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cyclotriphosphazene carboxylate flame retardants:
effects of cyclotriphosphazene di, tetra and
hexacarboxylate intercalation on layered double
hydroxides against the combustible epoxy resin
coated on wood substrates†

Velusamy Jeevananthan and Swaminathan Shanmugan *

The development of halogen-free flame retardants as environmentally friendly and renewable materials for

heat and fire-resistant applications in the field of electronics is important to ensure safety measures. In this

regard, we have proposed a simple and halogen-free strategy for the synthesis of flame retardant LDH-PN

materials to decrease the fire hazards of epoxy resin (EP), via a co-precipitation reaction between Mg(NO3)2
and Al(NO3)3 and the subsequent incorporation of different cyclotriphosphazene (PN) carboxylate anions.

The cyclotriphosphazene-based di, tetra and hexacarboxylate-intercalated layered double hydroxides are

designated as LDH-PN-DC, LDH-PN-TC and LDH-PN-HC, respectively. Furthermore, the intercalation of

cyclotriphosphazene carboxylate anions into the LDH layers was confirmed by PXRD, FT-IR, TGA, solid-

state 31P NMR, nitrogen adsorption and desorption analysis (BET), HR-SEM and XPS. Evaluation of the

flame retardant (vertical burning test and limiting oxygen index) properties was demonstrated by

formulating the LDH-PN materials with epoxy resin (EP) in different ratios coated on wood substrates to

achieve the desired behaviour of the EP/LDH-PN composites. Structure–property analysis reveals that

EP/LDH-PN-TC-20 wt% and EP/LDH-PN-HC-20 wt% achieved a V0 rating in the UL-94 V test and

achieved higher LOI values (27.7 vol% for EP/LDH-PN-TC-20 wt% and 29 vol% for EP/LDH-PN-HC-

20 wt%) compared to the epoxy-coated wood substrate (23.2 vol%), whereas EP/LDH-PN-DC failed in

the vertical burning test for various weight percentages of LDH-PN-DC from 5 wt% to 20 wt% in the

composites, with a lower LOI value of 22.1 vol%. Excellent flame retardancy was observed for EP/LDH-

PN-TC and EP/LDH-PN-HC due to the presence of more binding sites of carboxylate anions in the LDH

layers and less or no spiro groups in cyclotriphosphazene compared to that in EP/LDH-PN-DC. In

addition, the synergistic flame retardant effect of the combination of LDH and cyclotriphosphazene on

the epoxy resin composites remains very effective in creating a non-volatile protective film on the

surface of the wood substrate to shelter it from air, absorb the heat and increase the ignition time, which

prevents the supply of oxygen during the combustion process. The results of this study show that the

proposed strategy for designing flame-retardant properties represents the state-of-the-art, competent

coating of inorganic materials for the protection and functionalization of wood substrates.
Introduction

Technical combustion processes are indispensable for the
industrialized world to generate power in different forms such
as mechanical energy, electrical energy and heat energy.
However, re-related accidents are an impairment of human
eering and Technology, SRM Institute of

603203, Tamil Nadu, India. E-mail:

@gmail.com

mation (ESI) available. See

3336
lives and have social and environmental costs. As a result,
combustible materials such as wood, fabrics and synthetic
polymers are frequently preserved with ame retardants to
suppress re discharges and tragedies. Flame retardant mate-
rials inhibit re development and propagation, and thereby
reduce economic damage and help to protect human lives.1

Halogen-containing ame retardant materials display satisfac-
tory re resistance in a polymer matrix and have been widely
used to overcome ammability.2,3 Unfortunately, the presence
of halogen-containing ame retardant materials may release
toxic gases and corrosive fumes during combustion processes,
© 2022 The Author(s). Published by the Royal Society of Chemistry
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which may cause health and environmental hazards.4,5 There-
fore, it is important to develop eco-friendly halogen-free intu-
mescent ame retardant materials to enrich the safety
measures. Inorganic ame retardants are a fast-growing class of
halogen-free ame retardants, which include antimony oxide,
magnesium hydroxide and aluminium hydroxide, and the main
drawback of these ame retardants is that a very high loading is
required to attain satisfactory ame retardant ratings for the
nal products.6

In recent years, layered double hydroxides (LDHs) have
received much attention in the synthesis of the halogen-free
ame retardants due to their non-toxicity, low cost, high
thermal stability, adjustable chemical composition, unique
layered structure, and exchangeable interlayer anions.7,8

LDHs are layered materials made of positively charged metal
hydroxide sheets, negatively charged anions and water
molecules at the gallery to balance the charge.9 The general
chemical formula of LDHs can be illustrated as
[M2+

1�x M
3+
x (OH)2]

x+[An�
x/n]$mH2O, where M2+ and M3+ are diva-

lent and trivalent metal cations, respectively, and An� are the
interlayer anions. Strong interlayer electrostatic interactions
are caused between the LDH sheets due to the high charge
density of the LDH layers, high content of anionic species
and water molecules representing hydrophilic properties.10

