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vel Diels–Alder reactions using
a generative adversarial network†

Sheng Li, ‡ab Xinqiao Wang,‡b Yejian Wu, b Hongliang Duanbc and Lan Tang*a

Deep learning has enormous potential in the chemical and pharmaceutical fields, and generative adversarial

networks (GANs) in particular have exhibited remarkable performance in the field of molecular generation

as generative models. However, their application in the field of organic chemistry has been limited; thus, in

this study, we attempt to utilize a GAN as a generative model for the generation of Diels–Alder reactions. A

MaskGANmodel was trained with 14 092 Diels–Alder reactions, and 1441 novel Diels–Alder reactions were

generated. Analysis of the generated reactions indicated that the model learned several reaction rules in-

depth. Thus, the MaskGAN model can be used to generate organic reactions and aid chemists in the

exploration of novel reactions.
Introduction

Organic chemistry has played a signicant role in human
history, and organic reactions have been vital in the synthesis of
chemicals for the development of drugs and materials for
hundreds of years. Prolonged experiment times, high experi-
ment costs, and low success rates have hindered the exploration
of conventional chemical reactions.1 Fortunately, the advent of
articial intelligence (AI) has provided researchers with novel
strategies for the development of organic chemistry-related
applications.2

In recent years, owing to the constant development of
computational techniques, AI has achieved remarkable results
in the elds of retrosynthesis and reaction prediction.3,4 Zheng
et al. applied a transformer model to develop a template-free
self-corrected retrosynthesis predictor and predicted retrosyn-
thesis reactions with an accuracy of 59.0% on a standard
benchmark data set.5 Wang et al. reported a method that
utilized transfer learning to enhance the accuracy of a trans-
former model (94.9%), which is higher than the accuracy of
a transformer-baseline model (66.3%).6 Recently, the applica-
tion of deep neural networks in the eld of pharmaceutical
chemistry, particularly for drug molecular generation and
toxicity risk assessment, has received extensive attention.7,8 Lee
et al. applied a generative adversarial network (GAN) to de novo
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molecular design and demonstrated high performance in the
ve distribution learning benchmarks of the GuacaMol frame-
work.9 The success of generative models in molecular genera-
tion inspired researchers such as Bort et al. and Wang et al. to
further explore reaction generative models.10,11

Generative models are an important class of machine
learning models capable of generating new data that is not
included in a training dataset and have exhibited considerable
potential in image,12 text,13 and sound generation14 in the past
few years. Among several generative deep learning models, GAN
has attracted considerable attention from researchers and was
rst proposed by Goodfellow et al. as a novel framework for the
estimation of generative models in adversarial processes.15 GAN
utilizes two adversarial networks, a generator that captures the
distribution of data and a discriminator that estimates the
probability of a sample belonging to the training data. They
compete until the discriminator is unable to distinguish
between the real data and the data generated by the generator.
This operating mechanism of GAN has allowed it to exhibit
superiority over other models via more realistic image genera-
tion.16 However, the application of GAN in the eld of chemistry
had been limited towing to the discreteness of simplied
molecular-input line-entry system (SMILES) strings, which
replace molecular structures as the input data. To overcome this
issue, Sutton et al. proposed a policy gradient-based reinforce-
ment learning approach on GAN that provided feedback on
information and has been applied by several scientists.17 Lin
et al. used GANs for de novo molecular design, dimensionality
reduction, and de novo peptide and protein design,18 while
Maziarka et al. reported an improved cycleGAN-basedmolecular
optimization model called mol-CycleGAN that could generate
optimized compounds with the desired properties and struc-
tures similar to the originally provided molecules.19 Prykhodko
et al. proposed a novel deep learning architecture called
RSC Adv., 2022, 12, 33801–33807 | 33801
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Fig. 1 Flowchart for generating the Diels–Alder reactions with GAN. The real training data and the data that generated during the training
process of generator are simultaneously imported into the discriminator for training, and then, the results are fed back to the generator for
further training.
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LatentGAN for de novo molecular design, that combined
autoencoders and GANs.20 In this study, we attempt to utilize
GANs for generating novel reactions and enhance the scope of
chemical reactions. Fig. 1 shows a owchart for the generation
of Diels–Alder reactions using GAN, where “Samples” refers to
the dataset and “Generated” refers to the novel reactions
generated by the GAN. In this study, we converted the reactions
of the dataset into SMILES strings prior to importing them into
the GAN model. Subsequently, the discriminator and generator
of the GAN were trained to generate the novel Diels–Alder
reactions.

