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temperature–volume phase
diagram of water to inform the study of isochoric
freezing down to cryogenic temperatures

Matthew J. Powell-Palm *abc

Phase diagrams are integral to the application and interpretation of materials thermodynamics, and none is

more ubiquitous than the common temperature–pressure diagram of water and its many icy phases.

Inspired by recent advances in isochoric thermodynamics, we here employ a simple convex hull

approach to efficiently calculate an updated temperature–volume phase diagram for water and five of its

solid polymorphs from existing Helmholtz free energy data. We proceed to highlight fundamental

similarities between this T–V diagram and conventional binary temperature–concentration (T–x)

diagrams, provide the volume coordinates of a variety of three-phase invariant reactions (e.g. “confined”

or “volumetric” eutectics, peritectics, etc.) that occur amongst the phases of pure water under isochoric

or confined conditions, and calculate the phase fraction evolution of ice Ih with temperature along

multiple isochores of interest to experimental isochoric freezing. This work provides a requisite baseline

upon which to extend the study of isochoric freezing to cryogenic temperatures, with potential

applications in thermodynamic metrology, cryovolcanism, and cryopreservation.
Introduction

Isochoric (constant-volume or conned) freezing has recently
emerged as an alternate thermodynamic modality by which to
explore fundamental aqueous thermodynamics,1 ice nucleation
kinetics,2 and cryopreservation.3,4 During isochoric freezing, an
aqueous system is conned within a rigid, high-strength
container in the absence of bulk air or other heterogeneous
phases, xing both the absolute and specic volume of the water
within and denying the system access to the pressure reservoir
provided by the atmosphere.5–7 By controlling the volume of the
system rather than the pressure, the thermodynamic path the
system takes as it is cools is altered fundamentally, with the
system occupying various two-phase equilibrium states instead
of the single-phase equilibrium states encountered when cooling
under constant pressure. This process has been well character-
ized for the temperature range 0 to �22 �C,5,6 wherein an
aqueous isochoric system will exist in stable two-phase equilib-
rium between ice Ih (the hexagonal ice phase most commonly
found on Earth) and liquid water. However, the process of iso-
choric freezing down to lower temperatures, which will involve
multiphase equilibria comprised of multiple forms of ice, has
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the Royal Society of Chemistry
not been rigorously examined in the modern era. Here, we use
a purely-geometric convex hull technique to calculate a new
temperature–volume phase diagram for water and ve of its icy
polymorphs, providing an essential reference tool for future
lower-temperature work in isochoric freezing. We use this
diagram to highlight fundamental similarities in the phase
change processes of single-component conned systems and
binary unconned systems, highlight pure-substance three-
phase invariant reactions that can occur in conned aqueous
systems, and calculate for the rst time the phase fraction
evolution of ice Ih during cooling to 190 �C along multiple iso-
chores. In sum, this work seeks to provide the baseline ther-
modynamic information needed to inform future studies of
isochoric freezing at cryogenic temperatures.
Geometric implications of extensive variables in phase
diagrams

Phase diagrams, which map material equilibrium, may be
constructed to reect a wide variety of natural thermodynamic
variables.5,8–12 Amongst the most common diagrams for pure
substances and binary substances respectively are the temper-
ature–pressure and temperature–concentration diagrams,
which have been deployed widely since the turn of the 20th

century. These two diagrams exhibit markedly different geom-
etry, and are characterized by markedly different features.

The temperature–pressure diagram for a single-component
substance is constructed by projecting the Gibbs free energy
surfaces G(T,P) of each phase onto T–P axes. Because
RSC Adv., 2022, 12, 20603–20609 | 20603
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temperature and pressure are both intensive variables and thus
concave in the G–T–P energy space, T–P phase diagrams
produce 2-dimensional single-phase regions, bounded by 1-
dimensional boundary lines (such as the liquidus curve) along
which two phases may coexist and producing 0-dimensional
three-phase coexistence points at the meetings of any three
single-phase regions (so-called triple points).12

The temperature–concentration diagram for a binary
substance is constructed for a given pressure (typically atmo-
spheric) using the Gibbs free energy surfaces G(T,x) of each
phase. Critically however, concentration x is an extensive vari-
able (the conjugate of the intensive chemical potential m), and
thus introduces convexity in the G–T–x energy space, as guar-
anteed by the fundamental thermodynamic stability criterion
v2U
vX2 $ 0, in which U is the internal energy of the substance and X

is an arbitrary extensive variable.13

As Gibbs demonstrated in his seminal On the Equilibrium of
Heterogeneous Substances,14 this convexity introduces the opportu-
nity for a system to reduce its free energy by forming a heteroge-
neous mixture of two or more co-existing phases across a range of
values along the convex axis (here concentration), dened by the
tangent line in G–x space that is common to each of the phases.
Following the advent of modern convex geometry theory in the
1960s, it has become standard to map the myriad common
tangents that join single-phase regions and dene multi-phase
regions by taking the convex hull of the free energy surfaces of
each phase.5,15,16 It is the projection of the lower envelope of this
convex hull (as opposed to the simple projection of the energy
surfaces themselves) onto axes of temperature and concentration
that then provides the standard binary T–x phase diagram.