Because of these properties, it is desirable that pristine LDHs
be altered by the intercalation of different types of organic
modiers to modify their surface and interior properties by
weakening the electrostatic forces between the LDH sheets,
increasing the interlayer distance of LDHs for the penetra-
tion of larger polymers and making the LDHs organophilic.11

A wide range of organic modiers such as carboxylates,
phosphonates and sulfonates have been utilized to alter the
surface properties of LDHs.12,13 Most of the modied LDHs,
such as LDH-long-chain linear alkyl carboxylates and sulfo-
nates, are used as ame retardant additives for blending with
low-density polyethylene, polypropylene, poly(methyl meth-
acrylate), polystyrene and poly(L-lactide) to yield LDH-
polymer nanocomposites.14,15 During the combustion
process, the ame retardant property of LDH-polymer
composites can contribute by absorbing heat, increasing
the ignition time, releasing aqueous vapour, reducing
combustible gases during pyrolysis and producing an oxide
layer on the surface of the material, which can prevent
further degradation.16,17

Besides organic modiers in LDHs, inorganic anions such as
phosphates and borates are intercalated in LDH layers and used
as ame retardant additives as the synergistic effect between the
phosphates or borates equally distributed in the interlayer
region and the host LDH layers reduces the rate of heat release
and the re growth rate index compared to the LDH carbonate
or sulphate precursors.18,19 As the mainly used compound,
cyclotriphosphazene is a versatile inorganic ring compound in
which phosphorous and nitrogen atoms are arranged in alter-
nating positions and two chlorine atoms are attached to each
phosphorous atom, which is reactive to different nucleophiles,
offering synthetic exibility to introduce desirable functional-
ities that can subsequently be transformed into desired
© 2022 The Author(s). Published by the Royal Society of Chemistry
synthetic precursors.20,21 Cyclotriphosphazene and its deriva-
tives have been commonly used as halogen-free ame retar-
dants owing to their high reactivity, non-toxic nature, high
thermal stability, excellent ame retardant efficiency and self-
extinguishability that are brought about by their unique
molecular design of a PN ring structure.22–24 Several substituted
cyclotriphosphazenes have been reported so far to develop
potential ame retardants with enhanced thermal stability
using two different approaches: (i) the rst approach is the
blending of different substituents on the aryl group of hex-
aphenoxycyclotriphosphazene with thermosetting polymers25–29

and (ii) the second approach is the synthesis of different
crosslinked cyclomatrix phosphazene polymers and cyclolinear
and spirocyclic phosphazene epoxy resins using cyclo-
triphosphazene with desired functional groups.30–36 Due to the
endothermic decomposition of cyclotriphosphazene polymers,
the non-volatile protective lms on the surface of the polymeric
materials are generated to insulate them from air; concurrently,
non-ammable gases are also released, which stop the oxygen
supply.37–39 Recently, the effects of the addition of nickel–iron,
nickel–aluminium, and nickel–chromium LDH-sodium dodecyl
sulfate (LDH-SDS) and hexaphenoxycyclotriphosphazene
(HPCP) on the poly(lactic acid) (PLA) matrix to produce PLA/
HPCP/LDH-SDS composites by the melt mixing method have
been suggested, and the different types of LDH-SDS materials
show the important function of enhancing the thermal stability
and ame retardancy of PLA composites by reducing the mass
and heat transfer between the gas and condensed phases.
Furthermore, the modied nickel–cobalt metal layered double
hydroxide with polyphosphazene produces the Ni–Co-
LDH@PZS architecture for the application of high re safety,
especially the suppression of smoke and toxic gases during
epoxy resin burning.40 To the best of our knowledge, there is no
report on the intercalation of cyclotriphosphazene carboxylate
anions into LDH layers and its application in ame retardancy.
Therefore, the combination of both LDH and cyclo-
triphosphazene through non-covalent bonding will produce
LDH-PN materials possessing superior ame retardancy by
increasing the interlayer distance of the LDH layers for the
dispersion of polymers such as epoxy resin. Based on the above
discussion, three cyclotriphosphazene carboxylate anion-
intercalated Mg–Al-LDH materials, represented as LDH-PN
materials, were synthesized and characterized. Then, the
LDH-PN materials were incorporated into epoxy resin with
different loadings using ultrasonication and thermal curing
processes, which were then coated on a wood substrate.
Subsequently, the ame retardancy of the EP/LDH-PN
composite-coated wood substrates was estimated using the
vertical burning test (UL 94 V) and limiting oxygen index (LOI)
test. Excellent ame retardancy was observed for EP/LDH-PN-
TC-20 wt% and EP/LDH-PN-HC-20 wt% in the UL 94 V test, and
they displayed high LOI values (27.7 vol% for EP/LDH-PN-TC-
20 wt% and 29 vol% for EP/LDH-PN-HC-20 wt%), whereas both
epoxy resin and EP/LDH-PN-DC-20 wt% failed in the UL 94 V
test and showed low oxygen concentration in the LOI test
(23.2 vol% for epoxy resin and 22.1 vol% for EP/LDH-PN-DC-
20 wt%).
RSC Adv., 2022, 12, 23322–23336 | 23323
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Experimental section
Materials and methods