The dataset for the GAN model to learn has a signicant
effect on the model's performance, and thus an applicable
dataset must be chosen. As the Diels–Alder reaction is one of the
most effective and widely used organic reactions in drug and
material synthesis, we chose the Diels–Alder reaction as the
training dataset in this study. The Diels–Alder cycloaddition
reaction consists of the cyclization of a diene and alkene to form
a cyclohexene derivative and was discovered by O. Diels and K.
Alder when they established the structure of the cycloadduct of
p-quinone and cyclopentadiene in 1928.21 Since its discovery,
extensive data on Diels–Alder reactions have been reported,
which is another reason for choosing the Diels–Alder reaction
dataset in this study. Boger et al. reported that a key step in the
synthesis of rubrolone aglycon's seven-membered C-ring in
a laboratory was the intermolecular Diels–Alder reaction of an
electron-rich diene with an extremely strained dienophile.
Furthermore, they reported an excellent cycloaddition yield of
97% with the products exhibiting complete enantioselectivity.22

In a Diels–Alder reaction, the reactants move closer to each
other and interact to form a cyclic transition state, which
gradually transforms into a product molecule.
33802 | RSC Adv., 2022, 12, 33801–33807
In this study, we utilized MaskGAN, which is composed of
a generator, discriminator, and critic network, for the genera-
tion of novel Diels–Alder reactions.23 The generator network
uses a sequence-to-sequence model with an attention mecha-
nism. The Reaxys database was used to construct a training
dataset of Diels–Alder reactions, which were converted to
SMILES strings and then imported to the MaskGAN model for
training and reaction generation. The model generated 1441
novel Diels–Alder reactions and they were compared with the
Diels–Alder reaction dataset to verify their novelty. Using the
newly discovered reactions from this study combined with AI we
could accelerate the discovery of reactions and consequently
enhance the accuracy of the prediction of organic reactions.
Method
Dataset

To train MaskGAN for the generation of Diels–Alder reactions,
a dataset of Diels–Alder reactions downloaded from the Reaxys
database was created. The keyword “Diels–Alder Reaction” was
used to nd the reactions on the database, and duplicate
reactions and invalid reactions (reactions with empty reactants
or products and reactions with reactants equal to products)
were deleted. An RDKit template was used to screen the
chemical feasibility of the Diels–Alder reactions and nally,
a dataset of 14 092 reactions was assembled. The dataset was
split into a training set and validation set in a ratio of 8 : 2.
Model

Initially, GANs were designed to output differentiable values,
and thus it is difficult for GANs to generate discrete language.
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Examples of representatively selected reactions generated by
model.
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To overcome this issue, MaskGAN, an actor-critic24,25 condi-
tional GAN was introduced by lling inmissing text conditioned
to generate higher quality samples.

The generator network of the MaskGAN uses a sequence-to-
sequence architecture26 with an attention mechanism.27 The
actual implementation of seq2seq in a MaskGAN is a form of
a long short-term memory (LSTM) network,28 containing an
encoder and a decoder structure. The encoder processes every
element in the input sequence and compiles the captured
information into a context vector. Then, the encoder sends the
context vector to the decoder, which starts producing the output
sequence item-by-item to eventually produce the entire sen-
tence. The discriminator uses the same seq2seq structure as the
generator with the exception that a scalar probability is output
at every time step. In addition, for converging more rapidly, the
critic in MaskGAN helps the generator by reducing the high-
variance of the gradient updates in a high action-space envi-
ronment, which enables a more stable training procedure.

To train the model, 80% of the downloaded Diels–Alder
reactions were applied while the remainder were used for vali-
dation. The model was trained with a batch size of 512 for 300
epochs, the masking ratio of the input sequence was set to 0.1,
and the network parameters were optimized using Adam opti-
mization with a weight decay of 0.001. The base learning rate
was set to 0.01 and was multiplied by 0.9 to reduce the learning
rate for every epoch. All experiments were implemented using
PyTorch 1.7.0 (for the detailed version of the package, please
access the URL: https://github.com/hongliangduan/Generation-
of-novel-Diels-Alder-reaction-using-a-GAN-.git).
Table 1 Validity of components in the generated set

Components in
the reactions

Valid molecular

Total Amount Rate
Result and discussion

To generate novel reactions using our model, 14 092 Diels–Alder
reactions were imported from the Reaxys database into the
model for generating reactions. Aer reaction generation, we
removed generated reactions with invalid SMILES strings for
reactants or products automatically by using RDkit soware.
However, the generated reaction may still not conform to the
Diels–Alder reaction mechanism, although the SMILES strings
of the reactants and products of all reactions were valid.
Therefore, through screening of the generated reactions using
reaction templates of the RDKit module, reactions that do not
conform to the Diels–Alder reaction mechanism were
Fig. 2 Screening process for generated reactions.

