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lity, quantification and
visualisation of structural uncertainty in single
molecules†

Alexander Howarth and Jonathan M. Goodman *

Whenever a new molecule is made, a chemist will justify the proposed structure by analysing the NMR

spectra. The widely-used DP4 algorithm will choose the best match from a series of possibilities, but

draws no conclusions from a single candidate structure. Here we present the DP5 probability, a step-

change in the quantification of molecular uncertainty: given one structure and one 13C NMR spectra,

DP5 gives the probability of the structure being correct. We show the DP5 probability can rapidly

differentiate between structure proposals indistinguishable by NMR to an expert chemist. We also show

in a number of challenging examples the DP5 probability may prevent incorrect structures being

published and later reassigned. DP5 will prove extremely valuable in fields such as discovery-driven

automated chemical synthesis and drug development. Alongside the DP4-AI package, DP5 can help

guide synthetic chemists when resolving the most subtle structural uncertainty. The DP5 system is

available at https://github.com/Goodman-lab/DP5.
Introduction

Molecular structure elucidation and verication are central
problems in organic, synthetic and natural product chemistry.
Due to the richness of the structural information its spectra
contain, NMR spectroscopy has cemented itself as the method
chemists use to solve these problems. Due to the complex
nature of NMR spectra and oen subtle variation between
similar molecules, interpretation of these spectra can some-
times present a signicant challenge. As a result, incorrectly
assigned structures remain pervasive in the literature.1 Many of
those incorrectly assigned are only discovered aer costly and
time consuming total syntheses are completed revealing
a discrepancy between the experimental and literature NMR
data.2–4

Over the last two decades, many computational tools have
been developed to aid the assignment of NMR spectra and
elucidation of molecular structures.5–7 Comparing experimental
NMR shis with those calculated for a candidate structure
using density functional theory (DFT) is now a well-established
methodology and has been used to solve the structures of many
molecules.8–11 A powerful way of performing this analysis is to
calculate the DP4 probability (and related metrics like DP4+ and
J-DP4).12–14 Unlike comparative metrics such as MAE and CMAE,
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the DP4 algorithm applies Bayes Theorem to calculate the
probability that each candidate structure is the correct one. DP4
requires a list of possible structures as its input, and it assumes
that one of these structures is correct. It is common for struc-
tures to be determined except for uncertainty in the details of
their stereochemistry. DP4 has proved invaluable in the reso-
lution of many such cases.15–19 DP4 can also be used to resolve
non-stereochemical uncertainty, provided that all of the
acceptable possible structures can be enumerated. However, in
cases where all the proposed candidate structures may be
incorrect or only a single structure has been proposed, DP4
analysis cannot be applied. Until now in these very common
situations chemists would have no quantitative way of assessing
the probability of their proposed structure being correct given
the NMR spectra.

To solve this problem, we present the DP5 probability, a new
methodology and complete soware package for quantifying
uncertainty in molecular structures. Similar to the DP4 proba-
bility, the DP5 probability gives the probability that a candidate
structure is correct. However, in contrast to DP4, DP5 calculates
normalised stand-alone probabilities and hence, the user can
propose one or many structures without having to assume any
of their proposals are correct. As a result, DP5 can be used to
answer different questions to DP4 and will prove valuable in
situations where this type of analysis was previously impossible.
The DP5 probability is calculated given only one-dimensional
13C NMR data and utilises the same computational engine as
the latest iteration of our DP4 soware, DP4-AI. This program
manages all NMR processing, assignment, DFT calculations
and statistical modelling automatically. DP5 can also be used
Chem. Sci., 2022, 13, 3507–3518 | 3507
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on a case-by-case basis utilising the graphical user interface
(GUI).

This work represents a great leap forward in this eld, in
previous works systems have been developed using Neural
Networks (NNs) to classify structure proposals as correct or
incorrect.20 These systems return binary metrics that cannot be
interpreted as a probability, the statistical approach taken by
DP5 solves the signicantly more challenging problem of
calculating a standalone normalised probability of a structure
being correct. The NN systems are trained on vectors of metrics
such as MAE and MSTD and hence repeat the analysis an expert
chemist could perform. DP5 in contrast, takes into account the
3d geometry around each atomic environment to calculate the
probability of observing the given NMR-DFT prediction error for
each atom independently, this solves the well-known issue that
DFT prediction errors vary in complex and non-linear ways with
atomic environment. Finally, previous methods based on NNs
are trained using a set of correct structure proposals and faked
“incorrect” structure proposals. In contrast, the statistical
approach taken by DP5 only utilises real data, avoiding utilising
any fake datapoints and the subsequent effects of unbalanced
training sets.

