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-properties of 4-piperidone
containing compounds as curcumin mimics

Adel S. Girgis, *a Padraig D'Arcy,b Dalia R. Aboshouk a

and Mohamed S. Bekheit a

The broad spectrum of curcumin's beneficial properties has encouraged medicinal researchers to

investigate its therapeutic efficacy against diverse diseases. The clinical potential of curcumin is, however

limited due to its poor pharmacodynamic/pharmacokinetic properties (such as low solubility, pH

instability, poor absorption in circulation, rapid elimination from the body and photochemical

degradation). 3,5-Bis(ylidene)-4-piperidone scaffolds are considered a curcumin mimic that exhibit

diverse bio-properties. The current review provides a brief overview of these mimics and highlights

biological activities relevant to drug development.
1. Introduction

Natural products remain one of the main resources for a variety
of diverse human needs. Many natural compounds are used
directly as drugs or have inspired the development of potent
biologically active agents for clinically use. Artemisinin 1 (Fig. 1)
is a classic example which was initially extracted from Artemisia
annua and subsequently approved as an anti-malarial (Plasmo-
dium falciparum) drug. The discoverer of artemisinin was
granted the Nobel Prize in 2015 in recognition of contribution
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to medicine.1 Curcumin 2 is another famous example of
a natural compound with clinical potential. Curcumin was
extracted from roots/rhizomes of Curcuma longa and has earned
a high reputation among medicinal chemists due to its usage in
Ayurvedic medicine, as a food additive and as a dye in many
Asian countries. Historically, it was rst described over 4000
years ago in ancient India where its usage was associated with
religious practice.2

The broad spectrum of curcumin's benecial properties has
encouraged medicinal researchers into its therapeutic efficacy
against diverse diseases. It has been reported to possess anti-
inammatory properties and its sodium salt derivative modu-
lates iNOS and COX-2 (cyclooxygenase-2) gene expression in
cultured RAW 264.7 cells.3 Antioxidant properties determined
by the DPPH (1,1-diphenyl-2-picryl-hydrazyl), ABTS [2,2-azino-
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Fig. 1 Artemisinin and curcumin, examples of biologically important natural compounds.

Fig. 2 Piperine, a natural compound useable in traditional medicine,
responsible for the pungency of black and long pepper.
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bis(3-ethylbenzthiazoline-6-sulfonic acid)], ROOc (TRAP) and
O2c (NET) assays have also shown a free radical scavenging
effect of curcumin.4 Antiproliferative properties of curcumin
against many human cancer cell lines [SMMC-7721 (hepatoma),
MCF-7 (breast), PC-3 (prostate), NCI-H460 (non-small cell lung)
and K562 (chronic myeloid leukemia)] have been reported.4,5 In
addition curcumin has been shown to display anti-malarial
properties against Plasmodium falciparum.6

Although an enormous amount of research effort has been
invested in bringing curcumin and its analogs towards clinical
use, thus far no curcumin based product has been approved for
use. Over 120 clinical trials on curcumin have failed and
consumed federal funds equivalent to 150 million dollars as
stated in NIH reports from the last 25 years. This is in part
attributed to the promising in vitro results obtained in pre-
clinical studies, but poor in vivo activities. Thus far curcumin
has only been approved as a dietary supplement.1

The next section highlights some of the important ndings
of the biological properties of curcumin reported within the last
decades with focus on the promising bio-properties of
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curcumin and its analogs and the potential in identifying more
effective hits/leads.
2. Curcumin bio-availability

It has been reported that the major clinical limitation of cur-
cumin is due to poor pharmacological properties such as poor
pharmacodynamics/pharmacokinetics, low solubility,7 pH
instability,8 poor absorption in circulation, rapid elimination9

and photochemical degradation (giving rise to vanillin, ferulic
acid, and other small phenols).10

The bioavailability of curcumin has been intensively studied.
In a phase I clinical trial, Sharma et al. reported that the
production of the prostaglandin E2 (PGE2) was (57–62%)
decreased in blood samples aer 1 h oral administration in
patients (with colorectal cancer). Mild diarrhea and discernible
toxicity was detected at doses of 0.5–3.6 g daily administration
up to four months. Curcumin and its conjugates were detected
in plasma and urine and also noticed in patient feces. The
entire study concluded that doses of 3.6 g curcumin are rec-
ommended for more systemic pharmacological antitumor
studies. Additionally, low oral bioavailability (in both animal
and human) is supported probably due to intestinal metabo-
lism. The observed bio-properties of curcumin (anti-
inammatory and anticancer) can be attributed to its antioxi-
dant capacity in neutral and acidic pH.11–13

Another study investigated the bioavailability of curcumin in
rats (in vivo) utilizing high performance liquid chromatography.
Disappearance of curcumin was noticed from the rat's plasma
within one hour of dosing (i.v. 40 mg kg−1). However, it has
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Fig. 4 Sodium salt curcumin diacetate.

