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A modular approach to underexplored, unsymmetrical [1]benzothieno[3,2-b][1]benzothiophene (BTBT)

scaffolds delivers a library of BTBT materials from readily available coupling partners by combining

a transition-metal free Pummerer CH–CH-type cross-coupling and a Newman–Kwart reaction. This

effective approach to unsymmetrical BTBT materials has allowed their properties to be studied. In

particular, tuning the functional groups on the BTBT scaffold allows the solid-state assembly and

molecular orbital energy levels to be modulated. Investigation of the charge transport properties of

BTBT-containing small-molecule:polymer blends revealed the importance of molecular ordering during

phase segregation and matching the highest occupied molecular orbital energy level with that of the

semiconducting polymer binder, polyindacenodithiophene-benzothiadiazole (PIDTBT). The hole

mobilities extracted from transistors fabricated using blends of PIDTBT with phenyl or methoxy

functionalized unsymmetrical BTBTs were double those measured for devices fabricated using pristine

PIDTBT. This study underscores the value of the synthetic methodology in providing a platform from

which to study structure–property relationships in an underrepresented family of unsymmetrical BTBT

molecular semiconductors.
Introduction

Organic semiconductors (OSCs) are essential active components
in a wide range of next-generation electronic and energy devices
including eld-effect transistors,1 solar energy convertors,2 and
chemical/bio sensors.3 The charge transport in OSCs is strongly
governed by their molecular organization in the solid-state (i.e.
thin-lm structure) and their electronic properties. In general,
these properties can be tuned through molecular design of the
OSC architecture (e.g. side-chain engineering, conjugated back-
bone structure),4 conjugation break spacers,5 and/or the type of
thin-lm deposition technique.6 Among the different OSCs,
conjugated [1]benzothieno[3,2-b][1]benzothiophene (BTBT) scaf-
folds have been extensively used as a platform for the
nchester, Oxford Road, Manchester, M13

er.ac.uk; david.j.procter@manchester.ac.

niversity of Manchester, Oxford Road,

tion (ESI) available. See DOI:

the Royal Society of Chemistry
construction of high-performing small-molecule semi-
conductors.7 Their tendency to pack into highly ordered struc-
tures during lm formation oen results in favorable charge
Scheme 1 (A) Comparison of symmetrical and unsymmetrical BTBT
compounds. (B) This work: the synthesis and properties of underex-
plored unsymmetrical BTBT compounds. OSC ¼ organic
semiconductor.
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(hole) transport in transistors.8 Most studies have investigated
the packing behavior of symmetrical 2,7-functionalized BTBTs
and the relationship between transistor properties and variations
in length (odd-even effect),9 functional end-groups on the
aliphatic side-chains, and bulky substituent groups (Scheme
1A).10 A prototypical example is the widely used 2,7-dioctyl-BTBT
(C8-BTBT) which has reported some of the highest hole mobil-
ities (mHole); above 10 cm

2 V�1 s�1 from solution-processedOFETs
as single-crystals, binary blends with polymer insulators (e.g.
polystyrene),11 and ternary blends with a polymer semiconductor
and various p-dopants.12

Unsymmetrical BTBT compounds have the potential to
outperform symmetrical BTBTs; for example, Hanna and
coworkers have reported mobilities as high as 14.7 cm2 V�1 s�1

for a liquid crystalline 2-decyl-7-phenyl-BTBT.13 Despite these
promising results, the investigation of unsymmetrical BTBT
derivatives lags behind that of their symmetrical counterparts
(Scheme 1A).14 This is in part due to a lack of efficient methods
for their synthesis. For example, most routes towards unsym-
metrical BTBTs are limited in scope and/or use transition
metals during the nal step of the synthesis – leading to
metallic impurities that are known to affect the performance of
organic materials.15,16 As there are few general approaches for
the synthesis of unsymmetrical BTBTs,17 we considered
a modular synthesis, less reliant on the use of transition metals,
that would grant access to a variety of compounds and allow
facile exploration of their material properties (Scheme 1B).