The system was developed and rigorously tested utilising
a dataset of 5140 organic molecules from NMRShiDB origi-
nally selected for NMR prediction using machine learning by
Paton et al. (see ESI Section 6†).21,22 To demonstrate the
performance of the DP5 probability in even more challenging
situations, the system was also evaluated using 13 case studies
of molecular structures that have undergone reassignments in
the literature and addition 42 challenging relative stereochem-
istry elucidation examples.

DP5 represents an exciting leap forward in quantifying
molecular uncertainty. This system will prove valuable in elds
requiring high throughput molecular structure elucidation
such as automated chemical synthesis, but also in traditional
organic chemistry as a tool to aid and guide expert chemists in
their development of complex syntheses. DP5 has been made
possible following recent advances in molecular machine
learning techniques and increased data availability.23–28

Computational methods

DFT calculations for the structure reassignment and stereo-
chemistry elucidation examples were performed using the
method developed in previous works.29–31 All molecular
mechanics calculations were performed using MacroModel
(Version 9.9).32 All conformational searches were performed in
the gas phase utilizing the MMFF force eld33–38 and a mixture
of Low Mode following and Monte Carlo search algorithms.39,40

The step count for MacroModel was set so that all low energy
conformers were found at least 5 times. Quantum mechanical
calculations were carried out using Gaussian09.41 NMR shield-
ing constants were found using the GIAO method.42–44 The
functional mPW1PW91 (ref. 45) was chosen with the 6-
311G(d)46,47 basis set for NMR shi prediction as this has been
shown to be optimal for DP4 calculation. For molecules con-
taining iodine, the basis set def2-SVP48,49 was chosen. All DFT
3508 | Chem. Sci., 2022, 13, 3507–3518
calculations were performed using the implicit PCM solvent
model.50 The molecular geometries were also optimized at the
DFT level of theory, this was performed using the B3LYP func-
tional51,52 with the 6-31G(d) basis set. Finally, single-point
energies were separately calculated using M06-2X53 functional
and def2-TZVP48,49 basis set.

The calculations were managed by the DP4-AI31 Python script
written in Python 3.7. DP4-AI is available from http://www-
jmg.ch.cam.ac.uk/tools/nmr/ and GitHub https://github.com/
Goodman-lab/.

DFT optimised geometries and NMR shi calculations for
the molecules from NMRShiDB were obtained from the
training data of the GNN NMR shi prediction soware
CASCADE.22 A single conformer of each of these molecules was
optimised utilising the M062X functional and def2-TZVP basis
set and NMR shi calculations performed using in 6-311g(d)
basis set and mPW1PW91 functional.

Calculation of FCHL atomic representations, l2 distances
and Gaussian kernel transformations were performed using the
python package qml.54
Program description

A schematic of the DP5 program is displayed in Fig. 1. Structure
inputs can be made as any combination of, .sdf les, SMILES,
SMARTS or InChIs. 13C NMR data can be input as raw data (for
automated analysis) or as a list of peaks from a user analysis.

DP5 calculates NMR shis for the atoms in populated
conformers of the candidate structure utilising the highly
optimised and well established methods within DP4-AI (see ESI
Section 2.1†).29–31

Raw NMR data interpretation is handled by a part of DP4-AI
called NMR-AI.31 This system was developed to remove the
requirement for the user to process and assign NMR spectra
and has been demonstrated to complete this task to at least the
same high standard as an expert chemist.

Similarityij ¼ A exp

 
� kXi � Xjk22

2s2

!
(1)

The similarity between the FCHL representation of atom i,Xi

and that of atom j in the test set Xj is calculated using
a Gaussian kernel.

pi ¼
ðþjD�Dij
�jD�Dij

pdfiðDÞdD (2)

A prediction error probability for atom i is calculated by
integrating the bespoke prediction error function generated for
that atom, whereDi is the (internally scaled) prediction error for
atom i and D�corresponds to the mean absolute prediction error
for the training set.