All chemicals were of analytical grade and used without further
purication. Hexachlorocyclotriphosphazene (Sigma Aldrich),
2,20-biphenol (Sigma Aldrich) and methyl 4-hydroxybenzoate
(AVRA) were recrystallized from n-hexane, dichloromethane and
acetone, respectively. Acetone, used as a solvent in the reac-
tions, was pre-distilled with KMnO4 and further distilled with
anhydrous K2CO3. Commercially available chemicals such as
Al(NO3)3$9H2O (Merck), Mg(NO3)2$6H2O (SRL), 2,2-bis(4-
glycidyloxyphenyl) propane (TCI) as epoxy resin, and triethyle-
netetramine (TETA) (SRL) were used as received. Deionized
water was employed in the hydrolysis reactions and LDH
synthesis. dispiro-N3P3(O2C12H8)2Cl2 (1), spiro-N3P3(O2C12H8)
Cl4 (3)41,42 and N3P3(OC6H4COOH)6 (L3)43 were synthesized
according to the reported procedures. The detailed synthetic
procedures of [dispiro-N3P3(O2C12H8)2(OC6H4COOH)2] (L1) and
[spiro-N3P3(O2C12H8)(OC6H4COOH)4] (L2) are given in the ESI.†
The Fourier transform infrared (FT-IR) spectra were examined
on a Shimadzu IR Tracer-100 in the range of 400 to 4000 cm�1.
Nuclear magnetic resonance (1H, 13C and 31P) spectroscopy was
carried out using a Bruker Advance DPX-250 spectrometer
operating at 500 MHz. Electrospray ionization mass spectrom-
etry (ESI-MS) was performed on a Shimadzu LC-MS 2020 spec-
trometer equipped with an LC10ADVP binary pump. The
changes in crystallinity were observed using powder X-ray
diffractometry (PXRD, PANalytical India, Spectris Technolo-
gies) with Cu Ka radiation (l¼ 1.54 Å) in the range of 5� to 100�.
The thermal stability and weight loss were studied by ther-
mogravimetric analysis (TGA) using a Netzsch-STA 2500
Regulus instrument at a heating rate of 10 �C per min under
a nitrogen atmosphere. The morphology of the samples was
observed using high-resolution scanning electron microscopy
(HR-SEM, Thermosceintic Apreo S). The surface area of the
samples was measured by the Brunauer–Emmett–Teller (BET)
method on a Quantachrome Autosorb iQ sorption analyzer. The
chemical composition was studied by X-ray photoelectron
spectroscopy (XPS) using a ULVAC-PHI, PHI5000 Version Probe
III, Physical Electronics instrument. The ame retardant prop-
erties were examined by the vertical burning test (UL-94 V), and
limiting oxygen index (LOI) tests were carried out on a Stanton
Red Cro FTT.
Synthesis of cyclotriphosphazene carboxylate anion-
intercalated LDH (LDH-PN)

Synthesis of cyclotriphosphazene dicarboxylate anion-
intercalated LDH (LDH-PN-DC). The matched molar ratio of
Mg2+/Al3+/cyclotriphosphazene dicarboxylic acid was 4 : 2 : 1. A
solution of Mg(NO3)3$6H2O (7.72 mmol) and Al(NO3)3$9H2O
(3.86 mmol) in 20 ml deionized water was slowly added to
a 30 ml aqueous solution of NaOH (0.1 N) and cyclo-
triphosphazene dicarboxylic acid (L1) (1.93 mmol) with vigorous
stirring under N2 atmosphere, and the value of the pH was
adjusted to above 10 by adding a 1 M NaOH solution. The
resulting slurry was aged at 70 �C for 36 h, centrifuged, washed
23324 | RSC Adv., 2022, 12, 23322–23336
with deionized water until pH ¼ 7.0, and dried at 70 �C for 2
days. The nal dried solid was crushed with a mortar and pestle
to produce a ne powder. Yield: 2.2 g. IR (ATR, cm�1): 3420(b),
1599(s), 1535(s), 1499(m), 1474(m), 1438(m), 1384(s), 1272(s),
1231(s), 1216(m), 1160(s), 1093(s), 937(s), 885(s), 780(s), 749(s),
717(m), 665(s), 604(s), 563(m), 540(m). Solid-state 31P NMR (162
MHz) d (ppm): 29.0 ([C12H8O2]2, 2P), 10.4 ([C7H4O3]2, 1P). TGA:
temperature range (weight loss): 70–215 �C (9.2%), 230–720 �C
(40.9%) and 800–1000 �C (4.7%).