As a consequence of this convexity of the free energy surfaces,
binary T–x diagrams possessmany features that the T–P diagrams
of pure substances do not. Most evidently, they possess both 2D
single-phase regions and 2D two-phase coexistence regions,
alongside 1D three-phase coexistence lines as opposed to the 0D
three-phase triple points found in T–P diagrams. These varied
heterogeneous equilibrium regions are also accompanied by
various reactions or transitions that describe the unique passage
between them. Most notable of these reactions is the eutectic
transition, which describes when a single liquid phase transitions
into a two-phase solid–solid mixture and denes the lowest
temperature at which the liquid phase is stable. This transition or
reaction is oen described as a “three-phase invariant”, as the
transition to the solid–solidmixture requires traversing the three-
phase, liquid–solid–solid coexistence line (i.e. the eutectic line).
Other three-phase invariant reactions include the peritectic,
monotectic, eutectoid, peritectoid, etc. These reactions are inte-
gral features of multicomponent phase diagrams, but are seldom
recognized in pure systems (as reinforced by the absence of such
features on the pure-substance T–P diagram).
Calculation of a temperature–volume phase diagram for six
condensed phases of water

Here, we demonstrate that these same three-phase reactions
may and will also occur in pure-substances under isochoric or
20604 | RSC Adv., 2022, 12, 20603–20609
conned conditions. We begin by constructing the tempera-
ture–volume phase diagram for water in the temperature range
190–353.5 K, including the single-phase equilibrium regions of
liquid water, ice Ih, ice II, ice III, ice V, and ice VI. This
temperature range was chosen based on the phases for which
mutually-consistent equations of state were available. To
construct this phase diagram, we extend the basic method of
Powell-Palm, Rubinsky & Sun:5 the 2D convex hulls enclosing
the Helmholtz free energy surfaces F(T,V) of all of the afore-
mentioned phases were calculated at discrete temperatures
within the stated range (Fig. 1a), with an increment of 0.0654 K;
single-phase points on the lower convex hull (Fig. 1b), which
represent equilibrium states, were projected onto axes of the
natural variables of the system (T,V); and two-phase coexistence
regions and three-phase coexistence lines, which denitionally
join the single-phase regions within the convex hull, were
identied and marked accordingly. See the Methods section for
further information on both the algorithms used to calculate
the stable single-phase regions and to identify the three-phase
invariant lines. All material data were generated via the Sea-
Freeze framework.17

The nal T–V diagram is presented in Fig. 1c. To the author's
knowledge, this diagram represents the rst calculation of the
isochoric phase equilibria of water since the empirical P–V–T
diagram of Verwiebe in 1939,18 and should provide a rigorous
reference for future studies of isochoric freezing.

It should be noted further that all calculations have been
performed on a per-kilogram basis, i.e. the x-axis of the diagram
features specic as opposed to absolute volume. The author will
emphasize that, as dened by Gibbs, Callen, and many other
seminal materials thermodynamicists, the volume remains an
extensive thermodynamic variable even in its specic form, as
the product of specic volume and its conjugate intensive
variable, pressure, still yields units of (specic) energy (J kg�1).
The ratio of any extensive variable (e.g. volume) to any other
extensive variable (e.g.mass) does not alter the extensive nature
of the variable in a thermodynamic sense, but instead merely
provides a convenient density of extensive values. This principal
is evident most commonly in the concentration, which is
a density of the mass of one component against the mass of
another, and provides the extensive conjugate to the intensive
chemical potential. Henceforth in this work, for the purposes of
thermodynamic analysis, the volume, whether absolute or
specic, will be referred to as extensive.
Three-phase invariant reactions in pure systems under
isochoric conditions

