br>negative | Mutagenicity<br>negative |
|                                                  |                    |                                                              |                             |               |                       |                         |                                                                                              |                          |                          |

Review

The toxicity of all chemicals in the aquatic environment is classified into four categories according to the globally harmonized system GHS: extremely toxic, toxic, harmful, and harmless chemicals.<sup>104</sup> The acute toxicity LC<sub>50</sub> (96 h) for fathead minnow exposured to ACT by-products can classify harmless if the concentration of LC<sub>50</sub> (96 h) within range from 1000 to 100 mg  $L^{-1}$ , harmful level from 100 to 10 mg  $L^{-1}$ , toxic level from 10 to 1 mg  $L^{-1}$ , and very toxic level at values less than 1 mg L<sup>-1</sup>.<sup>28</sup> The findings revealed that toxic reaction of hydroxyacetic acid, malonic acid, succinic acid, malic acid, acetamide, tartronic acid, maleic acid, oxalic acid, oxamic acid, butyric acid, acetic acid, N-(3,4-dihydroxyphenyl)acetamide, 4-heptanol, ethylamine, hydroxyacetone, and N-(2,4-dihydroxyphenyl) acetamide to the fathead minnow organism was belonged to the harmless level. Besides, hydroquinone, N-(3,4-dihydroxyphenyl) formamide, 4-methylbenzene-1,2-diol, benzoquinone, 4-aminophenol, benzoic acid, 1,2,4-trihydroxybenzene, 4-nitrophenol, and 4-aminobenzene-1,2-diol belongs to harmful level. Furthermore, benzaldehyde is a toxic by-product for fathead minnow. Extremely toxic level of ACT by-product has not been detected in all AOP system that applied.

The following literature provides some experimental toxicity assessment of ACT and its frequent by-products such as hydroquinone, benzoquinone, benzaldehyde, and benzoic acid. For example, Nunes et al.<sup>105</sup> examined the influence of acute exposure of ACT onto two aquatic plants Lemna gibba and Lemna minor. They revealed that ACT had a significant impact on the number of *Lemna minor* fronds ( $EC_{50} = 446.6 \text{ mg L}^{-1}$ ), but there was no effect on Lemna gibba. Xu et al.<sup>106</sup> studied the acute and chronicle effects of ACT onto three different aquatic species (i) fish, (ii) green algae and (iii) daphnia. The acute toxicity values were  $LC_{50} = 63.1 \text{ mg L}^{-1}$  for daphnia and  $LC_{50} =$ 323 mg  $L^{-1}$  for fish, and  $EC_{50} = 26.3$  mg  $L^{-1}$ . The chronicle concentrations were 26.3, 5.13, 37.2 mg  $L^{-1}$ , for fish, daphnia, and green algae, respectively. The author concluded that there was no adverse effect at chronical value for green algae and fish, but it was harmful to daphnia. Moreover, Sung et al. 107 studied the acute toxicity of ACT on shrimp Neocaridina denticulate. The results revealed that the  $LC_{50} = 6.6 \text{ mg } L^{-1}$  after 96 hours of exposure. Kataoka et al.<sup>108</sup> proposed that the toxicity of ACT on aquatic organisms depends on environmental temperature. They used Oryzias latipes to examine their hypothesis because Oryzias latipes can live at a wide range of temperatures from 0 to 40 °C. The egg yolk of Oryzias latipes exposures to many ACT concentrations at different temperatures 15, 25, and 30 °C for 4 days. The authors revealed that, in any ACT concentrations, the absorption of ACT by egg yolk increased with increasing temperature. Based on the hematological analysis showed at 150 mg  $L^{-1}$  of ACT, the abnormal red cells were increased. In addition, previous researches showed that ACT negatively impacted zebrafish (Danio rerio). For example, Galus et al.<sup>109</sup> studied the negative influences of different ACT concentrations from 0.05  $\mu$ g L<sup>-1</sup> to 50  $\mu$ g L<sup>-1</sup> on *Danio rerio*. The results indicated that at low ACT concentration 0.1  $\mu$ g L<sup>-1</sup>, the abnormality was sharply increased, and all test concentrations showed increases in mortality rates. Erhunmwunse et al. 110 investigated the acute effects of ACT on developmental, swimming performance, and cardiovascular activities on larvae (*Clarias gariepinus*). In this study, a fish embryo acute toxicity test was applied. Many ACT concentrations were exposed into *Clarias gariepinus* embryo 0, 0.5, 1, and 10  $\mu$ g L<sup>-1</sup>, and the results concluded that ACT caused teratogenic, neurotoxic, and cardiotoxic effects into *Clarias gariepinus*.