Here we describe a versatile, modular synthesis of unsym-
metrical BTBT compounds (Scheme 1B). Key to our approach is
the application of a transition-metal free Pummerer CH–CH-
type cross-coupling in conjunction with a Newman–Kwart
rearrangement. Exploiting the new approach, we investigated
the material properties of a selected series of unsymmetrical
BTBT derivatives containing a decane aliphatic side chain at the
Scheme 2 Pummerer CH–CH-type couplings of benzothiophene S-oxi
(1.5 equiv.), THF (0.1 M), �40 �C to RT, then BF3$OEt2 (0.2 equiv.), CH2C

422 | Chem. Sci., 2022, 13, 421–429
C2 position (required for solubility), and a variety of electron
donating and electron withdrawing groups at the C7 position.
Tuning the substituent at the C7 position inuenced the elec-
tronic properties and solid-state assembly of the BTBTs. The
BTBT molecules were blended with a polymer semiconductor
binder, PIDTBT to aid processing into thin-lms in small-
molecule:polymer (S-M:polymer) blend transistors. Prelimi-
nary investigations into the charge transport properties high-
lighted the importance of molecular ordering of the BTBT
molecules during phase segregation and matching of the
highest occupied molecular orbital (HOMO) level with that of
the polymer semiconductor binder. Crucially, hole mobilities
extracted from devices fabricated using phenyl and methoxy
functionalized unsymmetrical BTBT molecules blended with
PIDTBT were higher than those extracted from comparable
devices fabricated using pristine PIDTBT or the symmetrical C8-
BTBT in a S-M:polymer blend transistor.
Results and discussion

We have recently developed Pummerer CH–CH-type cross-
coupling processes18 that exploit activation of the benzothio-
phene partner by convenient S-oxidation and deliver function-
alized benzothiophenes.19 We reasoned that this new metal-free
cross-coupling process could provide modular access to
underexplored BTBT materials. Our investigation began with
the metal-free coupling of benzothiophenes, activated as their
S-oxides, 1 with phenols 2. Accordingly, cross-coupled products
3 bearing various functionalities were efficiently prepared
(Scheme 2). Notably, bromo-substituents were tolerated on the
biaryl scaffold (3ac, 3bb–3bg), thus allowing further trans-
formations. Electron-withdrawing (3bg, 3eg) and electron-
donating (3bf, 3ef, 3eh) substituents were compatible with the
des and phenols. Reaction conditions: 1 (1.0 equiv.), 2 (1.5 equiv.), TFAA
l2, 0.1 M, RT.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Scheme 3 (A) Scope of the metal-free synthesis of BTBT materials by Newman–Kwart reaction of coupling products 3, followed by cyclization.
Yields are of the overall process from 3 to 4. (B) Parallel synthesis of 4eb from 1e and 2b, and 1c and 2i. aIsolated yield for the overall process from
1 and 2. Reaction conditions for 3 to 5: 3 (1.0 equiv.), Me2NC(S)Cl (2.0 equiv.), NaH (3.0 equiv.), DMF (0.1 M), RT$Ph2O (0.1 M), reflux. Reaction
conditions for 5 to 4: 5 (1 equiv.), KOMe (2.0 equiv.), MeOH/PhMe (1 : 1, 0.05 M), 120 �C, then TsOH$H2O (8.0 equiv.), 120 �C.
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process, thus providing an opportunity to tune the electronic
properties of the target BTBT materials.

The conversion of the coupling products 3 into the desired
BTBT products 4 involved a Newmann–Kwart reaction, to give
intermediates 5,20 followed by cyclization (Scheme 3A). While
this method can deliver symmetrical products (e.g. 4aa), we
focused on preparing more elusive unsymmetrical BTBT mate-
rials. The position of the substituents around the BTBT core was
easily altered by the choice of phenol coupling partner 2; for
example, regioisomers 4ab and 4ae were obtained using the
same synthetic route but selecting either meta- or para-
substituted phenol partners. As a variety of substituted benzo-
thiophene and phenol partners are commercially available, this
exibility will prove useful when planning the synthesis of
target unsymmetrical BTBT materials. The adaptability of our
approach was also demonstrated in the synthesis of 4eb
(Scheme 3B). This BTBT material was prepared by parallel
routes from either benzothiophene S-oxide 1e and phenol 2b, or
1c and 2i (via 3eb or 3eb0 respectively, see Scheme 2). We were
particularly attracted to the synthesis of BTBT 4eb as it has
displayed high charge mobility (14.7 cm2 V�1 s�1).13 Therefore,
we prepared a range of related derivatives (4ef–4eh) to investi-
gate how substituents affect the properties of these unsym-
metrical materials.