Once the geometries of populated conformers have been
calculated, the probabilities of the observed DFT-NMR predic-
tion errors for each atom in that conformer can be found. To do
this a probability density function (PDF) describing the DFT-
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Schematic of the DP5 program. The required inputs from the user are a candidate structure and the raw 13C NMR data (or a list NMR
signals). The DP5 probability is built on top of the DP4-AI analysis.
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NMR prediction error distribution for that atomic environment
is required (see ESI Section S2.2†). This PDF is found empiri-
cally by performing a Kernel Density Estimation (KDE) on
a dataset of 63 542 known prediction errors calculated for the
DFT optimised geometries of 5140 molecules from
NMRShiDB. This dataset was originally developed for training
machine learning models for NMR shi prediction, the gener-
ality and near chemical accuracy achieved by these models has
been taken as justication for using this dataset in this similar
task (details regarding this dataset can be found in the original
publication).22 It is well known that the expectedmagnitude and
variance of DFT prediction errors for different functionals show
strong complex, nonlinear dependencies on atomic environ-
ment.55,56 This process takes this into account by weighting the
contribution to the error PDF for the test atom of each atomic
environment in the database by its similarity to the test envi-
ronment. The similarity of these atomic environments is
calculated by nding the Euclidian distance between a vector
representation of the test atomic environment and those in the
training set. These distances are converted into covariances
utilising a Gaussian kernel (eqn (1); see ESI Section S2.4†). By
setting the pre-exponential scaling factor to one, these covari-
ances can be interpreted as a measure of the similarity. The
resulting PDF is integrated by eqn (2) (see ESI Section S2.5†) to
yield a prediction error probability for the test atom. This
© 2022 The Author(s). Published by the Royal Society of Chemistry
process is then repeated for each atom in each conformer of the
proposed structure. Once atomic probabilities have been
calculated for each atom in each conformer, these values are
Boltzmann weighted to produce overall atomic probabilities for
the structure. This process is summarised in Fig. 2.

The atomic representation used by DP5 was investigated in
great detail. In recent years many representations have been
developed for applications in molecular machine learning, such
as the coulomb matrix,57 bag-of-bonds,58 aSLATM59 and FCHL.27

Kernel ridge regression (KRR) utilising the FCHL atomic
representation have been shown to predict NMR shielding
constants with near chemical accuracy (also tested in this work
see ESI Section S3.4.1†).60 These works demonstrate that FCHL
contains the information required to accurately encode atomic
environments. Due to the similarity of these tasks, the FCHL
representation has been chosen for use in the DP5 probability
calculation (see ESI Section S2.3†).

A particular challenge in the development of the DP5 prob-
ability was determining an equation to combine individual
atomic probabilities to yield probability for the whole structure.
If any single atom is given too much inuence, a molecular
probability of one or zero will usually be assigned, whilst if there
is too much smoothing over individual atomic probabilities, the
resulting molecular probabilities will not show enough useful
variation. A number of formulae were tested during this study
Chem. Sci., 2022, 13, 3507–3518 | 3509
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Fig. 2 Schematic diagram of how the probability of observing a DFT-
NMR prediction error for an atom in a given environment is calculated
as described in the text.

Fig. 3 The GUI accompanying DP5 pictorially overlays atomic DP5
probabilities onto the molecular structure. This clearly displays regions
of the structure that are expected to be correct and conversely regions
that may require revision. This functionality will help chemists assess
and revise structure proposals. This structure revision example has
been taken from a real-world case study of an incorrectly assigned
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(see ESI Section S2.7†). Overall eqn (3) was found to yield
useful variation in molecular probabilities, whilst combining
the atomic probabilities in a mathematically meaningful
way. The inclusion of the geometric mean in eqn (3) was
found to be necessary to prevent single atoms with a very high
or low probability having too much inuence on the nal
result.

The last stage in the calculation scales the molecular prob-
ability using a Bayesian correction function to yield the nal
DP5 probability (see ESI Section S2.8†). This empirical stage of
the process ensures the DP5 probability assigned matches the
probability of the structure being correct as closely as possible.
This empirical correction function was found by rst calcu-
lating a PDF for themolecular probabilities assigned to the 5140
NMRShiDB molecules. By nding all the possible pairs of
spectra and structures in this dataset with the same number of
carbon atoms, a PDF of the molecular probabilities of incorrect
spectra-structure pairs was also generated. In this instance,
each pair was assigned a weight to ensure the mean absolute
DFT-NMR prediction error distribution of these incorrect pairs
matched that of the correct structure-spectra pairs (see ESI
Section S3.2†). Given any proposed structure must be either
correct or incorrect, by applying Bayes Theorem the DP5 prob-
ability is dened by eqn (4).
3510 | Chem. Sci., 2022, 13, 3507–3518
Pn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYn
i¼1