© 2022 The Author(s). Published by the Royal Society of Chemistry
discarded. However, owing to the limitations of the RDKit, we
were unable to automatically remove reactions with chiral
errors, and thus, these reactions had to be removed manually
aer the screening with the RDKit. In this study, 26 869 reac-
tions were generated by MaskGAN, from which 13 320 reactions
were removed automatically by the RDKit. Subsequently, the
duplicate generated reactions and the generated reactions that
also belonged to the training set were removed to obtain 1881
novel reactions, from which 441 reactions with chiral errors
were removed manually, and eventually, 1441 novel Diels–Alder
reactions were obtained from the model (Fig. 2). Fig. 3 shows
the practical reactions representatively selected from the
generated set.

To further investigate the generated novel reactions, they
were analyzed at the molecular level. Table 1 shows the total
amount of valid molecules and their proportion out of 10 000
generated molecules for every component in the reactions.
Table 2 shows the amounts and proportions of reactants and
products in the generated set calculated using different
metrics.
Dienes 10 000 7012 70.1%
Dienophiles 10 000 7483 74.8%
Products 10 000 3048 30.5%

Table 2 Uniqueness and novelty of components in the generated set

Components in
the reactions

Unique molecular Novel molecular

Amount Rate Amount Rate

Dienes 661 42.8% 452 68.3%
Dienophiles 825 62.0% 628 76.1%
Products 1394 97.0% 1035 74.2%

RSC Adv., 2022, 12, 33801–33807 | 33803
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Validity

The validity of the model was calculated as the ratio of the
number of valid molecules to generated molecules. The val-
idities with respect to dienes, dienophiles, and product
components were 70.1%, 74.8%, and 30.5%, respectively. These
values suggest that our model exhibits outstanding validity for
dienes and dienophiles, whereas a moderate validity for the
products indicates scope for optimization.

Uniqueness

The uniqueness of the model was computed as the ratio of
unique molecules in the generated set to valid molecules. The
uniqueness of the model with respect to the products, dienes,
and dienophiles components was 97.0%, 42.8%, and 62.0%,
respectively. We speculate that the superior uniqueness of the
products is owing to their complex structure. The high
uniqueness ratios indicated that the model does not generate
only a few typical molecules and is capable of generating a large
number of reactions with unique products.

Novelty

We counted the number of novel molecules of each component
in the reactions and the novelty of the model was estimated as
the ratio of the generated molecules not in the training set to
the unique molecules in the generated set. The number of novel
dienophiles was 628 while its proportion was 76.1%, which
indicates that our model preferentially generated reactions
containing novel dienophiles rather than replacing various
reactants to generate products the same as those in the training
set. The proportions of novel dienes and product components
were 68.3% and 74.2%. Although the proportion of novel dienes
is moderate, the ability of reactants to combine in pairs enables
the possibility of generation of a large number of novel products
without the need for a large number of novel reactants.

As shown in Fig. 4, we observed that when three carbon–
carbon double bonds were present in the reactants, the two
double bonds of dienophile components chose to react in the s-
cis conformation in 98.4% of the reactions in the generated set.
This indicates that our model can effectively learn reaction
mechanisms. During a Diels–Alder reaction, the s-cis confor-
mation is more favorable in the formation of the transition
state. Therefore, dienes that are permanently in the s-trans
conformation and cannot adopt the s-cis conformation will not
undergo the Diels–Alder reaction. The two ends of these dienes
Fig. 4 Examples of representative dienes with the s-cis conformation.

33804 | RSC Adv., 2022, 12, 33801–33807
cannot get close enough to the dienophiles in Diels–Alder
reactions and could thus result in the formation of a novel six-
membered ring of products with a trans double bond. On the
contrary, dienes that are permanently in the s-cis conformation,
such as cyclic dienes, signicantly favor Diels–Alder reactions.

The generated reactions were further analyzed to establish
a correlation between the generated reactions and the Diels–
Alder reactions of the training set. The reactants were distrib-
uted using MACCS29 molecular ngerprints and the t-
distributed stochastic neighbor embedding (t-SNE)30 method.
t-SNE is a variation on the stochastic neighbor embedding
method proposed by Maaten et al.31 and is easier to optimize
and reduces the tendency of points to cluster in the center of the
map.