Synthesis of cyclotriphosphazene tetracarboxylate anion-
intercalated LDH (LDH-PN-TC). LDH-PN-TC was prepared by
a similar synthetic procedure as LDH-PN-DC using cyclo-
triphosphazene tetracarboxylic acid (L2) instead of cyclo-
triphosphazene dicarboxylic acid (L1). The matched molar ratio
of Mg2+/Al3+/cyclotriphosphazene tetracarboxylic acid (L2) was
8 : 4 : 1 (13.83 mmol : 6.92 mmol : 1.73 mmol). Yield: 2.1 g. IR
(ATR, cm�1): 3401(b), 1599(s), 1555(s), 1544(m), 1500(m),
1384(s), 1271(m), 1212(m), 1160(s), 1159(s), 1095(s), 1013(m),
970(s), 883(m), 780(m), 754(b), 665 (s), 606(s), 553(s). Solid-state
31P NMR (162 MHz) d (ppm): 28.0 (C12H8O2, 1P), 12.9
([C7H4O3]4, 2P). TGA: temperature range (weight loss): 70–
230 �C (15.5%), 230–720 �C (28.6%) and 800–1000 �C (4.7%).

Synthesis of cyclotriphosphazene hexacarboxylate anion-
intercalated LDH (LDH-PN-HC). LDH-PN-HC was also
prepared by a similar synthetic procedure as LDH-PN-DC using
cyclotriphosphazene hexacarboxylic acid (L3) instead of cyclo-
triphosphazene dicarboxylic acid (L1). The matched molar ratio
of Mg2+/Al3+/cyclotriphosphazene hexacarboxylic acid (L3) was
12 : 6 : 1 (18.80 mmol : 9.40 mmol : 1.57 mmol). Yield: 3.2 g. IR
(ATR, cm�1): 3307(b), 1599(s), 1540(s), 1499(m), 1384(s),
1268(m), 1208(m), 1160(s), 1097(m), 1014(m), 970(s), 883(m),
789(m), 736(m), 665(s), 595(m), 558(m). Solid-state 31P NMR
(162 MHz) d (ppm): 12.7 ([C7H4O3]6, 3P). TGA: temperature
range (weight loss): 70–230 �C (15.0%), 230–720 �C (29.0%) and
800–1000 �C (4.2%).

Preparation of the EP/LDH-PN composites. The EP/LDH-PN
composites were prepared by a previously reported procedure
with some modication.44,45 All three LDH-PN materials with
different weight percentages (5 wt%, 10 wt%, 15 wt%, and
20 wt%) were dispersed in DMF using sonication for an hour.
The desired amount of epoxy resin was added to the LDH-PN
suspension and sonicated for an hour. Then, DMF was
removed by a vacuum-assisted rota-evaporator and the resultant
slurry was mixed at 120 �C for ten minutes. Aer reaching room
temperature, the desired amount of curing agent (TETA) was
added to the EP/LDH-PN mixture, which was mixed under
sonication for 3 minutes. Likewise, the epoxy resin sample was
prepared by the above procedure without the addition of LDH-
PN.

Preparation of the EP/LDH-PN wood substrate and brush
coating. To improve the adhesion, all the teak wood substrates
were treated with electro-coated SiC grain emery paper of 220
grit size before the coating of the EP/LDH-PN composites. Aer
mixing the curing agent, the EP/LDH-PN composites were
immediately coated on the wood substrates using at brushes.
Then, the EP/LDH-PN wood substrates were cured at room
temperature for 24 hours and post-cured at 80 �C overnight.
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Results and discussion
Synthesis and characterization

Several layered inorganic solids have been used as host mate-
rials for the construction of inorganic–organic host–guest
supramolecular structures by intercalating guest molecules or
ions. The LDH-PN materials were synthesized by the homoge-
neous co-precipitation reaction between Mg(NO3)2 and
Al(NO3)3, followed by the intercalation of different cyclo-
triphosphazene (PN) carboxylate anions (Scheme 1).46 For
convenience, the PN-based dicarboxylic, tetracarboxylic and
hexacarboxylic anion-intercalated LDHs were labelled LDH-PN-
DC, LDH-PN-TC and LDH-PN-HC, respectively. The successful
formation of the LDH-PNmaterials was conrmed by powder X-
ray diffraction, FT-IR, thermogravimetric analysis, solid-state
31P NMR, nitrogen adsorption and desorption analysis (BET),
high-resolution scanning electron microscopy and X-ray
photoelectron spectroscopy.