ð1� piÞn

s
(3)

Atomic DP5 probabilities are combined to form the molec-
ular probability Pn by eqn (3), where n is the number of atoms in
themolecule and pi is the DFT-NMR prediction error probability
for atom i

DP5 ¼ PðcorrectjPnÞ
PðincorrectjPnÞ þ PðcorrectjPnÞ (4)

The DP5 probability is calculated by applying Bayes Theorem
to the molecular probability calculated in eqn (3), where
P(correctjPn) gives the probability of a molecule being correct
given its calculated molecular probability Pn.

Calculation of the DP5 probability has been integrated into
the well-established DP4-AI workow.31 All the required calcu-
lations and analysis of NMR data can be performed automati-
cally with no user input required. DP5 can hence be integrated
into pre-existing automatic reaction/characterisation work-
ows. DP5 analysis can also be performed on single molecules
with the GUI. This GUI can be used to launch calculations,
analyse NMR assignments made by NMR-AI and also to inves-
tigate the DP5 statistics. The GUI visually displays the atomic
probabilities, helping the chemist identify potential regions of
the molecule that may be incorrect and determine possible
modications (Fig. 3).
molecule in the literature (see Results).

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Results

A major challenge in the development of DP5 involved con-
structing a method to assess the efficacy of the system. As the
DP5 probability is not a physical property that can be measured,
it is not straightforward to compare the DP5 probability
assigned to a molecule with an experimental value. In this study
two rigorous evaluation methods were devised to assess and
improve the real-world effectiveness of the DP5 probability.
Fig. 4 Schematic diagram of cross validation analysis used to evaluate
molecules from the NMRShiftDB training set with the same number of c
imental spectra. (B) These pairs are separated into correct pairs, where th
the molecule has been paired with a different spectrum. All incorrect pa
incorrect pairs are assigned sampling weights to force the MAE distribut
leads to an expectation number of�5330 incorrect combinations. All DP5
(see ESI Section S3.2†).

© 2022 The Author(s). Published by the Royal Society of Chemistry
The database of 5140 organic molecules from NMRShiDB
was used in comprehensive leave-one-out style cross validation
study summarised in Fig. 4 (see ESI 3.2†). In this study DP5
analysis of correct and incorrect proposed candidate structures
was simulated by permuting the experimental data between the
structures in the dataset to form correct and incorrect pairs of
structure and spectra. This analysis is particularly powerful as
negative examples could be synthesised from real world data,
avoiding more unreliable methods involving generating fake
the performance of DP5. (A) The experimental spectra of the 5140 (n)
arbon atoms are permuted to produce pairs of structures and exper-
e structure is paired to the correct spectrum and incorrect pairs where
irs with max errors <10 ppm are considered in case 1. (C) In case 2 the
ion of the incorrect pairs to approximate that of the correct pairs, this
probabilities in this study are calculated using a leave-one-out scheme

Chem. Sci., 2022, 13, 3507–3518 | 3511
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Fig. 5 Test set of real-world structure reassignment problems taken from chemical literature. In each example an incorrect structure was initially
published (S#a) which was later reassigned to the corresponding correct structure (S#b).
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experimental or calculated spectra. This analysis was used to
develop DP5 and was repeated for many different formulations
of the DP5 probability (see ESI Section S4.1†). The results for the
nal DP5 system can be seen in Fig. 4. To ensure the compu-
tational feasibility of this analysis, only a single DFT optimised
conformer was considered for each pair of structure and
spectra. Full conformational analysis here would require
signicant additional computational resources, we assume that
any subsequent decreases in accuracy in the DP5 probabilities
here will affect both the correct and incorrect pairs equally, and
hence will not change the nal conclusions sufficiently to justify
the substantial extra expense. In all other experiments struc-
tures were subject to full conformational analysis (as is stan-
dard in the nal program). The nal DP5 methodology was then
evaluated against a series of thirteen real world structure
3512 | Chem. Sci., 2022, 13, 3507–3518
reassignment problems from the literature, molecules S1a–
S13b presented in Fig. 5. The results of this study are shown in
Fig. 6. As the nal and most subtle test, the DP5 probability was
evaluated against the same dataset of 42 relative stereochem-
istry problems used to evaluate DP4-AI.31 With an average of
3.49 stereocentres per molecule and a diverse range of natural-
product-like carbon skeletons, this dataset provides rigorous
evaluation of DP5 for many real world applications. The results
of this analysis are displayed in Fig. 7.
Discussion