Hydroquinone is widely used as a water-soluble constituent of foods, an antioxidant in industrial polymers, and as an ingredient in skin lightening preparations.111 The literature agreed that hydroquinone is a haematotoxin and carcinogenic agent, and well known its adverse effects on public health and the environment. A human might exposure to hydroquinone from many sources such as dietary, occupational, and environmental sources. O'Donoghue et al.112 studied the acute effect of hydroquinone on DNA damage in vivo comet assay in F344 rats. The results revealed that hydroquinone caused acute renal necrosis at dosage 420 mg per kg per day. Ji et al.<sup>113</sup> examined cytogenetic changes in chromosomes 5, 7, 8, 11, and 21, and global DNA methylation in human TK6 lymphoblastoid cells were exposed for 48 houses with hydroquinone. In compared to melphalan and etoposide, the results revealed a worldwide hypomethylation at an intermediate level. They also discovered a cytogenetic change. Bährs et al.114 investigated the influence of pH and the time of hydroquinone exposure on the growth performance of different eukaryotic and prokaryotic freshwater phototrophs. The authors reported that cyanobacterial species were much more vulnerable to hydroquinone than coccal algal. The Microcystis aeruginosa species was the most sensitive by far. In addition, the impact of pH on hydroquinone toxicity was studied. At pH 11, the hydroquinone stock solution got polymerized, which led to the loss of its toxicity. On the other hand, the i potential was sustained if the polyphenol was kept at pH 7. Furthermore,<sup>115</sup> studied the toxicity of hydroquinone on the white rabbit in New Zealand. Three different dosages were applied every day 0, 25, 75, and 150 mg per kg per day. The results revealed that 75 and 150 mg were negatively affected in the body weight and feed consumption during the experiment period. In addition,<sup>116</sup> pointed out that hydroquinone was able to increase carcinogenic risk by generating DNA damage and compromising the general immune responses, which may contribute to the impaired triggering of the host immune reaction. They demonstrated that hydroguinone was more toxic for aquatic organisms than bacteria and fungi.117 studied the influence of multiple metabolites compounds such as 1,2,4benzentriol, hydroquinone, 1,4-benzoquinone, 2,2-biphenol, and 4,4-biphenol on the DNA cleavage activity of human topoisomerase IIa. The results showed that hydroquinone and 1,4bezoquinone were the most attributes against topoisomerase IIa, including DNA cleavage specificity. Hydroquinone also prevented DNA ligation more effectively than 1,4benzoquinone.

According to the studies, 1,4-benzoquinone is a highly reactive metabolite that can be caused cells damages through forming DNA adducts and produce superoxide species. In addition, 1,4-benzoquinone can directly attack the macromolecules. Many adverse effects of benzoquinone have been investigated. For example,<sup>118</sup> demonstrated that benzoquinone

inhibited the cycle progression and induced the contraction and shrinkage of the A549 cells. Thus, leading to the direct effect of the damage of the microtubule cytoskeleton. Pengling Sun et al.119 examined the VNN3 gene code as a biomarker of the 1,4-benzoquinone toxicity. They cultured AHH-1 cells in vitro and incubated them with 0, 10, 20, and 40 mM of 1,4-benzoquinone for 24 hours. The results showed that 1,4-benzoquinone increases the expression of the VNN3 gene, thus leading to inhibit cell proliferation. Summary et al.120 studied the long and short term of exposure of quinone introduced via inhalation into human. They revealed that the acute exposure of quinone with high concentration resulted the following symptoms (i) consisting of discoloration of the conjunctiva and cornea (ii) causes dermatitis from dermal exposure (iii) irritation of the eves. For long-term exposure appeared the following symptoms, causes skin ulceration and visual disturbances. Furthermore,121 reported that the ACT and 1.4-benzoquinone imine through intraperitoneal injections in the mouse. They mentioned that the LD<sub>50</sub> values were 500 and 8.5 mg kg<sup>-1</sup>, for ACT and 1,4benzoquinone. That means 1,4-benzoquinone higher 58 times than ACT.<sup>122</sup> examined a new approach to determine the toxicity of 1,4-benzoquinone. The results revealed that the IC<sub>50</sub> of 1,4benzoquinone was  $0.89 \text{ mg L}^{-1}$ , which means highly toxic, and its toxicity should not be ignored. Moreover, Faiola.123 revealed that 1,4-benzoquinone had a direct toxic effect in hematopoietic stem cells (HSCs), which rise to leukemic clones. Kondrová et al.<sup>124</sup> studied the mechanisms of the oxidation stress of 1,4benzoquinone on destroying cytochrome P450. The study observed that 1,4-benzoquinone mainly destroying cytochrome P450 by direct attack of the macromolecules.