The powder XRD patterns of Mg–Al–NO3-LDH, the three
cyclotriphosphazene carboxylic acids (L1, L2, and L3) and the
LDH-PN materials are shown in Fig. 1. The XRD patterns of the
LDH-PN-DC, LDH-PN-TC and LDH-PN-HC materials conrm
the formation of the LDH phase.12,47,48 Bragg peaks of each
pattern at the lower angle region of 2q < 25� emerge from the
reections of the basal plane passing through the metal sites in
the hydroxide layers.49 Generally, the d(003) peak is known as the
basal spacing of each layer in LDH, which is dened as the total
distance of the interlayer and thickness of the hydroxide layer
(4.8 Å).50,51

Comparing Mg–Al–NO3-LDH with the LDH-PNmaterials, the
basal d-spacings of LDH-PN-DC, LDH-PN-TC and LDH-PN-HC
are shied from 7.7 Å to 15.4 Å, 10.8 Å, and 10.7 Å, respec-
tively. The increase in the d-spacing shows the successful
intercalation of the cyclotriphosphazene carboxylate anions
into the LDH layers, which makes the basal reection of the
acid-intercalated LDHs appear at a lower angle. In all the acid-
intercalated LDHs, some of the carboxylic acid peaks are also
present below the region of 2q ¼ 30�.

The last diffraction peak (d(110)) of 2qx 60.8� is responsible
for the structural integrity of the LDH layers and was still
maintained in all the acid-intercalated LDHs.52 In addition,
the d(110) spacing is related to the average distance between
two metal ions in the hydroxide layers (aM–M ¼ 2d(110)), which
is calculated to be 3.04 Å for the LDH-PN materials and is
almost equal to the average distance between Mg–Al in Mg–Al–
NO3-LDH (3.06 Å), with a metal fraction of 2. Thus, there is no
signicant change in the Mg–Al ratio, which indicates the
complete precipitation of metal ions in the LDH-PN
materials.53

Fig. 2a shows the FT-IR spectra of the LDH-PN-DC, LDH-PN-
TC and LDH-PN-HC materials. In the spectra of all the LDH-PN
materials, the broad band in the range of 3100–3600 cm�1 is
attributed to the hydroxyl group stretching vibrations in the
LDH layers and water molecules due to the formation of
hydrogen bonding between the interlayer water and hydroxyl
groups of the host layers and the guest anions. The band around
© 2022 The Author(s). Published by the Royal Society of Chemistry
665 cm�1 is assigned to the stretching vibration of M–O in the
hydroxide layers.53,54 The characteristic band around 1160 cm�1

is ascribed to the P]N stretching vibration of the cyclo-
triphosphazene rings. The absorption bands around 970 cm�1

for LDH-PN-TC and LDH-PN-HC and 937 cm�1 for LDH-PN-DC
are assigned to the P–O–C stretching vibration for the aromatic
groups connected to the cyclic phosphorous atoms.55 The strong
absorption bands around 1590 cm�1 and 1380 cm�1 are
assigned to the asymmetric and symmetric stretching vibra-
tions of the –COO� groups, which shows that the carboxylic
groups in the cyclotriphosphazenes are deprotonated to form
their corresponding anions, indicating the successful interca-
lation of cyclotriphosphazene carboxylate anions into the LDH
layers.56

The thermal stability, degradation behaviour and char
formation ability of the LDH-PN andMg–Al–NO3-LDHmaterials
were studied by thermogravimetric analysis. As depicted in
Fig. 2b, the whole thermal degradation process consists of three
steps: the rst step displays the loss of both physically adsorbed
and interlayered water molecules around the temperature range
of 70–230 �C.57–59 The percentages of weight loss for LDH-PN-
DC, LDH-PN-TC, LDH-PN-HC and Mg–Al–NO3-LDH in the rst
step are about 9.2%, 15.5%, 15.0% and 7.8%, respectively. The
second step involves simultaneous dehydroxylation in the LDH
layers and the decomposition of the organic groups attached
with cyclotriphosphazene in the intercalated acid anions
around the temperature range of 230–720 �C.60 The percentages
of weight loss in the second step for LDH-PN-DC, LDH-PN-TC,
LDH-PN-HC and Mg–Al–NO3-LDH are about 40.9%, 28.6%,
29.0% and 26.3%, respectively. In addition, the percentages of
weight loss in the rst and second steps for LDH-PN-TC and
LDH-PN-HC are almost the same but different from those of the
LDH-PN-DC material. The nal step shows the minimum
weight loss of around <5% for the LDH-PN materials, and gives
a higher char yield (45.2% for LDH-PN-DC, 51.2% for LDH-PN-
TC and 51.8% for LDH-PN-HC) in the range of 800 to 1000 �C. It
could be assumed that cross-linking reactions occur during
pyrolysis, comprising the ring-opening polymerization reaction
of the cyclotriphosphazene structure34,61 as well as the forma-
tion of a mixture of MgO and MgAl2O4 from the thermal
degradation of the LDH layers as the nal decomposition
products.62,63