Fig. 3 Agents considered for mechano-chemical grinding curcumin co-crystals.
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been detected in plasma upon p.o. 400 mg kg−1 administration
suggesting that the gastrointestinal tract is more exposed to the
unmetabolized curcumin compared to other tissues.14

Low solubility is one of the major limiting parameters for
curcumin's therapeutic use. Different approaches have been
considered to overcome this problem and improve bioavail-
ability. Piperine (Fig. 2) has been considered for concomitant
administration with curcumin, due to the inhibitory properties
in both hepatic and intestinal glucuronidation. Increased
serum curcumin was noted upon oral administration (2 g kg−1)
with piperine (20 mg kg−1) in rats, with a signicant reduction
in the half time of clearance. Similar observations were noticed
in human volunteers with slight differences. Time to reach
curcumin maximum serum concentration was shorter (earlier)
in humans than rats, presumably due to physiological differ-
ences. Also, the elimination (clearance) time was shorter in
humans than rats.15

Another approach considered the mechano-chemical
grinding of curcumin with diverse agents (nicotinamide,
ferulic acid, hydroquinone, p-hydroxybenzoic acid and L-tartaric
acid) (Fig. 3) in different stoichiometry ratios in an attempt to
optimize the physico-chemical properties accessible for solid
state oral dosage application. Signicant enhancement in
solubility and dissolution rates were noticed of the binary
eutectics co-crystalline solids.16

Another study mentioned the possibility of water solubility
enhancement through nano-vehicles with curcumin encapsu-
lated in liposomes, exosomes, dendrimers and micelles.17 Cur-
cumin encapsulation in liposomes modied with DDAB
(didecyldimethylammonium bromide) was studied using
cervical cancer cell lines (HeLa, SiHa). It was observed that the
Fig. 5 Structure of curcumin indicating the major active sites.

31104 | RSC Adv., 2022, 12, 31102–31123
uptake of DDAB liposomes was better than the non-modied
ones but more toxic. Additionally, curcumin was released at
a faster rate from cationic DDAB liposomes presumably due to
the decrease in interaction of the lipid chains as a result of
cationic charges.18

Sodium salt curcumin diacetate (Fig. 4) was also mentioned
as an improved water soluble bio-active agent. Enhancement
was noticed relative to that of curcumin itself in aqueous
conditions and ability to protect lipid membranes. However,
further detailed studies were recommended to support the
accessibility for application.19 Other studies also adopted
bioavailability enhancement of curcumin via combination with
cyclodextrin,20 conjugation with biopolymers21 or composite
nanoparticles.22
3. Curcumin chemical structure
modification

Many efforts have been directed towards designing novel bio-
active agents of enhanced potency and better bioavailability to
overcome the drawbacks of curcumin. Manipulation of curcu-
min chemical structure is usually focused on the aryl rings,
carbonyl groups, active methylene or the carbon linker (Fig. 5).
Most of the approaches of curcumin chemical structure alter-
ations can be summarized in one of the following approaches.9

- Modication of the main curcumin skeletal entities.
- Conjugation with other moieties.
- Curcumin mimics.
4. Curcumin derivatives with
potential biological properties

Curcumin connected to amino acid sodium salts 3 were re-
ported as water-soluble agents. Scheme 1 depicted the synthetic
pathway via alkylation of the appropriate aldehyde with
chloroacetic acid in the presence of NaOH followed by reaction
with glycine ethyl ester hydrochloride. Reaction with 2,4-pen-
tandione followed by hydrolysis with methanolic NaOH affor-
ded the targeted agents 3. The synthesized water-soluble agents
displayed enhanced antiproliferative properties (MTT assay)
against HeLa (cervical cancer) cells (IC50 = 0.5 mM for both the
synthesized agents) relative to curcumin (IC50 = 4.33 mM) with
induction of p53 activity, p21 expression and mediated
apoptosis. The p53 is the tumor suppressor protein capable for
induction of genes controlling cell cycle and apoptosis. It
usually arrests the cell cycle at G2/M phase/transition affecting
cyclin dependent kinase (Cdc2) necessary for mitosis.23
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Scheme 1 Synthetic pathway of water-soluble curcumin connected to amino acid sodium salts 3.
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A series of curcumin–amino acid conjugates 4 were synthe-
sized through reaction of curcumin 2 with the corresponding
protected amino acid (benzyloxycarbonyl “Cbz” and uo-
renylmethyloxycarbonyl “Fmoc”) in the presence of EDAC [1-
ethyl-3-(3-dimethylaminopropyl)carbodiimide] and DMAP (4-
dimethylaminopyridine) at −5 to 0 °C. The unprotected
curcumin-amino acid conjugates 5 were obtained from the Boc
(ter-butyloxycarbonyl) protected analogs (Scheme 2). Some of
the synthesized conjugates revealed anti-inammatory proper-
ties (acute carrageenan-induced paw edema in rats) with
potency higher than curcumin itself and the standard
Scheme 2 Synthetic route towards curcumin-amino acid conjugates 4

© 2022 The Author(s). Published by the Royal Society of Chemistry
references used (indomethacin and ibuprofen, clinically used
non-steroidal anti-inammatory drugs). These agents also dis-
played minor or no ulcerations or lesions on the gastric mucosa
of the animals tested, supporting the enhanced bio-properties
of the synthesized agents. Additionally, enhanced peripheral
(acetic acid-induced abdominal writhing methodology) and
central (hot plate technique) analgesic properties were also
revealed by some of the synthesized conjugates comparable to
curcumin, indomethacin and ibuprofen. The anti-inammatory
properties observed were correlated with the nitric oxide
production by lipopolysaccharide-stimulated peritoneal
and 5.

RSC Adv., 2022, 12, 31102–31123 | 31105
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Scheme 3 Curcumin analogs 7 and 8.
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macrophages. Most of the synthesized conjugates showed high
antibacterial properties against S. aureus, S. pyogenes (Gram-
positive) and S. typhi, P. aeruginosa (Gram-negative) bacteria
with potency higher than noroxacin and ciprooxacin (stan-
dard reference, antibiotic useable drugs).24

Dimethoxycurcumin 6 (Fig. 6) revealed antiproliferative
properties with efficacy comparable to that of curcumin 2
capable to arrest the cell cycle at S-phase. Dimethoxycurcumin
is about three times more metabolically stable relative to cur-
cumin in mice. The mode of action was mentioned through
oxidative stress and mitochondrial dysfunction.25

Curcumin analogs 7 and 8 synthesized through base-
catalyzed (NaOH, EtOH) condensation of the appropriate alde-
hyde with acetone were found to be potent inhibitors (MTT
Scheme 4 Synthetic route towards the curcuminoid-difluroborons 9.