Results from the combinatorial analysis of the 5140 molecules
from NMRShidb are presented in Fig. 4. In case 1, all incorrect
pairs of structure and spectra with maximum errors <10 ppm
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 (Top) DP5 probabilities calculated for the thirteen incorrectly
published structures and corresponding revised structures. DP5
assigns much greater confidence to the revised structures and also
displays the three cases where both the initially proposed and revised
structures are equally improbable. (Bottom) DP4 probabilities calcu-
lated for the same thirteen examples. These results show how the DP5
probability can be used to test the reliability of a DP4 calculation, as
only DP5 can discern if any of the structure proposals are likely to be
correct.
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are considered equally. This represents the situation where an
experienced chemist should be able to accurately and reliably
predict whether a chemically reasonable proposed structure is
likely to be correct or incorrect based on the DFT-NMR predic-
tion errors alone. There is very little overlap between the DP5
probability distributions for the correct and incorrect structure
proposals, the modal DP5 probability for correct structures
being the maximum possible value (see ESI Section S2.8†). The
incorrect structures display the opposite pattern, with the
modal value at close to zero. This result highlights the DP5
probability's ability to differentiate reliably between correct and
incorrect structures using DFT prediction errors as well as an
experienced chemist in situations where the incorrect and
correct structures are both structurally dissimilar and produce
very different spectra. When paired this way, the correct and
incorrect pairs show different MAE distributions, with the
incorrect pairs displaying a larger modal MAE and a greater
variance. The DP5 probability would be even more useful if it
could reliably differentiate incorrect structure proposals
© 2022 The Author(s). Published by the Royal Society of Chemistry
following the same MAE distributions as the correct structures.
This is tested in Fig. 4, case 2. The incorrect pairs are assigned
weights to ensure that they follow the same MAE distribution as
the correct pairs (see ESI Section S3.2†). This gives an expecta-
tion number of about 5330 incorrect structure proposals with
a mean error of <2 ppm. This mean DFT error is same as that of
the correct structures, and hence the correct and incorrect
structures now produce spectra that not only very similar to
each other but are also oen within DFT error of each other.
This represents the radically more challenging situation where
the correct and incorrect structure proposals have signicantly
different structures but are practically indistinguishable by
their DFT prediction errors. In this situation an expert chemist
would have signicant difficulty deciding whether a proposed
structure is correct or incorrect, and in some cases this may be
impossible without collecting additional information. The
results of this study are particularly exciting, as despite this test
proving to be more demanding, the DP5 probability is still able
to correctly differentiate many correct and incorrect structures.
This is shown by the DP5 probability frequency distributions,
with the correct pairs maintaining a strong peak at the
maximum possible value and the incorrect pairs having
signicant density towards zero. This shows that DP5 will
typically assign lower probabilities to incorrect structures even
when they display similar spectra to the correct structure. It is
able to do this because the internal statistical model takes into
account the structure of the proposal, which is not possible in
traditional error analysis.