With a range of new BTBT derivatives in hand, we rstly
examined the thermal properties of the selected BTBT deriva-
tives (4eb, 4ef–4eh) using differential scanning calorimetry
(DSC). As previously reported,13 4eb exhibited liquid crystal
phase transitions of SmE at 143 �C and 79 �C, and SmA at 212 �C
and 210 �C during the heating and cooling cycle, respectively
© 2022 The Author(s). Published by the Royal Society of Chemistry
(Fig. 1a). The typical smooth fan-shaped texture of the uid SmA
phase and the striated fan-like one of the so crystal SmE phase
were conrmed by polarizedmicroscopy (POM) (ESI Fig. S1†). In
contrast, 4ef, 4eg and 4eh showed typical behaviour of crystal-
line material in the DSC curves and this was supported by the
POM images. BTBT 4ef showed multiple phase transitions with
a large sharp transition enthalpy at 114 �C upon cooling from an
isotropic phase, with a second smaller peak at 107 �C; this is
most likely a 2nd polymorphic phase (Fig. 1b). On the other
hand, the DSC curves for 4eg and 4eh only show sharp melting
and crystallization peaks upon heating and cooling (Fig. 1c and
d). Next, the energy levels of the selected unsymmetrical BTBT
derivatives (4eb, 4ef–4eh) were investigated using cyclic vol-
tammetry; Fig. 1e shows the respective energy levels. The
highest occupied molecular orbital (HOMO) levels were esti-
mated from the onset of the oxidation peak (Eoxdonset) in the cyclic
voltammogram of the BTBT molecules (Fig. S2†). The HOMO
level obtained for 4eb is similar to reported values; EHOMO ¼
�5.43 eV.13 It is evident that the type of functional group at the
C7 position inuences the HOMO level of the unsymmetrical
BTBT scaffold. The electron donating ability of the –NMe2 and
–OMe groups resulted in higher HOMO levels where EHOMO ¼
�5.37 and �4.94 eV for 4ef and 4eh, respectively, while the
electron withdrawing group (–CF3) on 4eg decreases its HOMO
level to EHOMO ¼ �5.86 eV.21 The trend observed is qualitatively
conrmed by values calculated using density functional theory
(Fig. S2†).

Initial attempts at reproducing transistor performance using
adapted reported conditions for 4eb resulted in low msat ¼ 1.59
cm2 V�1 s�1, and we were unable to reproduce the reported high
Chem. Sci., 2022, 13, 421–429 | 423
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Fig. 1 Thermal and electrochemical properties of the BTBT molecules: DSC thermograms taken from 2nd heating and cooling cycle: (a) 4eb (R2

¼ Ph); (b) 4ef (R2 ¼ OMe); (c) 4eg (R2 ¼ CF3); (d) 4eh (R2 ¼ NMe2) at 5 �C min�1; (e) energy level diagram indicating HOMO levels including
PIDTBT; (f) molecular structure of the polymer semiconductor PIDTBT; (g) top-gated OFET device structure with an aluminium gate electrode,
AF2400 as the gate dielectric, and gold source-drain electrodes with a channel width and length of 1000 mm and 60 mm, respectively; (h) box
and whiskers plot comparing the saturated mobility (msat) from measured devices containing pristine PIDTBT and blends of 4e(b,f,g,h):PIDTBT at
a ratio of 1 : 9, 1 : 3, 1 : 1; atomic force microscopy (AFM) topography images of the 4e(b,f,g,h):PIDTBT blend films at 1 : 3 ratio processed from
tetralin:chlorobenzene (i–l). The white scale bar indicates a length of 2 mm; grazing incidence X-ray diffraction of thin films based on individual
BTBT derivatives (top) and as a blend with PIDTBT (bottom): (m) 4eb; (n) 4ef; (o) 4eg; (p) 4eh.
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mobilities of 14.7 cm2 V�1 s�1 on bottom-gate/top-contact
transistors (Si/SiO2/4eb/Au).13 Fig. S3† shows the relevant tran-
sistor characteristics. Furthermore, solution processing the
remaining BTBT derivatives resulted in largely non-uniform
lms (Fig. S4†) that led to inconsistent transistor behaviour.
To improve the lm forming properties of the unsymmetrical
BTBT derivatives, and to investigate their charge-carrier prop-
erties, a polymer semiconductor PIDTBT was used as a binder
(Fig. 1f). This approach is based on recent reports of S-
M:polymer blend transistors of symmetrical C8-BTBT:PIDTBT
that exploit the highly ordered nature of small-molecules for
efficient charge transport and the superior lm forming prop-
erties of the polymer binder.12,22 Top-gated OFETs using poly
[4,5-diuoro-2,2bis(triuoromethyl)-1,3-dioxole-co-tetrauoro-
ethylene] (Teon AF2400) as a dielectric were fabricated (Fig. 1g)
to assess the charge transport properties of OSC blends of
4e(b,f,g,h):PIDTBT. We performed preliminary optimization of
the blend ratio at 1 : 9, 1 : 3, and 1 : 1. As controls, transistors
424 | Chem. Sci., 2022, 13, 421–429
based on pristine PIDTBT and its blend with the prototypical
symmetrical C8-BTBT were fabricated, and their performance
evaluated. The BTBT molecules and PIDTBT were dissolved in
tetralin and chlorobenzene separately before mixing into
a blend solution at the respective ratios for thin-lm processing.
The calculated mobility values msat for all devices were taken in
the saturation regime at VGS ¼ �60 V from the corresponding
mobility dependence on applied gate voltage plot extracted
from the transfer and output characteristics (Fig. S5–S10†). The
overall transistor parameters (Vth and Ion/Ioff) are summarized
in Table S1 (see the ESI† for further details of device
fabrication).