In the solution-state 31P NMR spectra of L1 and L2, two
observed signals around 9.0 and 25.0 ppm are attributed to the
phosphorous atoms in cyclotriphosphazene attached to the
phenoxy groups and spiro groups, respectively (Fig. S7 and
S15†).64 For the compound L3, only one singlet at 8.0 ppm is
ascribed to the phosphorous atoms attached to the phenoxy
groups, which indicates that all the phosphorous atoms in L3
remain magnetically equivalent.43 Similarly, the solid-state 31P
NMR spectra of LDH-PN-DC and LDH-PN-TC display two
signals (10.4 and 29.0 ppm for LDH-PN-DC; 12.9 and 28.0 ppm
for LDH-PN-TC), and LDH-PN-HC shows only one signal at
12.7 ppm, as shown in Fig. 3a–c.65 Thus, the solid-state 31P NMR
spectra of the LDH-PN materials are quite similar to those of
their corresponding cyclotriphosphazene precursors, demon-
strating that the cyclotriphosphazene carboxylate anions are
RSC Adv., 2022, 12, 23322–23336 | 23325
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Scheme 1 Synthesis of cyclotriphosphazene carboxylate anion-intercalated LDH.
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intercalated successfully without any structural alteration to the
LDH layers.

The N2 adsorption and desorption isotherms of LDH-PN-DC,
LDH-PN-TC and LDH-PN-HC suggest that the LDH-PN mate-
rials display Type IV isotherms (Fig. 3d).66 The specic surface
areas of LDH-PN-DC, LDH-PN-TC and LDH-PN-HC are 37.5 m2

g�1, 22.0 m2 g�1, and 25.6 m2 g�1, respectively. Compared to
23326 | RSC Adv., 2022, 12, 23322–23336
Mg–Al–NO3-LDH (74.6 m2 g�1) (Fig. S18†), the acid-intercalated
LDHs possess a lower specic surface area due to the interlayer
aggregation of three-dimensional cyclotriphosphazene carbox-
ylate anions. These results indicate that the organic anions in
cyclotriphosphazene can easily form dense structures with
LDH.47,51
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Powder XRD patterns of (a) Mg–Al–NO3-LDH, L1 and LDH-PN-DC; (b) Mg–Al–NO3-LDH, L2 and LDH-PN-TC; (c) Mg–Al–NO3-LDH, L3
and LDH-PN-HC.

Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

6 
A

ug
us

t 2
02

2.
 D

ow
nl

oa
de

d 
on

 7
/1

3/
20

25
 1

:1
2:

05
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
To examine the surface morphology, the HR-SEM images of
Mg–Al–NO3-LDH, LDH-PN-DC, LDH-PN-TC and LDH-PN-HC
were captured and are shown in Fig. 4a. For Mg–Al–NO3-LDH,
thin at platelets were found with irregular edges and arranged
in all space directions, forming some aggregates. All the three
LDH-PNmaterials showed more aggregation with non-uniform/
irregular morphology compared to Mg–Al–NO3-LDH. The guest
anions are favourably stabilized on the basal face of the LDH
structure during the LDH crystallization, causing the assembly
with irregular morphology.67 Therefore, this kind of structural
assembly will be conducive to inhibiting heat transfer and thus
remarkably improving the thermal stability of the LDH-PN
materials. The elemental composition and distribution of the
LDH-PN materials by HR-SEM are shown in Fig. 4b and S19.†
Fig. 2 (a) FT-IR spectra of the LDH-PN materials and (b) thermogravime

© 2022 The Author(s). Published by the Royal Society of Chemistry
The specic elements of magnesium, aluminum, phosphorus
and nitrogen are well distributed, indicating that the LDH-PN
materials are fairly homogeneous. The uniform distribution of
the four main elements is signicant for their ame retardant
properties.

The elemental composition of the LDH-PN materials can be
obtained from XPS analysis. The wide scan survey spectra and P
2p, N 1s, O 1s, Al 2p, and Mg 2p high-resolution spectra of LDH-
PN-DC, LDH-PN-TC and LDH-PN-HC are presented in Fig. 5,
S20 and S21,† respectively. The spectra for P 2p and N 1s of the
LDH-PN materials reveal two major peaks at 134.0 � 0.2 eV and
398.0 � 0.1 eV, respectively, identifying the presence of P and N
in the cyclotriphosphazene ring.68–73 The spectra for O 1s of
LDH-PN are divided into three peaks that indicate the presence
tric analysis of the LDH-PN and Mg–Al–NO3-LDH materials.

RSC Adv., 2022, 12, 23322–23336 | 23327
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Fig. 3 Solid-state 31P NMR spectra of (a) LDH-PN-DC, (b) LDH-PN-TC and (c) LDH-PN-HC; (d) N2 adsorption and desorption isotherms for
LDH-PN-DC, LDH-PN-TC and LDH-PN-HC.
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of three different oxygen environments in the LDH-PN mate-
rials. The rst peak at about 533.0 � 0.4 eV is ascribed to the
P–O–C bond in the intercalated anions, the second peak at
Fig. 4 (a) HR-SEM images of (i) Mg–Al–NO3-LDH, (ii) LDH-PN-DC, (iii) LD
O, P, Mg, and Al in LDH-PN-DC.