Scheme 5 Synthetic route towards furochromone-containing heterocy

31106 | RSC Adv., 2022, 12, 31102–31123
assay) on a variety of human pancreatic cancers (PANC-1, BXPC-
3, MIA-PACA-2, ASPC-1, HPAC and HPDE) and apoptosis
inducers relative to curcumin26 (Scheme 3).

Curcuminoid-diuoroborons 9were synthesized through the
reaction of acetyl acetone–BF2 complex with the appropriate
aldehyde under nitrogen atmosphere in ethyl acetate in pres-
ence of n-butylamine (Scheme 4). Some of the synthesized
agents [Ar = 2,3,4-(H3CO)3C6H2; 3,4,5-(H3CO)3C6H2; 3,4-
(H3CO)2C6H3; 3-(H3CO)-4-(H3COO)C6H3] showed notable anti-
proliferative properties through NCI (National Cancer Institute)
screening program (NCI-60) against a variety of human cancer
cell lines (SRB technique).27

Multi-component Biginelli reaction of curcumin with furo-
chromone carbaldehyde 10 and amines, hydrazines, hydroxyl-
amine hydrochloride, urea or thiourea afforded the
corresponding furochromone-containing heterocycles 11–14
(Scheme 5). All the synthesized agents showedmild to moderate
antiproliferative properties (MTT assay) against MCF7 (breast)
and HepG2 (hepatocellular) cancer cell lines relative to doxo-
rubicin and 5-uorouracil (antitumor standard reference
drugs).28

Knoevenagel condensation of curcumin with the appropriate
aldehyde in presence of catalytic amounts of piperidine in DMF
afforded the corresponding condensate analogs 15. Triuoro-
acetic acid in CH2Cl2 was used for Boc group removal (Scheme
6). Higher antiproliferation properties were observed by the
synthesized agents against MCF7 (breast) cancer cell line (SRB
assay) than curcumin itself. It has also been noted that the
synthesized condensates affect microtubules and
cles 11–14.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Scheme 6 Synthetic route towards curcumin condensates 15.

Fig. 6 Dimethoxycurcumin 6.

Fig. 7 (Z)-3-Hydroxyl-1-(2-hydroxyphenyl)-3-phenylprop-2-ene-1-
one.
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polymerization of puried tubulin in addition to the ability to
induce p53 mediated apoptosis in tested cancer cells.29,30

The antiproliferation properties of (Z)-3-hydroxy-1-(2-
hydroxyphenyl)-3-phenylprop-2-ene-1-one 16 (mimicking cur-
cumin) (Fig. 7) was observed by MTT assay against human colon
adenocarcinoma (HT29, SW620) cell lines with potency higher
than curcumin. Induction of apoptosis indicated by DNA frag-
mentation and arresting cell cycle at G0/G1 phase was also
observed.31

Bis(arylidene)monocarbonyl compounds 17–19 were
synthesized as modied curcuminoid analogs comprising one
ketonic group conjugated with two olenic groups (Fig. 8)
through acid or base catalyzed Claisen Schmidt condensation of
Fig. 8 Bis(arylidene)monocarbonyl compounds 17–19 as modified
curcuminoid analogs.

© 2022 The Author(s). Published by the Royal Society of Chemistry
the appropriate aldehyde with acetone, cyclopentanone or
cyclohexanone. Many of the synthesized agents showed prom-
ising antiproliferative properties against MCF7 (estrogen-
dependent breast), MDA-MB-231 (estrogen-independent
breast), K562 (chronic myelogenous leukemia) and HeLa
(cervical) human cancer cell lines (MTT assay) higher than that
of curcumin. Some of them revealed higher potency than that of
doxorubicin. (1E,4E)-1,5-Bis(2,5-dimethoxyphenyl)-penta-1,4-
dien-3-one [R = 2,5-(H3CO)2C6H3] is the most potent analog
synthesized against the breast cancer cell lines tested (MCF7,
MDA-MB-231).32

A series of curcuminmimics conjugated with chromen-4-one
analogs 20 were synthesized through reaction of (1E,4E)-1-aryl-
5-(hydroxyphenyl)penta-1,4-dien-3-ones with 3-(bromoalky-
loxy)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-
one in DMF containing K2CO3 (Scheme 7). Some of the
synthesized agents exhibited promising antiproliferative prop-
erties of which, 7-dimethoxy-3-(3-(2-((1E,4E)-3-oxo-5-(pyridin-2-
yl)penta-1,4-dien-1-yl)phenoxy)propoxy)-2-(3,4,5-trimethox-
yphenyl)-4H-chromen-4-one, showed the most promise against
gastric cancer cell lines (SGC-7901, MGC-803) relative to doxo-
rubicin (standard reference) with inhibitory properties against
TrxR (thioredoxin reductase) observed.33
5. 3,5-Bis(ylidene)-4-piperidone, bio-
active curcumin mimics
5.1. Antitumor active agents

3,5-Bis((E)-2-uorobenzylidene)piperidin-4-one 21 (Fig. 9) was
reported to possess antiproliferation properties against MDA-
MB231 (breast) and PC3 (pancreatic) cancer cell lines with
potency higher than that of curcumin. It was presumed that its
mode of action due to the inhibition of intracellular pro-
angiogenic transcription factor (HIF).34

3,5-Bis(4-hydroxyarylidene)-4-piperidones 22 with alkylami-
nomethyl substituent (Fig. 10) revealed potent antiproliferative
properties against Molt 4/C8, CEM (T-lymphocyte) and L1210
(murine leukemia) cell lines (MTT assay) with higher efficacies
RSC Adv., 2022, 12, 31102–31123 | 31107
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Scheme 7 Synthetic route towards curcumin mimics conjugated chromen-4-one analogs 20.