A very interesting feature that these results illuminate is the
value of the maximum possible DP5 probability. This value is
dependent on many factors including, the dataset of atomic
environments, the atomic representation chosen, and, most
notably, the inherent uncertainty in the DFT NMR predictions.
Using this state-of-the-art and highly-optimised set of condi-
tions, DFT NMR predictions still have a MAE of 1.57 ppm. As
a result, even if a proposed structure is correct, the DP5 prob-
ability has to take into account the possible variance in NMR
predictions and reect this uncertainty. Therefore, when using
this set of DFT conditions, the user can never be more than 72%
condent that a structure is correct using one dimensional DFT
NMR predictions alone, this important functionality has
previously been missing from other structure validation
systems. This value acts as a metric for assessing the accuracy of
DFT NMR calculations and the reliability of the DP5 calcula-
tions. We expect that the use of even larger databases and even
higher levels of theory will raise this limit. Equivalently, this can
be interpreted as acknowledging that an incorrect structure
could possibly produce a set of errors equally or more
convincing than the correct structure, just as two molecules
may produce similar experimental spectra. However, this is
seldom a problem in organic chemistry as in most real-world
applications, there are additional constraints on the potential
structures that need to be considered. However, one can
sometimes be 100% condent that a structure is incorrect. For
example, in robot-controlled syntheses, the particular sequence
of reactions is known limiting the potential products. In most
cases, a DP5 probability of 73%, combined with this additional
Chem. Sci., 2022, 13, 3507–3518 | 3513
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Fig. 7 Results of DP5 (top) and DP4 (bottom) calculations on a dataset of 42 challenging real world stereochemistry elucidation examples (see
ESI Section 5.1† for structures). In both plots probabilities calculated for each diastereomer are stacked in the same order with matching colours,
the correct diastereomer is always represented by the blue bar at the bottom of the stack. The checkmarks above each plot indicate molecules
correctly assigned by each program. The DP5 probabilities have been divided by the number of diastereomers for eachmolecule, this ensures the
total sum of these probabilities is within the 0–1 range (see ESI Section 5.1† for unnormalized results). These results show the two systems display
similar stereochemistry elucidation performance, DP4 assigns 19 molecules correctly, whilst DP5 assigns 16 correctly, the probabilities of
assigning as many molecules in this dataset correctly by chance are �0.0001 and �0.01 respectively. Both DP5 and DP4 probabilities are based
only on 13C NMR data.
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data, will give the chemist much higher levels of certainty their
structure is correct. In cases where multiple structures give high
DP5 probabilities for the same spectra, this is a good indication
of where DP4 can be applied in conjunction with DP5 to give
even more accurate relative probabilities.

To further test the efficacy of DP5 analysis, the system was
evaluated against thirteen real-world examples of structures
originally incorrectly published in the literature and later
reassigned, these structures are presented in Fig. 5.1,58,61–65 The
results of this study are striking and are presented in Fig. 6. In
all cases (except S13) the DP5 probabilities of the incorrect
structures are equal to or close to zero. This illustrates that DP5
can reliably pick out structures that are likely to be incorrect,
and will suggest to the user in these cases that the proposed
structures may require revision. On the other hand, DP5 typi-
cally assigns probabilities close to the maximum to the correct
structures. This will inform the user these structures are likely
to be correct. There are three examples S2, S8 and S9 where the
DP5 probabilities of the correct and incorrect structure are both
low. This result is not surprising and does not show a weakness,
but rather a distinct advantage of the DP5 probability over DP4.
Being a single structure probability, DP5 is questioning the
initial structure and the revision independently, if both
3514 | Chem. Sci., 2022, 13, 3507–3518
structures are improbable DP5 can assign low probabilities to
both. In these situations, when all the candidate structures are
unlikely, DP4 probabilities must still sum to one and DP4 will
typically randomly show overcondence in one of the struc-
tures. This behaviour was clearly displayed when the analysis
was repeated using DP4. The low DP5 probabilities for S8, and
S9, suggest DP4 may have also assigned these structures
correctly by chance. These results highlight the consequences of
the underlying assumptions of the DP4 methodology. For DP4
probabilities to be reliable, the correct structure must be
present in the list of candidates. When this is true, DP4 is oen
more accurate than DP5 as it is more sensitive to slight differ-
ences in NMR spectra and as more information is available
within the calculation. This makes DP4 the perfect system when
the correct structure is guaranteed to be in the list of proposals.
However, in cases where none of the candidate structures may
be correct, only the DP5 probability can reect this and can be
calculated to assess the reliability of the DP4 calculation.

By analysing the DFT-prediction errors observed for these
examples (see ESI Section 7†), we can gain insight into how the
DP5 probabilities have been assigned. In examples such as S3
and S4, the correct structures show signicantly smaller errors
than the incorrect structures. In these situations a trained
© 2022 The Author(s). Published by the Royal Society of Chemistry
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chemist would be able to distinguish these structures using the
DFT-NMR prediction errors. These results show DP5 also reli-
ably assigns probabilities to these structures conrming the
ndings of the rst analysis of the molecules from NMRShidb.
In examples such as S5 and S8, both the correct and incorrect
structures display a number of atoms with large errors. In these
cases, analysis of the DFT errors may allow a chemist to quali-
tatively decide which structure they think is correct. However,
previous work in this eld has shown that large errors occur
frequently in correct structures, and as a result statistical
distributions with wide tails must be used to describe DFT-NMR
prediction errors accurately.12,55 In addition, it is also very well
known that the shapes of the DFT-NMR prediction error
distributions vary in complex ways with the structure of the
atomic environment.55,66 As a result, it is oen difficult to draw
accurate and reliable conclusions about structure proposals
based on the sizes of the prediction errors alone. In contrast,
DP5 quantitatively analyses the DFT-NMR prediction errors
whilst taking into account how the underlying distribution will
be affected by the structure of the atomic environment in
question. This behaviour is clearly displayed in the atomic
probabilities calculated for these examples, atoms with larger
errors sometimes display lower probabilities than those with
smaller errors, and vice versa (see ESI Section 7†). Finally, by
utilising eqn (3) and (4) to combine the atomic probabilities, the
DP5 probability reliably reects the overall probability for the
whole molecule in a way a simple error analysis cannot.