Many studies including the chronic and acute effects of benzoic acid, benzaldehyde, and benzene derivatives on different organisms like humans, cats, rats, and other microorganisms. For example, Lee & Chen,125 studied the toxicity of benzoic acid and its derivatives on Pseudokirchneriella sub*capitata*. The results indicated that the  $EC_{50}$  range of benzoic acid was between 0.55 to 270.7 mg  $L^{-1}$ . In addition, they revealed that benzene derivatives (2,4,6-trihydroxylbenzoic acid, 2,3,4-trihydroxylbenzoic acid, 2,6-dihydroxylbenzoic acid, 3bromobenzoic acid, 4-bromobenzoic acid, and 4-chlorobenzoic acid, were more toxic than benzoic acid. In addition, Paulraj et al.<sup>126</sup> examined the pupicidal and larvicidal, which are based on benzaldehyde applied on larvae and pupae stages of Culex quinquefasciatus and Aedes aegypti. They revealed that the  $LC_{50}$ of benzaldehyde on Culex quinquefasciatus and Aedes aegypti were 40.48 and 30.39 ppm after 12.08 and 9.44 min, respectively. The adult mortality of Aedes aegypti was reached 100% after 24 hours of treatment and the mortality of Culex quinquefasciatus was 100% by using in both benzaldehyde and propionic acid. Velegraki et al.71 investigated the influence of benzoic acid on sea bacteria Vibrio fischeri after the treatment process by an electrooxidation system. The results indicated that at initial concentration 50 mg  $L^{-1}$ , of benzoic acid in the early stage of treatment was the most toxic with inhabitation around 80% of the bacteria after 6 hours of reaction, the inhibition was kept at 80%. After that, the inhibition started to decrease. Johnson et al.127 mentioned the acute inhalation

exposure of benzoic acid for 4 hours introduced to a rat. The results indicated that low acute toxicity was observed on the rate. For oral dose toxicity, if the concentration of benzoic acid below is 800 mg per kg body weight per day, there were no observable adverse effects, while in the concentration of benzoic acid exceed 800 mg kg<sup>-1</sup>, there were adverse effects have appeared on the liver, kidney of the rat. Furthermore, Kreis *et al.*<sup>128</sup> studied the toxicity of benzoic acid with high dosage and short-term exposure on rats, around 2250 mg kg<sup>-1</sup> of benzoic acid was introduced into the rat within 5 days. The results showed around 50% of mortality and many critical adverse effects were observed on rats like histopathological alteration, ataxia, excitation, bleeding into the gut, and convulsion.

### 6. Future outlook

The development of AOPs as an effective approach to degrade ACT is more demanding of people's attention. The following are the main components of ACT treatment development using advanced oxidation technology:

• The degradation of ACT through radical and non-radical pathways can coexist in chemical oxidation. Since the radicals prefer to attack the more electrophilic sites on the pollutant, which can predict the degradation pathway through DFT method, while the non-radicle pathways attack the pollutant from any site spontaneously, which can generate a wide range of byproducts and increase the difficulty to apply DFT method.

• However, identifying the precise and quantitative contribution of radical and non-radical pathways in the overall oxidative response remains a difficulty, which reduce the preciseness of DFT method to predict the degradation pathways of target pollutant.

• Another important point to keep in mind is that most ACT degrading research has been done with simulated wastewater, with only a few studies concentrating on real wastewater. As a result, the presence of cations, anions, organic, and inorganic chemicals may act as an interference and may change the degradation pathway of ACT and their by-products.

### 7. Conclusions

This article has attempted to give a critical review for ACT byproducts and their toxicity, proposed degradation pathways of ACT. In addition, the computational method was used to build the degradation pathways of ACT. The following point concludes the results of this study:

• This study revealed that the most of the by-products that frequently detected were hydroquinone, 1,4-benzoquinone, 4aminophenol, acetamide, oxalic acid, formic acid, acetic acid, 1,2,4-trihydroxybenzene, and maleic acid, respectively.

• *N*-(3,4-Dihydroxyphenyl)acetamide showed positive mutagenicity for both experimental and prediction tests. Meanwhile, *N*-(2,4-dihydroxyphenyl)acetamide and malonic acid showed positive mutagenicity only for the prediction test. The findings of LC<sub>50</sub> (96 h) test revealed that benzaldehyde is the most toxic ACT by-products and hydroquinone, *N*-(3,4-dihydroxyphenyl) formamide, 4-methylbenzene-1,2-diol, benzoquinone, 4aminophenol, benzoic acid, 1,2,4-trihydroxybenzene, 4-nitrophenol, and 4-aminobenzene-1,2-diol considered harmful. The release of them into the environment without treatment may threaten the ecosystem.