Fig. 9 3,5-Bis((E)-2-fluorobenzylidene)piperidin-4-one 21.

Fig. 10 3,5-Bis(hydroxyarylidene)-4-piperidones 22 with alkylamino-
methyl substituents.

Scheme 8 Synthetic route towards N-acryloyl-23 and 1-[N-(aryl)maleam

31108 | RSC Adv., 2022, 12, 31102–31123
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than melphalan. Some of synthesized agents characterized as
inducer of apoptosis in addition to ability for DNA fragmenta-
tion. Cleavage of poly ADP-ribose polymerase is the mode of
action assumed for the bio-active agents.35

N-Acryloyl-3,5-bis(ylidene)-4-piperidones 23 were synthe-
sized through acid catalyzed condensation (AcOH/HCl gas) of 4-
piperidone hydrate hydrochloride with the appropriate alde-
hyde followed by reaction with acryloyl chloride in CH2Cl2
containing TEA (triethylamine) at 0 °C. However, 3,5-bis(yli-
dene)-1-[N-(aryl)maleamoyl]-4-piperidones 24 were obtained
through reaction of maleamic acid (generated from the reaction
of maleic anhydride and aryl amine in CH2Cl2) and the corre-
sponding 3,5-bis(ylidene)-4-piperidones in THF (tetrahydro-
furan) containing ethyl chloroformate and TEA (Scheme 8).
oyl]-3,5-bis(ylidene)-4-piperidones 24.

© 2022 The Author(s). Published by the Royal Society of Chemistr
y
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Scheme 9 Synthetic route towards N-arylsufonyl-3,5-bis(arylidene)-4-piperidones 25.

Fig. 11 Dissymmetric pyridine-containing 3,5-(arylidene)-4-piperidones 26–29.
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Most of the synthesized agents exhibited cytostatic properties
against human Molt4/C8, CEM (T-lymphocytes) and L1210
(leukemic) cell lines with higher potency than curcumin and
melphalan (standard reference, used in chemotherapeutical
combination for chronic leukemia and wide range of malig-
nancies). Safety prole was achieved in vitro (WI-38, human
broblasts cells) and in vivo (mice) testing. Some of the
synthesized agents showed potent inhibitory properties of
topoisomerase IIa. This enzyme facilitates DNA replication by
preventing the buildup of supercoils during replication fork
progression. Inhibitors of this enzyme result in the generation
of multiple DNA strand breaks, arrest cell division and even-
tually lead to apoptosis. As such numerous topoisomerase
inhibitors are currently used in clinics as chemotherapy for
numerous malignancies. The synthesized agents also revealed
antioxidant properties.36

A series of N-arylsulfonyl-3,5-bis(arylidene)-4-piperidones 25
were synthesized through base-catalyzed arylsulfonation
Scheme 10 Synthetic route towards pyrido[4,3-d]pyrimidines 30.

© 2022 The Author(s). Published by the Royal Society of Chemistry
(catalytic amount of pyridine in CH2Cl2 at room temperature) of
the corresponding N-unsubstituted piperidones (Scheme 9).
The synthesized agents showed anti-inammatory properties
supported by the inhibition of IL-6 and TNF-a in RAW264.7 cells
induced by lipopolysaccharide (LPS of Gram-negative bacteria).
Promising antiproliferation properties were also mentioned by
some of the synthesized agents against liver (HepG2, SMMC-
7721, QGY-7703) cancer cell lines (MTT assay) with induction
of apoptosis. Association of chronic inammation with cancer
progression especially, hepatic cancer is the rational for inves-
tigation of anti-inammatory and antiproliferation properties
of the synthesized agents.37

Other sets of dissymmetric pyridine-containing 3,5-
bis(arylidene)-4-piperidones 26–29 were also reported (Fig. 11)
with anti-inammatory and anti-hepatoma properties similar to
compounds 25.38

Pyrido[4,3-d]pyrimidines 30 were synthesized through reac-
tion of the corresponding uoro-containing N-arylsulfonyl-3,5-
RSC Adv., 2022, 12, 31102–31123 | 31109
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Scheme 11 Synthetic route towards 1-(alkylsulfonyl)-3,5-bis(ylidene)-4-piperidinones 31.

Scheme 12 Synthetic route towards 3,5-bis(ylidene)-N-substituted-
4-piperidinone-1-carboxamides 32.
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bis(arylidene)-4-piperidones with guanidine hydrochloride in
ethanolic KOH (Scheme 10). Antiproliferative properties were
observed by the targeted agents against a variety of hepatocel-
lular carcinoma cells (HepG2, SMMC-7721) using MTT assay.
Inhibition of the nuclear translocation of NF-kB induced by
TNF-a or LPS supports the anti-inammatory properties of
these compounds, considering that NF-kB is the signal pathway
connecting the chronic inammation and hepatocellular
carcinoma.39
Scheme 13 Synthetic route towards 1-[3-(2-methoxyethyloxy)propiony

31110 | RSC Adv., 2022, 12, 31102–31123
Potent antiproliferative agents against HCT116 (colon) and
A431 (skin/squamous) cancer cell lines were exhibited by 1-
(alkylsulfonyl)-3,5-bis(ylidene)-4-piperidinones 31 (Scheme 11)
relative to 5-uorouracil (approved drug for colon, breast and
skin cancers). Some of the synthesized agents also showed high
potency against MCF7 (breast) and A549 (lung) cancer cell lines
(relative to 5-uorouracil and doxorubicin) with minimal cyto-
toxicity against RPE1 (non-cancer, retinal pigment epithelial)
cell line. The synthesized agents exerted their mode of action via
inhibitory properties of topoisomerase IIa which is the enzyme
responsible for breaking double strand DNA helix during DNA
replication, transcription and repairing.40