S2 is an interesting example and highlights another useful
property of the DP5 probability. In the original interpretation of
the NMR spectrum of S2, a peak was missed leading to a large
difference between the experimental NMR spectrum and the
DFT predicated spectrum for this molecule. DP4 is unable to
detect this error and a probability of 100% to the incorrect
molecule. DP5 on the other hand, when utilising this incorrect
NMR assignment, gives very low condences to both structures.
This shows DP5 does not only detect errors in structures, but as
it is calculating the probability a spectrum corresponds to
a structure, it may also suggest whether an error has been made
in the NMR interpretation. If the missing peak is included in
the NMR analysis, the DP5 probability of the correct structure
rises to 21.6% whilst the probability of the incorrect structure
remains at 0%, again displaying the usefulness of DP5.

S13 is the only example assigned incorrectly by DP5 and
should be considered in more detail. In this case the predicted
spectrum of the correct structure is signicantly more different
to the observed spectrum than that of the incorrect structure.
This is most likely due to the large quantity of Br atoms in the
correct structure decreasing the accuracy of the DFT calcula-
tions. This emphasises that DP5 should strictly be interpreted
as the probability of a collection of NMR-DFT prediction errors
being observed for a given structure. In this case, given the DFT
results, the incorrect structure is a better t for the observed
spectrum and thus is assigned a higher DP5 probability.

These results demonstrate some key behaviours of the DP5
probability and in addition conrm with real world examples
the conclusions made during the analysis of the NMRShidb
molecules. These results also suggest utilising DP5 analysis may
© 2022 The Author(s). Published by the Royal Society of Chemistry
have prevented these incorrectly assigned structures from being
published.

To conrm the nding in the second stage of the analysis of
the NMRShidb molecules that DP5 can reliably differentiate
correct and incorrect structure proposals indistinguishable by
their errors, DP5 was evaluated against a set of 42 real world
relative stereochemistry elucidation problems originally used to
test DP4-AI (see ESI Section 5.1†).31