• The degradation pathway of ACT based on the computational method was matched with the majority of ACT proposed pathways and matched with the most frequent ACT byproducts.

## Conflicts of interest

There are no conflicts to declare.

## Acknowledgements

This research work was funded by Institutional Fund Projects under grant no. (IFPRP: 188-130-1442). Therefore, authors gratefully acknowledge technical and financial support from the Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.

## References

- 1 H. Mohan, S. S. Rajput, E. B. Jadhav, M. S. Sankhla, S. S. Sonone, S. Jadhav and R. Kumar, *Biointerface Res. Appl. Chem*, 2021, **11**, 12530–12546.
- 2 A. Majumder, B. Gupta and A. K. Gupta, *Environ. Res.*, 2019, **176**, 108542.
- 3 D. Ramírez-Morales, M. Masís-Mora, W. Beita-Sandí, J. R. Montiel-Mora, E. Fernández-Fernández, M. Méndez-Rivera, V. Arias-Mora, A. Leiva-Salas, L. Brenes-Alfaro and C. E. Rodríguez-Rodríguez, *Chemosphere*, 2021, 272, 129574.
- 4 A. Ziylan-Yavaş and N. H. Ince, *Ultrason. Sonochem.*, 2018, 40, 175–182.
- 5 M. Skoumal, P. L. Cabot, F. Centellas, C. Arias, R. M. Rodríguez, J. A. Garrido and E. Brillas, *Appl. Catal.*, *B*, 2006, **66**, 228–240.
- 6 M. Blieden, L. C. Paramore, D. Shah and R. Ben-Joseph, *Expert Rev. Clin. Pharmacol.*, 2014, 7, 341–348.
- 7 G. Moussavi, H. Momeninejad, S. Shekoohiyan and P. Baratpour, *Sep. Purif. Technol.*, 2017, **181**, 132–138.
- 8 B. S. Rathi and P. S. Kumar, *Environ. Pollut.*, 2021, 280, 116995.
- 9 C. Su, R. Li, C. Li and W. Wang, *Appl. Catal.*, *B*, 2022, **310**, 121330.
- 10 N. P. Ferraz, A. E. Nogueira, F. C. F. Marcos, V. A. Machado, R. R. Rocca, E. M. Assaf and Y. J. O. Asencios, *Rare Met.*, 2020, **39**, 230–240.
- 11 S. Qu, W. Wang, X. Pan and C. Li, *J. Hazard. Mater.*, 2020, **384**, 121494.
- 12 A. Gómez-Avilés, M. Peñas-Garzón, J. Bedia, J. J. Rodriguez and C. Belver, *Chem. Eng. J.*, 2019, **358**, 1574–1582.
- 13 A. Ikhlaq, S. Waheed, K. S. Joya and M. Kazmi, *Catal. Commun.*, 2018, **112**, 15–20.
- 14 J. K. Im, J. Heo, L. K. Boateng, N. Her, J. R. V. Flora, J. Yoon,
  K. D. Zoh and Y. Yoon, *J. Hazard. Mater.*, 2013, 254–255, 284–292.