A set of 4-piperidone-1-carboxamides 32 were synthesized via
reaction of isocyanate with the appropriate N-unsubstituted 3,5-
diylidene-4-piperidine in DMF in the presence of TEA (Scheme
12). Most of the synthesized agents revealed high potency
against HCT116 (colon), MCF7 (breast) and A431 (skin/
squamous) cancer cell lines with higher efficacy than that of
5-uorouracil and safe behavior against non-cancer (RPE1) cell
line. The synthesized agents revealed topoisomerase II-a inhib-
itory properties supporting their mode of action.41
l]-4-piperidones 33 and their thio analogs 34–36.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Scheme 14 Synthetic route towards piperidone-salicylate conjugates 37.

Scheme 15 Synthetic route towards 3,5-di[(E)-arylidene]-1-[3-(4-methylpiperazin-1-yl)alkyl]piperidin-4-ones 38.
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A set of 1-[3-(2-methoxyethyloxy)propionyl]-4-piperidones 33
and their thio-analogs 34 were synthesized through reaction of
the acyl chloride with the appropriate 3,5-bis(ylidene)-4-
piperidone in CH2Cl2 containing triethylamine. The sulnyl-
35 and sulfonyl-36 derivatives were obtained through oxidation
of compounds 34 with peracetic acid and 3-chloroperox-
ybenzoic acid in CH2Cl2, respectively (Scheme 13). Anti-
proliferative properties were observed by the synthesized agents
against human Molt 4/C8, CEM (T-lymphocyte) and L1210
(murine leukemia) cell lines with safer behavior towards non-
malignant cells. Some of the synthesized agents demonstrated
PARP1 [poly(ADP-ribose)polymerase 1] cleavage, a characteristic
hallmark of apoptosis. PARP1 is capable of repairing DNA
single-stranded breaks, thus compounds that induce PARP1
cleavage can prevent DNA replication and are useful in cancer
chemotherapy.42

The piperidone-salicylate conjugates 37 were synthesized
through dehydrohalogentation of acetylsalicylic acid chloride
Scheme 16 Synthetic route towards 3,5-bisarylidene-4-piperidones con

© 2022 The Author(s). Published by the Royal Society of Chemistry
with the appropriate piperidone in DMF containing TEA as
basic catalyst (Scheme 14). Potent antiproliferation properties
were noticed by the synthesized conjugates against A431
(squamous skin), HCT116 (colon) and MCF7 (breast) cancer cell
lines (MTT assay) with comparable efficacies to that of 5-uo-
rouracil and sunitinib (standard references). Multi-targeted
inhibitory properties were observed against VEGFR-2 (vascular
endothelial growth factor receptor-2) and EGFR (epidermal
growth factor receptor) in both MCF7 (breast) and HCT116
(colon) cancer cells. Enhanced COX-1 and COX-2
(cyclooxygenase-1 and -2) inhibitory properties were also
revealed by the synthesized agents than that of aspirin sup-
porting their anti-inammatory properties. Selective inhibition
was noticed towards COX-2 compared to COX-1. Additionally,
some of the synthesized agents revealed antiviral properties
against SARS-CoV-2 (respiratory syndrome coronavirus 2) which
is the responsible infectious microorganism of COVID-19
(corona virus disease 2019) pandemic.43
nected with 1,2,3-triazolyl heterocycle bearing phosphonate group 39.

RSC Adv., 2022, 12, 31102–31123 | 31111

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2ra05518j


Scheme 17 Synthetic route towards 3,5-bis(arylidene)-4-piperidones attached to diethyl[(aryl)methyl]phosphonate moiety 40.

Scheme 18 Synthetic route towards dispiro[3H-indole-3,2′-pyrrolidine-3′,3′′-piperidines] 41.
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A set of antiproliferative active agents 3,5-di[(E)-arylidene]-1-
[3-(4-methylpiperazin-1-yl)alkyl]piperidin-4-ones 38 were
prepared through acylation of the appropriate 3,5-bis(ylidene)-
4-piperidones followed by dehydrohalogenation via reaction
with N-methylpiperazine (Scheme 15). Potent antiproliferative
properties were exhibited against HCT116 (colon) and MCF7
(breast) cancer cell lines relative to sunitinib and 5-uorouracil
(standard references). Dual inhibitory properties were observed
against human topoisomerase I and IIa. However, with higher
efficacy against topoisomerase IIa than I. Promising anti-SARS-
CoV-2 properties were also revealed relative to favipiravir
(standard reference) during the VERO-E6 standard technique.
Lack of cytotoxicity against normal RPE1 and VERO-E6 cells
supports the possibility that these compounds may be potential
drug candidates.44

A series of 3,5-bis(arylidene)-4-piperidones connected with
1,2,3-triazolyl heterocycle bearing phosphonate group 39 were
obtained via Aldol condensation (Et2O$BF3) (Scheme 16).
Promising antitumor properties were observed against HCT116
(colon) and MCF7 (breast) cancer cell lines (relative to
31112 | RSC Adv., 2022, 12, 31102–31123
doxorubicin, reference standard) with limited toxicity against
normal (HEF) cells.45