MACCS ngerprints are a molecular qualitative descriptor
comprising high-dimensional data of 166-dimensional molec-
ular features of various functional groups and 1-dimensional
placeholders. t-SNE was used as a dimensionality reduction
technique to visualize the MACCS molecular ngerprints of the
reactants. Fig. 5(A) shows the t-SNE plot of the distribution of
the MACCS ngerprints of the novel dienophile components in
generated set and the dienophiles in the training dataset. We
observed that the distribution of the training set adequately
covered the generated set, which indicates that while the
dienophile components generated by the model are novel, they
satisfy the features of the reactants of Diels–Alder reactions as
well. A similar observation was made with respect to the diene
components Fig. 5(B). These results effectively prove that the
generated reactions follow the distribution of the features of the
training dataset.

The generated reactions were further analyzed based on the
level of chemical transformation. Table 3 summarizes the
amounts and proportions of chemically feasible, unique, and
novel reactions out of the 10 000 generated valid reactions.
Table 4 shows the proportion of reactions that conform to the
Fig. 5 The t-SNE plot of MACCS of reactants. (A) The distribution of
dienophile components in training set (green) and generated set
(purple). (B) The distribution of diene components in training set
(green) and generated set (purple).

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 3 The chemically feasibility, uniqueness and novelty of reac-
tions in the generated set

Total generated
valid reactions

Chemically
feasible
reactions

Unique
reactions Novel reactions

Amount Rate Amount Rate Amount Rate

10 000 5042 50.4% 2047 40.6% 438 21.4%

Table 4 The proportion of reactions that conform to the regiose-
lectivity and stereospecificity

Rule Rate

Regioselectivity 100%
Stereospecicity 76.6%
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regioselectivity and stereospecicity of the Diels–Alder reaction.
A chemically feasible reaction conforms to a particular reaction
mechanism, and in this study, the reaction mechanism is that
of a Diels–Alder reaction. A valid reaction is one in which the
products and reactants of the reaction are chemically valid. The
chemical feasibility of the model was computed as the ratio of
the number of chemically feasible reactions that were screened
by the RDKit templates to the number of valid reactions in the
generated set. While the proportion of the chemically feasible
generated reactions aer excluding duplicate chemically
feasible reactions indicates the uniqueness of the model, the
proportion of the molecules that are present in the training
dataset indicates its novelty. The chemical feasibility, unique-
ness, and novelty of the model were estimated to be 50.4%,
40.6%, and 21.4%, respectively, which indicate that the model
exhibits moderate novelty. We believe this is due to the limited
chemical space constituted by the training set with small data.
Given that pre-training and data augmentation can improve the
training effect of small data. For future work, the utilization of
pre-training and data augmentationmethods can be explored to
overcome this issue. In addition, of 10 000 reactions generated
with MaskGAN, 438 turn out to be chemically meaningful and
novel. Therefore, our success rate is 4.38%. Wang et al. describe
a Transformer-Based reaction generation strategy, and their
success rate is 2.86% aer the same data processing, our
method has about 1.5% improvement.11
Fig. 6 Examples of the regioselectivity of generated reactions.

© 2022 The Author(s). Published by the Royal Society of Chemistry
As shown in Table 4, we observed a 100% probability that the
model generates reactions with an ortho or para product, which
is consistent with our knowledge of the regioselectivity of Diels–
Alder reactions, indicating that our model exhibits excellent
regioselectivity. Regioselectivity refers to the preference of
a reagent to react with a functional group at a particular posi-
tion over another. Diels–Alder reactions are highly regiose-
lective as one of the carbon–carbon double bonds in a diene is
more likely to be attacked by a dienophile at its electrophilic site
rather than its electron-donating group. As shown in Fig. 6(A)
and (B), the presence of the electron-donating group at one end
of the diene results in the other end being more electrophilic,
resulting in a higher preference for dienophile components to
attack the electrophilic site. When the electron-donating group
is located at an end of the diene, the dienophile tends to attack
the other end of the diene to produce ortho products, whereas
when the electron-donating group is in the middle of the diene
(Fig. 6(C) and (D)), the dienophile attack the carbon–carbon
double bond of the electron-donating group to produce para
products. Therefore, the Diels–Alder reaction is a cycloaddition
reaction consisting of an aromatic transition state that is ortho
and para directing, and the reactions generated by our model
conform to this mechanism.