- 15 S. Wang, J. Wu, X. Lu, W. Xu, Q. Gong, J. Ding, B. Dan and P. Xie, *Chem. Eng. J.*, 2019, **358**, 1091–1100.
- 16 S. N. Mane, S. M. Gadalkar and V. K. Rathod, Ultrason. Sonochem., 2018, 49, 106–110.
- 17 F. Audino, J. M. T. Santamaria, L. J. Del Valle Mendoza, M. Graells and M. Pérez-Moya, *Int. J. Environ. Res. Public Health*, 2019, 16(3), 505.
- 18 M. Qutob, M. Rafatullah, M. Qamar, H. S. Alorfi, A. N. Al Romaizan and M. A. Hussein, *Nanotechnol. Rev.*, 2022, 497–525.
- 19 B. N. Giménez, L. O. Conte, O. M. Alfano and A. V. Schenone, *J. Photochem. Photobiol.*, A, 2020, 397, 112584.
- 20 Y. Tong, X. Wang, Z. Sun and J. Gao, *Chemosphere*, 2021, 278, 130399.
- 21 Y. L. Wang, S. Zhang, Y. F. Zhao, J. Bedia, J. J. Rodriguez and C. Belver, *J. Environ. Chem. Eng.*, 2021, **9**, 106087.
- 22 C. Belver, J. J. Rodriguez and J. Bedia, *Sep. Purif. Technol.*, 2021, 272, 118896.
- 23 Y. Li, Y. Pan, L. Lian, S. Yan, W. Song and X. Yang, *Water Res.*, 2017, **109**, 266–273.
- 24 Y. Ling, G. Liao, P. Xu and L. Li, *Sep. Purif. Technol.*, 2019, 216, 1–8.
- 25 J. Ma, L. Chen, Y. Liu, T. Xu, H. Ji, J. Duan, F. Sun and W. Liu, *J. Hazard. Mater.*, 2021, **418**, 126180.
- 26 J. Qi, J. Liu, F. Sun, T. Huang, J. Duan and W. Liu, Chin. Chem. Lett., 2021, 32, 1814–1818.
- 27 S. O. Ganiyu, N. Oturan, S. Raffy, M. Cretin, C. Causserand and M. A. Oturan, *Sep. Purif. Technol.*, 2019, **208**, 142–152.
- 28 Y. q. Gao, J. q. Zhou, Y. y. Rao, H. Ning, J. Zhang, J. Shi and N. y. Gao, *Ultrason. Sonochem.*, 2022, 82, 105906.
- 29 G. Fan, X. Zheng, J. Luo, H. Peng, H. Lin, M. Bao, L. Hong and J. Zhou, *Chem. Eng. J.*, 2018, **351**, 782–790.
- 30 M. D. G. De Luna, M. L. Veciana, C. C. Su and M. C. Lu, J. Hazard. Mater., 2012, 217–218, 200–207.
- 31 A. Mashayekh-Salehi, G. Moussavi and K. Yaghmaeian, *Chem. Eng. J.*, 2017, **310**, 157–169.
- 32 L. Yanyan, T. A. Kurniawan, Z. Ying, A. B. Albadarin and G. Walker, J. Mol. Liq., 2017, 243, 761–770.
- 33 Y. Zhang, Q. Zhang and J. Hong, *Appl. Surf. Sci.*, 2017, **422**, 443–451.
- 34 A. M. Abdel-Wahab, A. S. Al-Shirbini, O. Mohamed and O. Nasr, J. Photochem. Photobiol., A, 2017, 347, 186–198.
- 35 M. Hachemaoui, C. B. Molina, C. Belver, J. Bedia, A. Mokhtar, R. Hamacha and B. Boukoussa, *Catalysts*, 2021, **11**, 1–17.
- 36 V. H. T. Thi and B. K. Lee, *Mater. Res. Bull.*, 2017, **96**, 171–182.
- 37 F. Ghanbari, S. Giannakis, K. Y. A. Lin, J. Wu and S. Madihi-Bidgoli, *Chemosphere*, 2021, **263**, 128119.
- 38 H. Zhang, B. Cao, W. Liu, K. Lin and J. Feng, J. Environ. Sci., 2012, 24, 314–319.
- 39 Z. Dong, Q. Zhang, J. Hong, B. Y. Chen and Q. Xu, *Catal. Lett.*, 2018, 148, 2095–2108.
- 40 M. Yang, Y. Du, W. Tong, A. C. K. Yip and K. A. Lin, *Chemosphere*, 2019, **226**, 924–933.