A series of 3,5-bis(arylidene)-4-piperidones attached to
diethyl[(aryl)methyl]phosphonate moiety 40 were synthesized
via reaction of a-amino(aryl)methyl phosphonates (obtained
through Kabachnik–Fields reaction of triethyl phosphite,
appropriate aldehyde and 4-piperidone hydrochloride mono-
hydrate) with aromatic aldehyde in the presence of LiClO4/Et3N
(Lewis acid) (Scheme 17). Noticeable antiproliferative properties
were observed against a variety of human tumor cell lines (RD
“rhabdomyosarcoma”, PC3 “pancreatic”, HCT116 “colon”, and
MCF7 “breast”) cell lines relative to doxorubicin and daunoru-
bicin (reference standards).46

A series of dispiro[3H-indole-3,2′-pyrrolidine-3′,3′′-piperi-
dines] 41 were synthesized through dipolar cycloaddition of the
appropriate 3,5-bis(ylidene)-4-piperidones with azomethine
ylide (which obtained in situ through reaction of sarcosine with
isatins) (Scheme 18). The stereochemical structure of 41 was
established through single crystal X-ray studies. Many of the
synthesized agents showed promising antiproliferation prop-
erties against HeLa (cervical), MCF7, T-47D (breast), HepG2
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 12 Dispiro-analog bearing 1-[(4-morpholinyl)methylene] func-
tion 42.

Scheme 20 Synthetic route towards spiropyrrolidines 47.

Review RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

1 
O

ct
ob

er
 2

02
2.

 D
ow

nl
oa

de
d 

on
 1

/7
/2

02
5 

10
:4

4:
18

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
(liver) and HCT116 (colon) carcinoma cell lines (SRB technique)
relative to that of doxorubicin and cisplatin (standard refer-
ences). QSAR (CODESSA-Pro, CODESSA III soware) and 3D-
pharmacophoric (Discovery Studio 2.5) studies discussed the
biological properties observed, optimized molecular models
and exhibited the descriptors/chemical features necessary for
bio-observations.47–49

Dispiro-analog bearing a 1-[(4-morpholinyl)methylene]
group 42 was also synthesized through azomethine dipolar
cycloaddition reaction with the appropriate piperidone
(Fig. 12). Quantum chemical calculations [DFT/B3LYP, 6-
31G(d,p)] determined the stereochemical structure. Promising
antitumor properties were observed against diverse human
cancer cell lines (National Cancer Institute screening
program).50
5.2. Cholinesterase inhibitors

Alzheimer's disease is a neurodegenerative disease comprising
the main cause of dementia particular in elder people. One of
Fig. 13 3,5-Bis(ylidene)-4-piperidones of cholinesterase inhibitory prop

Scheme 19 Synthetic route towards pyrido[4,3-d]pyrimidine 44 and pyr

© 2022 The Author(s). Published by the Royal Society of Chemistry
the most common methods for treatment is the elevation of
acetylcholine levels in the brain. Acetylcholinesterase (AChE)
and butyrylcholinesterase (BChE) are two enzymes that exist in
the central nervous system capable of hydrolyzing acetylcholine
(neurotransmitter at cholinergic synapses). For this reason
compounds with inhibitory properties against these enzymes
are valuable for controlling progress of this disease. A series of
3,5-bis(ylidene)-4-piperidones 43 (Fig. 13) showed promising
inhibitory properties against AChE and BChE (Ellman's
method) compared to Tacrine and Donepezil (standard
references).51,52

Pyrido[4,3-d]pyrimidines 44 obtained through reaction of
3,5-bis(ylidene)-4-piperidones with thiourea in presence of
NaOEt. Reaction of 44 with phenacyl bromides afforded the
formation of pyrido[4,3-d]thiazolo[3,2-a]pyrimidines 45. Alter-
natively, 45 could be obtained directly through domino reaction
of the appropriate piperidone, thiourea and phenacyl bromide
in ionic liquid (1-butyl-3-methylimidazolium bromide “[bmim]
Br”) under microwave irradiation (Scheme 19). Promising AChE
and BChE inhibitory properties were observed by some of the
synthesized agents 44 and 45 (Ellman's method) relative to
Galantamine.53–55
erties 43.

ido[4,3-d]thiazolo[3,2-a]pyrimidines 45.

RSC Adv., 2022, 12, 31102–31123 | 31113
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Scheme 21 Synthetic route towards spiro-heterocycles 48.
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Spiropyrrolidines 47 were synthesized via [3 + 2]-dipolar
cycloaddition reaction of 3-(ylidene)-N-substituted-4-
piperidones 46 with azomethine ylides formed from conden-
sation of the appropriate isatin and sarcosine in presence of
ionic liquid “[bmim]Br” (Scheme 20). Promising AChE and
BChE inhibitory properties were observed by some of the
synthesized agents (Ellman's method) compared with Galant-
amine (reference standard).56

Cycloaddition reaction of azomethine ylide (formed from
condensation of 5-chloroisatin and L-proline) with N-acryloyl-
3,5-bis(ylidene)-4-piperidones 23 afforded the corresponding
spiro-heterocycles 48 via reaction with the acryloyl linkage
rather than the exocyclic ylidene olenic linkage (Scheme 21).
Stereochemical structure of 48 was supported by single crystal
X-ray studies. AChE and BChE properties were exhibited by the
synthesized agents in comparison with Galantamine (standard
reference).57

Additionally, azomethine cycloaddition reaction (formed
from isatin and L-proline) with N-acryloyl-3,5-bis(ylidene)-4-
piperidones 23 in reuxing MeOH in equimolar values affor-
ded the mono-spiro-heterocycles 49 in a similar manner to that
Scheme 22 Synthetic route towards mono-spiro-49 and bis-spiro-hete