Important morphological aspects of the T–V diagram of water
are noted as follows: rstly, the reader will notice that this T–V
diagram appears identical in structure to conventional binary
T–x diagrams, even though this diagram describes a pure
substance. This similarity is a consequence of the fundamental
similarity between all extensive and intensive variables in
Gibbsian thermodynamic geometry—free energy surfaces are
convex in extensive variables, leading to heterogeneous or
multi-phase equilibrium, and concave in intensive variables,
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Calculation of a new temperature–volume diagram for water. (a) This diagram was constructed by first plotting the 3-dimensional
Helmholtz free energy surfaces F(T,V) of each phase in temperature–volume space, then constructing a series of 2-dimensional convex hulls
around these phases in axes of free energy – volume F(V) as shown, evaluated at isotherms spaced by 0.0654 K. (b) The single-phase points that
rest on the bottom portion of the convex hull, which define the stable single phase regions, are then isolated from all other points, which
represent metastable or unstable states at a given temperature–volume coordinate. (c) Finally, the lower convex hull points shown in (b) are
projected onto axes of temperature and volume, producing the T–V phase diagram. All free energy data were generated using the SeaFreeze
framework. Two-phase co-existence regions are labeled, and horizontal lines mark three-phase coexistence lines, the corresponding pressures
of which are also labeled. The coloration of each phase is consistent across the three panels.
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leading to homogeneous or single-phase equilibrium.14,19 Thus,
enforcing volume (extensive) as a natural variable of the system
is directly thermodynamically analogous to enforcing concen-
tration (extensive) as a natural variable of the system. In this
way, we can understand by analogy not only the two-phase
equilibrium regions, the phase composition of which may be
analyzed by the Lever Rule as in a binary phase diagram, but
also the three-phase invariant lines. These lines, which occur at
the temperatures and pressures of the triple points common in
T–P phase diagrams, are directly analogous to three-phase
invariant lines in binary diagrams; they mark a line in the
extensive axis (here volume) along which one may move at
a given temperature and maintain three-phase coexistence.
© 2022 The Author(s). Published by the Royal Society of Chemistry
Furthermore, the point at which a single-phase region (such as
the liquid water region) touches the three-phase coexistence
line provides a direct analogue to the binary eutectic point. At
the volume coordinate of this point, one may cool directly from
liquid water to an ice Ih–ice-III two-phase mixture for example,
bypassing the liquid–ice Ih and liquid–ice III two-phase coex-
istence regions. To the author's knowledge, the premise of
eutectic-like transitions in pure substances under isochoric
conditions remains unexplored in contemporary literature on
isochoric freezing, and we will thus take the liberty to label the
aforementioned eutectic-like point as the “volumetric eutectic”.
The volumetric eutectic point of liquid water as calculated
herein occurs at 9.16 � 10�4 m3 kg�1 and 251.2 K.
RSC Adv., 2022, 12, 20603–20609 | 20605
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Fig. 2 Evolution of ice Ih phase fraction with temperature for four isochores beginning in the single-phase liquid state. Isochore volumes for all
panels are listed in panel (b) legend. (a) Phase fraction–temperature relationship. (b) Phase fraction–pressure relationship. (c) Temperature–
pressure relationship. (d–f) Phase fraction–temperature and (g–i) phase fraction–pressure relationships for each of the two-phase equilibrium
regions traversed in panels (a–c).
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Additionally, as stands to reason, other features analogous to
binary phase diagrams can be found in Fig. 1c, including volu-
metric eutectoid points (e.g. from ice III to the ice II–ice Ih two-
20606 | RSC Adv., 2022, 12, 20603–20609
phase mixture [8.64 � 10�4 m3 kg�1, 238.2 K]); volumetric peri-
tectic points (e.g. from the ice VI–liquid water two-phase mixture
to single-phase ice V [7.89 � 10�4 m3 kg�1, 273.3 K]); and
© 2022 The Author(s). Published by the Royal Society of Chemistry
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volumetric peritectoid points (e.g. from the ice V–ice III
two-phase mixture to single-phase ice II [8.38 � 10�4 m3 kg�1,
249.4 K]).
Isochoric phase fraction evolution when traversing multiple
multiphase regions

One integral thermodynamic property of isochoric systems (and
indeed of all systems with an enforced extensive thermody-
namic variable) is the phase fraction, which describes the
equilibrium phase composition of a multi-phase system at
constant volume. Unlike other aspects of isochoric phase
equilibria (such as the melting point or the three-phase
invariant temperature), the phase fraction is not inferable
from the temperature–pressure phase diagram, as the enforce-
ment of intensive variables rather than extensive removes all
forced phase heterogeneity from the system.14

The evolution of the ice Ih phase fraction with temperature
(and pressure) has been calculated previously for the ice Ih–
liquid water two-phase equilibrium region between 0 �C and
approximately �22 �C, using both iterative mechanical-
equilibrium techniques6 and convex hull-based techniques.5

To the author's knowledge, the phase fractions at play in other
multi-phase regions have not been previously calculated, and
we thus proceed to calculate them here.