- 41 H. Cai, J. Zou, J. Lin, J. Li, Y. Huang and S. Zhang, *Chem. Eng. J.*, 2022, **429**, 132438.
- 42 Y. Zhang, J. Fan, B. Yang and L. Ma, *Chem. Eng. J.*, 2017, **326**, 612–619.
- 43 S. Slamani, F. Abdelmalek, M. R. Ghezzar and A. Addou, *J. Photochem. Photobiol., A*, 2018, **359**, 1–10.
- 44 F. Rashidashmagh, Y. Doekhi-Bennani, M. Tizghadam-Ghazani, J. P. van der Hoek, A. Mashayekh-Salehi, B. S. G. J. Heijman and K. Yaghmaeian, *J. Hazard. Mater.*, 2021, 404, 124154.
- 45 X. Feng, P. Wang, J. Hou, J. Qian, C. Wang and Y. Ao, *Chem. Eng. J.*, 2018, **352**, 947–956.
- 46 Y. Li, W. Song, W. Fu, D. C. W. Tsang and X. Yang, *Chem. Eng. J.*, 2015, **271**, 214–222.
- 47 B. Li, X. Ma, J. Deng, Q. Li, W. Chen, G. Li, G. Chen and J. Wang, *Sci. Total Environ.*, 2020, **723**, 137993.
- 48 R. Mu, Y. Ao, T. Wu, C. Wang and P. Wang, J. Hazard. Mater., 2020, 382, 121083.
- 49 K. Li, J. Chen, Y. Ao and P. Wang, Sep. Purif. Technol., 2021, 259, 118177.
- 50 Q. Ma, H. Zhang, R. Guo, Y. Cui, X. Deng, X. Cheng, M. Xie, Q. Cheng and B. Li, *J. Taiwan Inst. Chem. Eng.*, 2017, 80, 176–183.
- 51 H. Olvera-Vargas, J. C. Rouch, C. Coetsier, M. Cretin and C. Causserand, *Sep. Purif. Technol.*, 2018, **203**, 143–151.
- 52 T. X. H. Le, T. Van Nguyen, Z. Amadou Yacouba, L. Zoungrana, F. Avril, D. L. Nguyen, E. Petit, J. Mendret, V. Bonniol, M. Bechelany, S. Lacour, G. Lesage and M. Cretin, *Chemosphere*, 2017, 172, 1–9.
- 53 S. Chen, P. He, P. Zhou, X. Wang, F. Xiao, Q. He, J. Li, L. Jia,
  H. Zhang, B. Jia and B. Tang, *Chemosphere*, 2021, 271, 129830.
- 54 Q. Zhang, B. Xin, Y. Bo, B. Chen and J. Hong, *Sci. Total Environ.*, 2020, 715, 136730.
- 55 F. Ghanbari, A. Hassani, Z. Wang, G. Matyszczak, K. A. Lin and M. Dolatabadi, *Sep. Purif. Technol.*, 2021, **266**, 118533.
- 56 T. A. Kurniawan, L. Yanyan, T. Ouyang, A. B. Albadarin and G. Walker, *Mater. Sci. Semicond. Process.*, 2018, 73, 42–50.
- 57 L. Zhang, X. Yin and S. F. Y. Li, *Chem. Eng. J.*, 2015, 276, 185–192.
- 58 S. Periyasamy and M. Muthuchamy, J. Environ. Chem. Eng., 2018, 6, 7358–7367.
- 59 A. G. Sierra-Sánchez, I. Linares-Hernández, V. Martínez-Miranda, P. T. Almazán-Sánchez, E. A. Teutli-Sequeira, M. Castañeda-Juárez and M. Esparza-Soto, *Environ. Technol.*, 2020, 1–32.
- 60 B. Palas, G. Ersöz and S. Atalay, *Chem. Eng. Sci.*, 2021, 242, 116593.
- 61 G. Zhang, Y. Sun, C. Zhang and Z. Yu, *J. Hazard. Mater.*, 2017, **323**, 719–729.
- 62 O. Nasr, O. Mohamed, A. Al-shirbini and A. Abdel-wahab, *J. Photochem. Photobiol.*, *A*, 2019, **374**, 185–193.
- 63 H. Wang, Y. Liu and J. Jiang, *Chemosphere*, 2016, **155**, 583–590.
- 64 L. Rimoldi, D. Meroni, E. Falletta, A. Maria, A. Gervasini,
  G. Cappelletti and S. Ardizzone, *Appl. Surf. Sci.*, 2017, 424, 198–205.