31114 | RSC Adv., 2022, 12, 31102–31123
of the aforementioned formation of 48. However, reaction of
azomethine ylide in double folds amount (two molar equiva-
lents) to that of piperidones 23, the bis-spiro-heterocycles 50
were obtained due to double cycloaddition reactions with both
acryloyl and ylidene linkages (Scheme 22). Both compounds 49
and 50 revealed AChE and BChE inhibitory properties (Ellman's
method) and some of them showed potency comparable to that
of Galantamine.58

Meanwhile, ionic liquid “[bmim]Br” mediated cycloaddition
reaction of azomethine ylide derived from isatin and sarcosine
with N-acryloyl-3,5-bis(ylidene)-4-piperidones 23 afforded the
mono-spiro-pyrrolidines 51 due to cycloaddition reaction with
the exocyclic ylidene linkage. However, reaction of the azome-
thine ylide with 23 in 2 : 1 molar value equivalent afforded the
bis-spiro-pyrrolidines 52. The difference in observations of this
reaction to that mentioned in Scheme 22 is attributed to the
different reactant azomethine ylide derived from diverse amino
acid (sarcosine and L-proline). Additionally, bis-spiro-pyrroli-
dines 52 were obtained from mono-spiro-pyrrolidines 51 by
reaction with another mol equivalent of the azomethine ylide
(Scheme 23). Both mono-spiro-51 and bis-spiro-pyrrolidines 52
rocycles 50.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Scheme 23 Synthetic route towards mono-spiro-51 and bis-spiro-heterocycles 52.
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revealed noticeable AChE and BChE inhibitory properties and
some of them exhibited potency comparable to that of
Galantamine.59

Similarly, reaction of N-acryloyl-3,5-bis(ylidene)-4-
piperidones 23 with azomethine ylide generated from phenyl-
glycine and isatin (in 1 : 1 molar equivalent) in ionic liquid
“[bmim]Br” medium afforded the mono-spiro-pyrrolidines 53
due to cycloaddition reaction with the exocyclic ylidene linkage.
Scheme 24 Synthetic route towards mono-spiro-53 and bis-spiro-hete

© 2022 The Author(s). Published by the Royal Society of Chemistry
However, reaction of the azomethine ylide with 23 in 2 : 1 molar
value equivalent afforded the bis-spiro-pyrrolidines 54. Reac-
tion of 53 with another mol equivalent of azomethine ylide also
afforded the bis-spiro-pyrrolidines 54 (Scheme 24). AChE and
BChE inhibitory properties were shown by the mono-spiro-53
and bis-spiro-pyrrolidines 54 and some of them exhibited
potency comparable to that of Galantamine.60
rocycles 54.
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Scheme 25 Synthetic route towards dispiropyrrolidines 55.

Scheme 26 Synthetic route towards (allylated-benzylidene)-4-piperidones 57, 59.

31116 | RSC Adv., 2022, 12, 31102–31123 © 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 14 3,5-Bis(ylidene)-4-piperidones 60 of anti-inflammatory
properties.
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Indeno[3,2-b]quinoxalin-11-one were synthesized through
condensation of ninhydrin and o-phenylenediamine in reux-
ing methanol. Ionic liquid mediated “[bmim]Br” multicompo-
nent [3 + 2]-dipolar cycloaddition reaction of azomethine ylide
(obtained from the condensation of L-tryptophan and indeno
[3,2-b]quinoxalin-11-one) with 3,5-bis(ylidene)-4-piperidine
afforded the dispiropyrrolidines 55 (Scheme 25). AChE and
BChE inhibitory properties were shown by the synthesized
dispiropyrrolidines 55 relative to Galantamine.61

5.3. Anti-inammatory active agents

Acute lung injury is life threatening and usually associated with
acute inammatory factors IL-6, IL-1b (interleukin) and TNF-
a (tumor necrosis factor). The 3,5-bis(3-allyl-4-
hydroxybenzylidene)-4-piperidones 57 were synthesized
through acid-catalyzed condensation [HCl(gas)/AcOH] of 4-
piperidones with 3-allyl-4-hydroxybenzaldehyde (56). Mean-
while, 3-aryliden-4-piperidone 59 was obtained via
Scheme 27 Synthetic route towards 3,5-[bis(ylidene)-4-piperidone-1-yl

Scheme 28 Synthetic route towards dispiro-heterocycles 62 of anti-infl

© 2022 The Author(s). Published by the Royal Society of Chemistry
condensation of the 3-(ylidene)-1-(cyclopropyl)-4-piperidone 58
(O-THP protected benzaldehyde, obtained from reaction of 56
with 3,4-dihydro-2H-pyran) with various aldehydes (base-
catalyzed reaction, NaOH/EtOH) (Scheme 26). Piperidones 57
and 59 revealed inhibitory properties against IL-6 and TNF-
a supporting the possibility as a potential treatment to prevent
inammation associated with lung injury.62

Anti-inammatory properties of 3,5-bis(ylidene)-4-
piperidones 60 (Fig. 14) were supported by the in vivo
carrageenin-induced paw oedema of rats (i.p., 0.01 mmol per kg
body weight). Some of the tested agents revealed higher efficacy
than that of indomethacin (non-steroidal anti-inammatory
drug) aer 3.5 h of administration.63

2-{3,5-[Bis(ylidene)-4-oxopiperidin-1-yl]}-2-
oxoethylmorpholine-4-carbodithioates 61 where synthesized
through reaction of sodium morpholine-4-carbodithioate with
the appropriate 1-chloroacetyl-3,5-bis(ylidene)-4-piperidones in
methanol–water (1 : 1) at 60 °C (Scheme 27). Some of the
synthesized 61 revealed promising down-regulation properties
of TNF-a-induced NF-kB activation in KBM5 cell. NF-kB
possesses a dual role due to its capability to regulate many
growth factors and cytokines responsible for anti-apoptosis,
angiogenesis and metastasis. Suppression of NF-kB is an
important therapeutical pathway against cancer and inam-
mation of cells.64