Using the T–V phase diagram, the volumetric phase fraction f
along a given isochore can be calculated directly using the
Lever rule:

f ¼ ðvs � vlÞ
ðvr � vlÞ

wherein, at a chosen volume coordinate vs and at a given
temperature, vr is the minimum volume of the less-dense phase
to the right of vs and vl is the maximum volume coordinate of
the denser phase to the le of vs.

From a practical experimental perspective, vs is the system
volume at which the initial mass of water (nigh-exclusively in
the liquid state) is conned. Most experimental isochoric
freezing studies to date3 conne liquid water at +4C and
atmospheric pressure, which equates to a system specic
volume vs of approximately 10�4 m3 kg�1. However, these
assembly conditions are chosen largely for convenience — the
system could also be assembled at higher pressures (lower
volumes), forcing the system to follow a different isochore upon
cooling. Choice of assembly conditions will vary based on other
experimental factors (pressure–sensitivity of a preserved bio-
logic for instance), but at a fundamental level, all assembly
conditions (i.e. all isochores) are equally achievable.

In Fig. 2, we calculate the phase fraction of ice Ih for four
isochores (system volumes) in the temperature range 273–
190 �C. In Fig. 2a, we show the evolution of these phase frac-
tions with temperature as the system traverses three two-phase
equilibrium regions, ice Ih–liquid, ice Ih–ice III, and ice Ih–II,
and in Fig. 2b we show the corresponding phase fraction –

pressure trajectory (note that the intersection of a given curve
with the y-axis provides the pressure at which water at 0 �Cmust
be conned in order to achieve the isochore experimentally).
© 2022 The Author(s). Published by the Royal Society of Chemistry
For further reference, we also include in Fig. 2c the coupling
between temperature and pressure in these regions, which the
reader may recognize as a portion of the T–P phase diagram,
and in Fig. 2d–i we provide the phase fraction on a region-by-
region basis for easier reference.

These phase fraction calculations, which to the author's
knowledge have not been performed previously, may be applied
in interpretation or design of isochoric cryopreservation
protocols intended for cryogenic temperatures, and also to the
study of cryovolcanism,20 wherein the signicant pressures that
emerge due conned aqueous phase change beneath a plane-
tary surface eventually lead to eruption of “molten” aqueous
contents.

In assessing the phase fraction evolutions shown in Fig. 2, it
should be noted further that by assembling an experimental
isochoric system at the volumetric eutectic point of water (9.16
� 10�4 m3 kg�1), the system may be cooled so as to bypass
entirely the ice Ih–liquid two-phase equilibrium region,
entering instead directly into the ice Ih–ice III region at low ice
Ih phase fractions (less than 30%). For biological matter that
can withstand brief exposure to high hydrostatic pressure, this
scenario may prove preferable, as the crystallization of denser
forms of ice (such as ice III) may prove less damaging than that
of ice Ih.

Further discussion

The fundamental similarity between T–x and T–V phase
diagrams (regardless of the number of components in the
system) is generalizable to diagrams featuring any arbitrary
pairing of an intensive natural variable (such as T or P) with an
extensive variable (such as x or V); the geometric features are not
inherent products of any given physical behavior possessed by
multicomponent systems (or isochoric systems for that matter),
but instead to the convexity of free energy curves in the free
energy – extensive variable space.

This analysis provides two useful conclusions. Firstly, by
enforcing any extensive natural variable (e.g. volume, concen-
tration, strain, magnetic moment, polarization, etc.), varied
states of heterogeneous multi-phase equilibrium may be ach-
ieved in both pure and multi-component substances, analogous
to those encountered in classical binary systems, and these
variedmultiphase equilibria may bemapped by phase diagrams
identical in nature and geometry to the common binary T–x
phase diagrams.

The difficulty of enforcing extensive variables experimentally
may vary substantially from application to application, but even
restricting our consideration to the simultaneous enforcement
of volume and binary concentration, new stable multiphase
coexistence regions will emerge in conned binary systems as
compared to unconned binary systems or conned pure
systems, and these equilibria will be driven by segregation of
component masses between phases and segregation of volume
between phases. To the author's knowledge, few rigorous T–V or
T–V–x phase diagrams for conned aqueous solutions have
been produced to date. Such diagrams may prove invaluable in
driving the development of increasingly sophisticated isochoric
RSC Adv., 2022, 12, 20603–20609 | 20607
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freezing protocols, and should be prioritized in future work as
self-consistent equations of state for common aqueous solu-
tions and the many other phases of ice21 become available.