- 65 Y. Li, Y. Yang, J. Lei, W. Liu, M. Tong and J. Liang, *Sci. Total Environ.*, 2021, **779**, 146498.
- 66 P. P. Zamora, K. Bieger, A. Cuchillo, A. Tello and J. P. Muena, *J. Mol. Struct.*, 2021, **1227**, 129369.
- 67 M. Gupta, A. Srivastava and S. Srivastava, *Mater. Today: Proc.*, 2022, **50**, 1173–1180.
- 68 M. O. Chijioke-Okere, Z. Adlan Mohd Hir, C. E. Ogukwe, P. C. Njoku, A. H. Abdullah and E. E. Oguzie, *J. Mol. Liq.*, 2021, 338, 116692.
- 69 J. Li, S. Zhou, M. Li, E. Du and X. Liu, *Environ. Sci. Pollut. Res.*, 2019, 26, 25012–25025.
- 70 Y. Chen, X. Zhang, L. Mao and Z. Yang, *Chem. Eng. J.*, 2017, 330, 1091–1099.
- 71 T. Velegraki, G. Balayiannis, E. Diamadopoulos,
  A. Katsaounis and D. Mantzavinos, *Chem. Eng. J.*, 2010,
  160, 538–548.
- 72 Q. Zhang, W. Huang, J. m. Hong and B. Y. Chen, *Chem. Eng. J.*, 2018, 343, 662–675.
- 73 M. Kohantorabi, G. Moussavi, S. Mohammadi, P. Oulego and S. Giannakis, *Chemosphere*, 2021, 277, 130271.
- 74 Q. Zhang, B. X. Wang, Y. L. Zhou, J. ming Hong and Y. B. Yu, J. Phys. Chem. Solids, 2022, 161, 110443.
- 75 M. D. G. de Luna, R. M. Briones, C. C. Su and M. C. Lu, *Chemosphere*, 2013, **90**, 1444–1448.
- 76 Y. Zhang, J. Fan, B. Yang, W. Huang and L. Ma, *Chemosphere*, 2017, **166**, 89–95.
- 77 S. Peng, Y. Feng, Y. Liu and D. Wu, *Chemosphere*, 2018, **212**, 438-446.
- 78 A. Ziylan-Yavaş and N. H. Ince, *Chemosphere*, 2016, **162**, 324–332.
- 79 V. L. Pham, D. G. Kim and S. O. Ko, *Environ. Res.*, 2021, **201**, 111535.
- 80 Y. Zhang, Q. Zhang, Z. Dong, L. Wu and J. Hong, *Water Res.*, 2018, **146**, 232–243.
- 81 J. Ding, H. Nie, S. Wang, Y. Chen, Y. Wan, J. Wang, H. Xiao,
   S. Yue, J. Ma and P. Xie, *Water Res.*, 2021, 189, 116605.
- 82 P. Sun, H. Liu, M. Feng, X. Zhang, Y. Fang, Z. Zhai and V. K. Sharma, Sep. Purif. Technol., 2021, 268, 118697.
- 83 J. Fan, H. Qin and S. Jiang, *Chem. Eng. J.*, 2019, **359**, 723–732.
- 84 W. Yun, K. A. Lin, W. Tong, Y. Lin and Y. Du, *Chem. Eng. J.*, 2019, 373, 1329–1337.
- 85 M. Castañeda-Juárez, L. Antonio Castillo-Suárez,
  V. Martínez-Miranda, P. Tatiana Almazán-Sánchez,
  I. Linares-Hernández, V. Lugo-Lugo, M. Esparza-Soto and
  F. Santoyo-Tepole, *Sol. Energy*, 2020, **199**, 731–741.
- 86 N. Korichi, O. Aubry, H. Rabat, B. Cagnon and D. Hong, *Catalysts*, 2020, **10**, 1–16.
- 87 C. Y. Hu, W. H. Kuan, I. J. Lee and Y. J. Liu, *J. Environ. Chem. Eng.*, 2021, 9, 105129.
- 88 S. Humayun, M. Hayyan, Y. Alias and A. Hayyan, Sep. Purif. Technol., 2021, 270, 118730.
- 89 Y. Zhang, J. Lou, L. Wu, M. Nie, C. Yan, M. Ding, P. Wang and H. Zhang, *Ecotoxicol. Environ. Saf.*, 2021, 221, 112422.
- 90 F. F. A. Aziz, A. A. Jalil, S. Triwahyono and M. Mohamed, *Appl. Surf. Sci.*, 2018, 455, 84–95.

- 91 O. F. S. Khasawneh, P. Palaniandy, P. Palaniandy, M. Ahmadipour, H. Mohammadi and M. R. Bin Hamdan, *J. Environ. Chem. Eng.*, 2021, 9, 104921.
- 92 D. Pattappan, K. V. Kavya, S. Vargheese, R. T. R. Kumar and Y. Haldorai, *Chemosphere*, 2022, **286**, 131875.
- 93 X. Bi, G. Du, A. Kalam, D. Sun, W. Zhao, Y. Yu and Q. Su, *J. Colloid Interface Sci.*, 2021, **601**, 346–354.
- 94 R. Katal, M. Hossein, D. Abadi and H. Jiangyong, Sep. Purif. Technol., 2020, 230, 115859.
- 95 R. Cunha, W. Vinícius, H. Oliveira, A. Santos, P. Reis,
  K. Borges, P. Martelli, C. A. Furtado and H. Gurgulho, *J. Photochem. Photobiol.*, A, 2021, 412, 113248.
- 96 A. Gómez-avilés, M. Peñas-garzón, J. Bedia, D. D. Dionysiou, J. J. Rodríguez and C. Belver, *Appl. Catal.*, B, 2019, 253, 253– 262.
- 97 M. A. Al-gharibi, H. Htet, J. N. Al-sabahi, M. Tay, Z. Myint, Z. A. Al-sharji and M. Z. Al-abri, *Mater. Sci. Semicond. Process.*, 2021, **134**, 105994.
- 98 H. A. Abbas, R. A. Nasr, R. Vannier and T. S. Jamil, J. *Environ. Sci.*, 2022, **112**, 331–342.
- 99 A. G. Trovó, R. F. Pupo Nogueira, A. Agüera, A. R. Fernandez-Alba and S. Malato, *Water Res.*, 2012, 46, 5374–5380.
- 100 Y. Zhou, Q. Zhang, Y. Yu, B. Wang and J. Hong, *Appl. Surf. Sci.*, 2021, 542, 148753.
- 101 Q. Zhang, Y. Zhou, Y. Yu, B. Chen and J. Hong, *Appl. Surf. Sci.*, 2020, 508, 145111.
- 102 M. D. G. De Luna, M. L. Veciana, J. I. Colades, C. C. Su and M. C. Lu, J. Taiwan Inst. Chem. Eng., 2014, 45, 565–570.
- 103 Y. He, X. Wang, W. Huang, R. Chen, W. Zhang, H. Li and H. Lin, *Chemosphere*, 2018, **193**, 89–99.
- 104 X. Luo, Y. You, M. Zhong, L. Zhao, Y. Liu, R. Qiu and Z. Huang, *J. Hazard. Mater.*, 2022, **426**, 127803.
- 105 B. Nunes, G. Pinto, L. Martins, F. Gonçalves and S. C. Antunes, *Environ. Sci. Pollut. Res.*, 2014, 21, 10815– 10822.
- 106 M. Xu, J. Yao, S. Sun, S. Yan and J. Sun, *Toxics*, 2021, **9**(10), 234.
- 107 H. H. Sung, Y. W. Chiu, S. Y. Wang, C. M. Chen and D. J. Huang, *Environ. Toxicol. Pharmacol.*, 2014, **38**, 8–13.
- 108 C. Kataoka, T. Sugiyama, H. Kitagawa, A. Takeshima, Y. Kagami, H. Tatsuta and S. Kashiwada, *Environ. Pollut.*, 2019, **254**, 113092.