23328 | RSC Adv., 2022, 12, 23322–23336
531.9� 0.1 eV is assigned to the C]O present in the carboxylate
groups, and the nal peak at about 530.7 � 0.2 eV is attributed
to the hydroxyl groups present in the hydroxide layers. Similarly,
H-PN-TC and (iv) LDH-PN-HC; (b) elemental mapping analysis of C, N,

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 XPS survey spectrum; P 2p, N 1s, O 1s, C 1s, Mg 2p and Al 2p high-resolution spectra of LDH-PN-DC.
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the spectra for C 1s of the LDH-PNmaterials are distributed into
three peaks that arise from the intercalated aromatic carbox-
ylate anions. The peaks at 284.7 � 0.3 eV, 286.1 � 0.6 eV and
288.7� 0.2 eV are attributed to the C–C and C–H in the aromatic
species, C–O–P in the PN species, and C]O in the carboxylate
anions, respectively.74,75 The peaks at 74.7 � 0.1 eV for Al 2p and
50.2 � 0 eV for Mg 2p are assigned to Al(OH)2 and Mg(OH)2,
respectively, in the form of LDH layers in the LDH-PN mate-
rials.76,77 These results indicate the successful intercalation of
cyclotriphosphazene carboxylate anions into the LDH layers.

Flame retardant properties

Wood is commonly used for furniture and interior decoration
materials owing to its abundance and outstanding mechanical
properties. The ammable nature of wood is the main
constraint on its use in interior environments, particularly in
© 2022 The Author(s). Published by the Royal Society of Chemistry
heavily populated zones. There is a high demand for state-of-
the-art ame retardant technologies to protect wood from re
by coating it with highly ammable epoxy resin (EP).45,78,79 Here,
the EP/LDH-PN composites coated on the wood substrates
exhibited ame retardancy to epoxy resin as well as protected
the wood from ame. The assessment of ammability was
carried out using a vertical burning test (UL-94 V) and the
limiting oxygen index (LOI) test. The standard sizes of the wood
substrates used for the UL 94 V test and LOI test were 130 � 13
� 5 mm3 (ASTM D3801) and 150 � 7 � 3 mm3 (ASTM D2863),
respectively. In addition, the thickness of the epoxy resin and
EP/LDH-PN composite-coated wood substrate was computed
from cross-sectional microscopic images by measuring the
thickness at 100 different points, and the value was 346.13 � 16
mm (Fig. S22†). The epoxy resin-coated wood substrate and three
EP/LDH-PN composite-coated wood substrates with different
RSC Adv., 2022, 12, 23322–23336 | 23329
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weight percentages of LDH-PN materials from 5 to 20 wt% were
used in the vertical burning test (UL-94 V). For example, EP/
LDH-PN-DC-20 wt% denotes that the composite contains
20 wt% LDH-PN-DC.

The pure epoxy resin-coated wood substrate did not show
any ame retardant properties in the UL-94 V tests. The entire
length of the epoxy-coated wood substrate was completely
burned aer the second ignition time (30 seconds) in the UL-
94 V test. The EP/LDH-PN-DC-20 wt% wood substrate did not
capture the ame aer the rst ignition time, but during the
second ignition time, it captured the ame and was completely
burned aer 30 seconds. Therefore, the EP/LDH-PN-DC-20 wt%
wood substrates also failed the UL-94 V test (Fig. 6 and 7).
However, EP/LDH-PN-TC-20 wt% and EP/LDH-PN-HC-20 wt%
showed non-ammable behaviour and were classied with a V0
rating in the vertical burning test (Fig. 6 and 7). Both samples
did not capture the ame during the rst and the second igni-
tion times, which proves the importance of the nature of
cyclotriphosphazene carboxylate anions within the LDH layers.
The cyclotriphosphazene dicarboxylate anions (L1) in LDH-PN-
DC, tetracarboxylate anions (L2) in LDH-PN-TC and hex-
acarboxylate anions (L3) in LDH-PN-HC consist of two spiro
groups with two carboxylate binding sites, one spiro group with
four carboxylate binding sites and only six carboxylate binding
sites, respectively. Thus, the smaller number of spiro groups
and more binding sites assist the effective dispersion of epoxy
resin in the LDH layers, resulting in the superior ame retar-
dant properties of the EP/LDH-PN-TC-20 wt% and EP/LDH-PN-
HC-20 wt% composites. In other words, the more spiro groups
and smaller number of binding sites inhibit the dispersion of
epoxy resin in the LDH layers, leading to the separate aggrega-
tion of LDH-PN-DC in the EP/LDH-PN-DC-20 wt% composite,
which failed in terms of ame retardant properties.
Fig. 6 Digital photos before (a, c, e and g) and after (b, d, f and h) the U
coated wood substrates.