Dispiro-heterocyles 62 were synthesized by the azomethine
ylide [3 + 2]-cycloaddition reaction with 3,5-bis(ylidene)-4-
piperidones in reuxing EtOH (Scheme 28). Single crystal X-
ray studies supported the structure. Anti-inammatory
]-2-oxoethylmortholine-4-carbodithioates 61.

ammatory properties.
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Fig. 15 3,5-Bis(ylidene)-4-piperidones 63 with noticeable antimycobacterial properties.
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properties of the synthesized agents were established by the
carrageenin-induced paw edema method of rats (i.p., 50 mg per
kg body weight). Some of the synthesized agents revealed higher
anti-inammatory potency than that of indomethacin aer 4 h
of administration.65

5.4. Antimycobacterial active agents

Infectious diseases are still one of the main human global
health problems. Tuberculosis (TB) is one of the top ten human
life threatening globally. It is the second cause of mortality aer
Scheme 29 Spiro-heterocycles 65–67 of antimycobacterial properties.

Scheme 30 Dispiropyrrolidines 68 of antifungal properties.

31118 | RSC Adv., 2022, 12, 31102–31123
HIV/AIDS due to single infectious pathogen. Various pathogenic
agents (Mycobacterium sp.) have been identied causing TB.
Many drugs have been discovered for treating patients with TB
but due to the side effects and drug resistant TB strains, novel
therapeutical agents are still needed.66

A series of 3,5-bis(ylidene)-4-piperidones 63 were identied
with noticeable antimycobacterial properties (M. tuberculosis
H37Rv). Some of them revealed properties in the rat liver mito-
chondria respiration with swelling in mitochondria67 (Fig. 15).
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 16 3,5-Bis(ylidene)(-N-methyl-4-piperidones) 69 of anti-plasmodial properties.

Scheme 31 N-acyl-3,5-bis(ylidene)-4-piperidones 70 of antimalarial properties.
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Solvent-free microwave irradiation of 1-methyl-4-piperidone
with aromatic aldehyde in presence of pyrrolidine afforded
the corresponding 3-arylidene-4-piperidones 64. Azomethine
ylide (derived from condensation of isatin with sarcosine,
proline or benzylamine) cycloaddition to 64 in reuxing meth-
anol yielded the corresponding spiro-heterocycles 65–67. Single
crystal X-ray studies supported the synthesized structures.
Antimycobacterial properties were observed by the synthesized
spiro-heterocycles 65–67 against M. tuberculosis, multi-drug
resistant M. tuberculosis and M. smegmatis68 (Scheme 29).
5.5. Antifungal active agents

Dispiropyrrolidines 68 were synthesized through multi-
component domino azomethine ylide (formed from
Scheme 32 Synthetic route towards 1-ethoxycarbonyl-3,5-bis[(3′-indol

© 2022 The Author(s). Published by the Royal Society of Chemistry
condensation of 2-amino-3-phenylpropanoic acid and isatin)
dipolar cycloaddition reaction with the appropriate 3,5-
bis(arylidene)-4-piperidones in ionic liquid “[bmim]Br”
(Scheme 30). Antifungal properties of 68 were revealed against
Candida albicans ATCC 10231. Some of the synthesized agents
showed potent inhibitory properties relative to uconazole
(standard reference).69
5.6. Antimalarial active agents

Malaria is one of the most widely distributed infectious diseases
in tropical and subtropical regions. Plasmodium sp. which is
a protozoan organism transmitted to humans due to mosquito
bites. Although many drugs are known to combat malaria
yl)methylene]-4-piperidines 71 lipase inhibitory properties.
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emerging drug resistance means that new effective agents are
still needed.70

Anti-plasmodial properties were exhibited by 3,5-bis(yli-
dene)-N-methyl-4-piperidones 69 against chloroquine-sensitive
Pf3D7, chloroquine-resistant PfINDO, and artemisinin-
resistant PfMRA-1240 strains71 (Fig. 16).

A series of N-acyl-3,5-bis(ylidene)-4-piperidones 70 were
synthesized via dehydrohalogenation of the unsubstituted
piperidone with the corresponding acid chloride (Scheme 31).
Some of the synthesized agents revealed potent inhibitory
properties against Plasmodium falciparum D6 and C235 (drug
resistant) strains which also subjected to Plasmodium berghei
revealing higher efficacy than chloroquine and meoquine
(standard reference drugs).72
5.7. Antiobesity active agents

1-Ethoxycarbonyl-3,5-bis[(3′-indolyl)methylene]-4-piperidones
71 were synthesized through base catalyzed condensation
(piperidine in reuxing toluene) of 1-ethoxycarbonyl-4-
piperidine with 3-indolecarboxaldehyde followed by alkylation
with various alkyl halides in reuxing DMF/K2CO3 (Scheme 32).
Lipase inhibitory properties were revealed by the synthesized
agents relative to orlistat (standard reference).73
6. Conclusion

Curcumin is an important natural compound with broad
spectrum biological properties. Limitation of clinical applica-
tion of curcumin is mainly due to its poor bio-availability in vivo.
3,5-Bis(ylidene)-4-piperidone scaffolds are considered a curcu-
min mimic with diverse promising bio-properties. The distin-
guished biological observations of curcumin mimics can be
considered for optimizing high potent hits/leads accessible in
drug discovery program. Many articles dealing with the bio-
logical properties of this scaffold have appeared. It has been
also intensively utilized for construction of diverse potentially
bioactive heterocycles.
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