- 109 M. Galus, S. Fraz, A. Gugilla, M. Jönsson and J. Y. Wilson, *Environ. Toxicol. Pharmacol.*, 2020, **80**, 103463.
- 110 N. O. Erhunmwunse, I. Tongo and L. I. Ezemonye, *Ecotoxicol. Environ. Saf.*, 2021, **208**, 111482.
- 111 D. C. Topping, L. G. Bernard, J. L. O'Donoghue and J. C. English, *Food Chem. Toxicol.*, 2007, 45, 70–78.
- 112 J. L. O'Donoghue, C. Beevers and A. Buard, *Toxicol. Rep.*, 2021, **8**, 206–214.
- 113 Z. Ji, L. Zhang, V. Peng, X. Ren, C. M. McHale and M. T. Smith, *Leukemia*, 2010, 24, 986–991.
- 114 H. Bährs, A. Putschew and C. E. W. Steinberg, *Environ. Sci. Pollut. Res.*, 2013, **20**, 146–154.
- 115 S. J. Murphy, R. E. Schroeder, A. M. Blacker, W. J. Krasavage and J. C. English, *Toxicol. Sci.*, 1992, **19**, 214–221.
- 116 F. J. Enguita and A. L. Leitão, BioMed Res. Int., 2013, 542168.
- 117 R. H. Lindsey, R. P. Bender and N. Osheroff, *Chem. Res. Toxicol.*, 2005, **18**, 761–770.
- 118 A. Das, S. Chakrabarty, D. Choudhury and G. Chakrabarti, *Chem. Res. Toxicol.*, 2010, 23, 1054–1066.
- 119 P. Sun, X. Guo, Y. Chen, W. Zhang, H. Duan and A. Gao, *Environ. Pollut.*, 2018, **233**, 323–330.
- 120 EPA, Quinone (p-Benzoquinone), https://www.epa.gov/sites/ default/files/2016-09/documents/quinone.pdf, accessed on 2 Jun 2022.
- 121 M. Bedner and W. A. MacCrehan, *Environ. Sci. Technol.*, 2006, **40**, 516–522.
- 122 D. Yu, J. Li, Z. Kang, L. Liu, J. He, Y. Fang, H. Yu and S. Dong, *Analyst*, 2020, 145, 5266–5272.
- 123 B. Faiola, Stem Cells, 2004, 22, 750-758.
- 124 E. Kondrová, P. Stopka and P. Souček, *Toxicol. In Vitro*, 2007, **21**, 566–575.
- 125 P. Y. Lee and C. Y. Chen, *J. Hazard. Mater.*, 2009, **165**, 156–161.
- 126 M. G. Paulraj, A. D. Reegan and S. Ignacimuthu, *J. Entomol.*, 2011, **8**, 539–547.
- 127 W. Johnson, W. F. Bergfeld, D. V. Belsito, R. A. Hill, C. D. Klaassen, D. C. Liebler, J. G. Marks, R. C. Shank, T. J. Slaga, P. W. Snyder and F. A. Andersen, *Int. J. Toxicol.*, 2017, **36**, 5S–30S.
- 128 H. Kreis, K. Frese and G. Wilmes, *Food Cosmet. Toxicol.*, 1967, **5**, 505–511.