Relative stereochemistry elucidation is a particular challenge
as the average difference between spectra of diastereomers (�1
to 2 ppm) is similar to the average error in state-of-the-art DFT
calculations. As in the second stage of the analysis of the
molecules from NMRShidb, this results in diastereomers
being extremely challenging to distinguish even by an expert
chemist using traditional analysis with the DFT errors alone.
This test is signicantly different to those already presented. In
the previous examples, a single structure is proposed for
a single spectra. In contrast, when resolving relative stereo-
chemistry, multiple candidate structures (diastereomers) are
proposed for the same spectra and the correct structure is
assumed to be one of the candidates. This is the situation for
which DP4 was designed; DP5 does not make this assumption.
Despite this, Fig. 7 shows the performance of DP5 and DP4 is
similar in this regime: DP4 assigns 19molecules correctly whilst
DP5 assigns 16 correctly, the probabilities of assigning as many
molecules in this dataset correctly by chance are �0.0001 and
�0.01 respectively, showing the signicance of these results.
Interestingly, whilst the number of molecules correctly assigned
by the two systems is very similar, the behaviours of the two
systems are distinct. DP5 typically assigns similar probabilities
to all of the diastereomers, whilst DP4 oen shows greater
condence in a smaller number. These behaviours clearly
reect the questions DP5 and DP4 have been designed to
answer. DP5 is individually comparing each diastereomer to
chemical space. DP5 assigns similar probabilities to diastereo-
mers as they are typically more similar to each other than they
are to other molecules across chemical space. This can be seen
when comparing the MAEs between spectra of random mole-
cules, �50 to 100 ppm with those seen for diastereomers,
typically�1 to 2 ppm. In contrast, DP4 is directly comparing the
diastereomers against each other, leading to a greater variation
in the probabilities. This is oen benecial for DP4 as it always
assumes the correct structure is in the list of proposals, whilst
DP5 does not. These results again highlight the DP5 gives reli-
able overall probabilities without this assumption, while DP4
shows additional sensitivity based on this assumption. In the
second stage of the analysis of the molecules from NMRShidb,
DP5 was shown to typically assign much lower probabilities to
incorrect structure proposals than to correct structures even
when these displayed similar MAEs (�2 ppm). In contrast, in
the stereochemical examples, whilst DP5 again assigns
a signicant number of the molecules correctly, the calculated
probabilities are more similar. The key observation here is that
whilst differences between the spectra of the correct and
incorrect structures are similarly small in these two situations,
in the case of diastereomers, the structures of the proposals are
also more similar. Therefore DP5 should be expected to assign
Chem. Sci., 2022, 13, 3507–3518 | 3515
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similar probabilities to diastereomers. This illustrates a power-
ful behaviour of DP5, as the proposals become more similar to
each other in structure, the probabilities DP5 assigns also
become more similar. This behaviour is more useful than the
alternative of assigning a probability of 1.0 to correct structure
proposals and zero to everything else, as this allows the user to
assess if their proposals are more or less similar to the true
structure. This also clearly demonstrates that DP5 probability
can be interpreted as a probability. If two structures are very
similar and yield similar spectra, their probabilities of being
correct when considering DFT-prediction errors only should
necessarily be similar. In certain situations the reliability of the
DP4 probability can be further increased, for example when the
user has developed a custom statistical model for working with
a particular class of molecules or when multiple sets of spectral
data are available.

These results also demonstrate how DP4 and DP5 can and
should be used together in cases where the user knows their
proposal has multiple stereocentres. In examples: JB5, OD1,
NL1B, NL2A and NL2B, where the DP5 probabilities for all the
diastereomers are low (the total height of each bar in DP5
results in Fig. 7 can be interpreted as the average condence the
diastereomers) this suggests that the DP4 probabilities are
likely to be less reliable. There are a number of reasons why the
DP5 probability may be low in this way, for example, the correct
structure may be missing from the list, there may be a problem
with the NMR assignment or there may be an impurity in the
spectrum. The results of this test are very exciting and the
application of the DP5 probability in situations with multiple
structure proposals is now being more thoroughly explored.

These examples show how DP5 can serve as a valuable tool
whenever a new molecule is made, increasing condence when
proposed structures are correct, highlighting cases where they
are not and also playing a stern jury when an improbable but
correct structure has been proposed.

Conclusions

In conclusion, we have developed a new measure to quantify
molecular structural uncertainty, the DP5 probability. This
work represents a leap forward in quantication of structural
uncertainty as instead of a comparative dimensionless param-
eter, DP5 quanties the probability of a structure being correct.
This system was rigorously evaluated by a cross validation study
and it was found that DP5 could perform as well as a human in
classifying correct and incorrect structure proposals and in
some cases could classify structures indistinguishable to
a chemist. DP5 was evaluated against thirteen real-world
examples of structures that were incorrectly published and
subsequently revised in the literature. In all these challenging
cases, DP5 expressed the maximum concern for the incorrect
structures and was on average 41% more condent in the
revised structures. DP5 was nally evaluated against 42 real
world stereochemistry elucidation examples, displaying almost
equal performance to DP4. The DP5 probability can be calcu-
lated fully automatically and so should nd wide applications in
uses cases such as high throughput reaction screening,
3516 | Chem. Sci., 2022, 13, 3507–3518
automated chemical synthesis and drug discovery. In addition,
DP5 may be run on a single molecule basis and the results
explored utilizing the GUI, helping to guide the development of
complex syntheses. This work also suggests how DP5 may be
developed to help further to accelerate chemical discovery. The
DP5 probability has been evaluated here with 13C NMR data,
DP5 is currently being extend to utilise different types of spec-
tral data, and a DFT free version of DP5 is also being explored.
In addition, utilizing DP5 alongside generative models and
other machine learning methods to automatically guide struc-
ture determination is an attractive possibility. The DP5 system
is available as open-source soware at https://github.com/
Goodman-lab/DP5.
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