23330 | RSC Adv., 2022, 12, 23322–23336
Furthermore, the ame retardant properties of the EP/Mg–Al–
NO3-LDH-20 wt%, EP/L1-20 wt% and EP/L3-20 wt%-coated
wooden samples were tested in the UL-94 V test and all these
samples failed by demonstrating their highly ammable
behaviour (Fig. S23†). Hence, compared to EP/Mg–Al–NO3-LDH,
EP/L1 and EP/L3, the ame retardant properties of the EP/LDH-
PN composites are improved due to the synergistic ame
retardant effect of the combination of LDH and cyclo-
triphosphazene in the epoxy resins.

The limiting oxygen index (LOI) is an important parameter
for evaluating the ame retardancy of samples, which measures
the minimum oxygen concentration of a owing gas comprising
oxygen and nitrogen required to support downward ame
combustion. Epoxy coated on the wood substrate was highly
ammable and had an LOI value of 23.2 vol%. However, EP/
LDH-PN-DC coated on the wood substrate showed a lower LOI
value of 22.1 vol% than the epoxy wood substrate. Compared
with those of the epoxy and EP/LDH-PN-DC-coated wood
substrates, the LOI values of the EP/LDH-PN-TC and EP/LDH-
PN-HC-coated wood substrates increased to 27.7 vol% and
29 vol%, respectively. Therefore, the result of the LOI test
indicates that both the EP/LDH-PN-TC and EP/LDH-PN-HC
composites impart excellent ame retardancy to epoxy resin
on wood substrates, which demonstrates the signicant role of
the spiro groups and binding sites present in
cyclotriphosphazene.

Based on the above analysis, we proposed a mechanism for
the ame retardancy of the EP/LDH-PN composites on the wood
substrate, as shown in Scheme 2.

During the combustion process, the decomposition of
cyclotriphosphazene and the LDH layers produces degraded PN
rings with the emission of non-ammable gases (CO2 and N2)
and metal oxides with water vapour, respectively.32,80,81 This
L-94 vertical burning tests of the epoxy and EP/LDH-PN composite-

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Digital photos of the pure epoxy resin, EP/LDH-PN-DC-20 wt%, EP/LDH-PN-TC-20 wt%, and EP/LDH-PN-HC-20 wt% composite-
coated wood substrates during the UL-94 V vertical burning process.
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synergistic effect of cyclotriphosphazene and LDH in the EP/
LDH-PN composite leads to the formation of a white layer of
non-volatile protective lm on the surface of the wood
substrate. Thus, the non-volatile protective lm insulates the
Scheme 2 Schematic illustration of the flaming of the EP/LDH-PN com

© 2022 The Author(s). Published by the Royal Society of Chemistry
wood substrate from the air, absorbs the heat, and increases the
ignition time, which prevents oxygen supply during the
combustion process.
posite-coated wood substrate.
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Conclusion

A series of environmentally friendly LDHs have been prepared
with different cyclotriphosphazene carboxylate anions as
intercalating guest molecules and their ame retardant prop-
erties have been examined. Their powder XRD patterns
demonstrate that the interlayer distance of all the LDH-PN
materials increases upon the intercalation reactions of LDH
with cyclotriphosphazene carboxylate anions compared with
that of pristine Mg–Al–NO3-LDH, and the diffraction peak at 2q
x 60.8� in the LDH-PN materials conrms the formation of the
layered structures. From TGA, the rst and second weight loss
percentages for LDH-PN-TC and LDH-PN-HC are found to be
almost the same but different from that of the LDH-PN-DC
material due to the number of binding sites of the cyclo-
triphosphazene carboxylate anions. Fourier transform infrared
spectroscopy and X-ray photoelectron spectroscopy further
conrmed the presence of cyclotriphosphazene carboxylate
anions in the LDH layers. Flame retardant tests (UL-94 V and
LOI tests) were performed using epoxy resin with varying weight
percentages of LDH-PN materials (5–20 wt%) coated on wood
substrates. EP/LDH-PN-TC-20 wt% and EP/LDH-PN-HC-20 wt%
passed the UL-94 V test with a V0 rating and showed higher LOI
values, which demonstrated that these materials do not show
burning properties and completely protect the wood substrate
from the ame. However, the EP/LDH-PN-DC samples with
different ratios of LDH-PN-DC from 5% to 20 wt% showed no
self-extinguishing properties and burned to completion in the
UL-94 test and showed a lower LOI value of 22.1 vol%. Hence,
the incorporation of either LDH-PN-HC or LDH-PN-TC into the
epoxy resin signicantly improves the ame retardant proper-
ties compared to that in LDH-PN-DC because of their cyclo-
triphosphazene structure with more binding carboxylate sites
and less or no bulky spiro groups that result in the good
dispersion of LDH-PN-HC or LDH-PN-TC in the polymer matrix,
and the unique combination of LDH and cyclotriphosphazene
resulted in a synergistic ame retardant effect. Therefore, this
work provides a feasible strategy to design sustainable halogen-
free ame retardant materials to resolve the common issues
related to environmental safety and human health.
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