Secondly, under these same extensive variable conditions,
the suite of three-phase invariant reactions typical to binary
systems, such as the eutectic transition, may be realized
between the condensed phases of pure substances. To the
author's knowledge such reactions have not been directly
experimentally attempted under isochoric conditions, and
exploration of all aspects of such transitions (i.e. nucleation
kinetics, crystallization dynamics, etc.) between the myriad
phases of pure water could add missing fundamental insight
into possible behaviors of the world's most studied substance.

In sum, a new T–V phase diagram for water and ve of its icy
polymorphs has been calculated, providing a reference baseline
from which to expand isochoric freezing research into the
cryogenic temperature domain. Using this diagram, the
fundamental similarity between the phase diagrams (and
accordingly phase equilibria) of binary systems with enforced
temperature–concentration conditions and pure systems with
enforced temperature–volume conditions has been demon-
strated, and the resulting “volumetric” eutectic-like reactions
are suggested as an intriguing area of continued physical
research within the domains of isochoric freezing and water
thermodynamics at large. The temperature evolution of the ice
Ih phase fraction through three multi-phase regions and along
four isochores has also been calculated, and may help inform
future studies of isochoric freezing, isochoric cryopreservation,
and cryovolcanism. The author in parting suggests that the
calculation of new phase diagrams under differing enforced
natural variables has broad applications outside of isochoric
freezing and water thermodynamics, and should be prioritized
in any domain wherein phase transitions occur outside of
conventional T–P–x experimental grounds.

Methods
Calculation of T–V phase diagram

Use of isothermal 2D convex hulls. In an n-dimensional
thermodynamic space dened by n � 1 extensive thermody-
namic variable axes plus an internal energy axis, the lower
envelope of the convex hull of a cloud of free energy points
provides the lowest-free-energy (i.e. globally stable) points.
However, when a Legendre transform is performed on the
internal energy equation and an intensive variable axis (such as
temperature) is introduced, the convex hull can no longer be
formed in the n-dimensional energy space, because free energy
curves become concave-down instead of convex-down in
intensive variable – free energy axes. Thus, in order to identify
stable states in an n-dimensional thermodynamic space (here n
¼ 3) dened by n � 1 mixed intensive and extensive variables
(here temperature and volume) plus an according thermody-
namic potential (here the Helmholtz free energy), (n � 1)-
dimensional convex hulls must be calculated around the
extensive variable–free energy (here volume–Helmholtz free
energy) curves at each instance of the intensive variable (here
temperature).
20608 | RSC Adv., 2022, 12, 20603–20609
As such, to calculate the T–V phase diagram herein,
isothermal convex hulls separated by increments of 0.0654 K
were calculated for the volume–Helmholtz free energy curves of
all six condensed phases studied here, as represented in Fig. 1a.
The points common to the lower convex hulls and the single-
phase free energy curves for each phase dene the stable
points at a given temperature. In order to obtain these points,
two steps are required. First, the intersection of the array of
points comprising the convex hull and the array of points
comprising the single-phase free energy surfaces is computed,
giving all common points. Second, the parting line separating
the upper envelope of the convex hull from the lower hull is
calculated as the line joining the lemost and rightmost points
in the complete hull, and any of the previously computed
common points resting above this parting line are discarded.
The remaining points represent the stable single-phase regions
at a given temperature. Projecting these points onto axes of
temperature and volume (i.e. eliminating the free energy axis)
yields the colored single phase regions in the phase diagram in
Fig. 1c.

Identication of three-phase invariant lines. The nal step
required to complete the diagram is calculation of the three-
phase invariants that mark the emergence or disappearance
of phases with changing temperature. In the intractable
scenario of an innitely small temperature step, these three-
phase congurations would emerge as isothermal convex
hulls that have common tangent lines that touch three single-
phase free energy curves simultaneously. In the reality of
a nite temperature step however, the temperatures at which
three-phase invariants occur can be identied by tracking the
temperatures at which the number of stable phases changes.
When such temperatures are encountered, the bounding
volume coordinates of the three-phase invariant lines are ob-
tained by recording the nearest single-phase points to the le
and right of the disappearing or emerging phases. As such, the
temperature accuracy of the three-phase invariant lines in the
Fig. 1c diagram are limited to the accuracy of the temperature
step (here chosen to be 0.0654 K). Taking this temperature step
as a percentage of the total temperature range investigated
(163.5 K), the corresponding volume and phase fraction values
are estimated to be accurate to within less than 0.05%.

All calculations and plotting were performed in MATLAB
2021a.
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