Stereoselectivity refers to the preferential reaction of a reac-
tant based on the stereochemistry of the product. The mecha-
nism of product formation in Diels–Alder reaction follows the
endo rule in which the electron-withdrawing group of the
dienophile components and the newly formed carbon–carbon
double bond in the middle of the old diene tend to be on the
same side during the process, forming an endo product. The
bonding interaction between the electron-withdrawing group of
the dienophile and the p bond formed at the back of the diene
result in an increased rate of endo product formation. In irre-
versible Diels–Alder reactions, endo products are preferred as
kinetic products, whereas in reversible Diels–Alder reactions,
exo products are formed instead as exo products are more stable
than endo products owing to their lesser steric hindrance. As
only irreversible Diels–Alder reactions were selected for the
training set, the majority of the generated reactions contain
only endo products. The stereoselectivity of one of the novel
reactions generated by our model is depicted in Fig. 7(A). The
asymmetric dienophile reacts with the cyclic diene, resulting in
the formation of carbonyl groups on the dienophile and the
newly formed double bond in the middle of the old diene on the
RSC Adv., 2022, 12, 33801–33807 | 33805

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2ra06022a


Fig. 7 Analysis of the generated reactions. (A) Stereoselectivity of the generated reactions. (B) Stereospecificity of the generated reactions.
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same side and hydrogen atoms above the generated ring. This
product is an endo product, which conforms to the stereo-
selectivity rule of Diels–Alder reactions and indicates that our
model learned the stereoselectivity of Diels–Alder reactions.

On further analysis of the generated reactions, we observed
that the structure of the products mostly depended on the
structure of the reactants, which indicated the stereospecicity
of the generated Diels–Alder reactions. As shown in Fig. 7(B)(a),
the product sustains a cis conguration when the dienophile
component with a cis conguration reacts with the diene in the
Diels–Alder reaction, and similarly, the trans conguration is
sustained from the dienophile reactant to the product
(Fig. 7(B)(b)). During the transition state of the reaction of
dienophiles with a trans conguration, one of the functional
groups gets tucked under the diene and then reappears
underneath the ring when the product molecule is formed to
reproduce the trans conguration. The conguration of the
diene components Diels–Alder reactions also exhibit a signi-
cant inuence on the conguration of the products. Fig. 7(B)(c)
shows that as both carbon–carbon double bonds of the diene
are in cis conformation, the two hydrogen atoms are present
below the newly formed six-membered ring. Whereas, when the
two carbon–carbon double bonds are in trans conguration, the
functional groups of the dienes lie outside the newly formed six-
membered ring Fig. 7(B)(d). Therefore, the products of the
generated reactions effectively reproduced the stereochemistry
of the dienophiles and as shown in Table 4, 76.6% of the
reactions with products exhibiting cis/trans isomerism exhibi-
ted stereospecicity, which indicated that Diels–Alder reactions
are mostly stereospecic.
Conclusion

In this study, we trained the MaskGAN model with a dataset
containing 14 092 Diels–Alder reactions and consequently
generated 1441 novel Diels–Alder reactions. To establish
33806 | RSC Adv., 2022, 12, 33801–33807
a correlation between the generated and training dataset reac-
tions, the generated novel reactions were articially judged
using the Diels–Alder reaction templates from RDKit package.
On analysis of the validity, uniqueness and novelty of reaction
components and reaction mechanism of the generated reac-
tions, we concluded that the reactions satised the majority of
the features of Diels–Alder reactions. Our model exhibited
excellent performance with respect to regioselectivity and the
rule that dienes with the s-cis conformation are considerably
favorable for Diels–Alder reactions, which indicated that
MaskGAN exhibited a clear understanding of the intrinsic rules
of Diels–Alder reactions. The objective of our study was to
generate novel reactions that conform to mechanism via GAN to
ultimately aid in the development of de novo reaction designs
without additional import. The model reported in this study is
no longer limited by imports and can thus provide chemists
with ESI† on novel reactions and facilitate the exploration of
novel reactions.
Code availability

The code and the trained model are available from https://
github.com/hongliangduan/Generation-of-novel-Diels-Alder-
reaction-using-a-GAN-.git.
Data availability

The training and validation used in our study are available from
https://github.com/hongliangduan/Generation-of-novel-Diels-
Alder-reaction-using-a-GAN-/tree/main/dataset. Source data are
provided with this paper.
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