A summary of the msat values extracted from devices con-
taining pristine PIDTBT and 4e(b,f,g,h):PIDTBT are shown in
Fig. 1h, and the mobility values for C8-BTBT:PIDTBT are high-
lighted in Table S1.† In general, all devices for blends at higher
amounts of the unsymmetrical and symmetrical BTBT mole-
cules – i.e. 1 : 1 ratio – had the lowest mobility (<0.8 cm2 V�1 s�1)
© 2022 The Author(s). Published by the Royal Society of Chemistry
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(Table S1†). A similar msat trend in the blend ratio was also re-
ported in earlier work for C8-BTBT:PIDTBT.12e Amongst the
unsymmetrical BTBT molecules, blends using 4eh gave the
lowest mobilities (<0.08 cm2 V�1 s�1) across all ratios. On the
other hand, blends with 4eb and 4ef at a ratio of 1 : 3 and 1 : 9
achieved the highest mobility of 1.89� 0.3 cm2 V�1 s�1 and 1.87
� 0.2 cm2 V�1 s�1, respectively. Devices from pristine PIDTBT
obtained mobilities of 1.02 � 0.1 cm2 V�1 s�1 which indicate
that any improvements are due to the presence of unsymmet-
rical BTBT molecules in the OSC blends. Furthermore, the
mobility of the best performing unsymmetrical BTBT blends
were higher than comparable devices containing the symmet-
rical C8-BTBT which obtained a mobility of 1.19 � 0.3 cm2 V�1

s�1 at a 1 : 3 blend ratio (Table S1†). Substantial improvements
in the measured mobilities could be achieved by the use of
secondary dopants in ternary blend devices, an approach that
has been previously reported for blends of PIDTBT with the
symmetrical C8-BTBT semiconductor.12,22

To gain insights into the differences in device performance,
atomic force microscopy (AFM) topography analysis (Fig. 1i–l)
and grazing incidence X-ray diffraction (GIXD) experiments
(Fig. 1m–p) were performed. AFM analysis showed aggregates
forming on the top-layer of the blend lm with varying
morphologies depending on the BTBT molecule. The size and
shape of these aggregates are consistent with the morphology of
pristine BTBT lms and are distinct from the amorphous
topography of pristine PIDTBT (Fig. S11†). This indicates that
the BTBTmolecules vertically phase segregate from the polymer
during thin-lm formation. As highlighted by reports on C8-
BTBT:PIDTBT, a vertically phase separated blend morphology
consisting of highly ordered domains of the small-molecules on
the upper surface of the lm, interfacing with the dielectric
layer (i.e. the conduction channel) in a top-gate device, is crucial
for efficient charge transport.12,22

AFM images of 4eb/4ef:PIDTBT (Fig. 1i and j) show a con-
nected terrace-like morphology which is in line with previous
reports on unsymmetrical BTBT molecules.13,15d GIXD of 4eb/
4ef:PIDTBT lms revealed crystalline peaks at 2q/q ¼ 3.3� and
4.9� for 4eb, and 2q/q¼ 3.6� and 5.4� for 4ef which were similarly
observed in the diffraction of their respective pristine lms
(Fig. 1k and l). This indicates that the BTBT molecules form
ordered connected domains in the blend. On the other hand, the
BTBT molecules in lms of 4eg/4eh:PIDTBT (Fig. 1o and p) lead
to large disconnected aggregates of the BTBT molecules. Here,
the GIXD for 4eg has the same peak at 2q/q ¼ 3.5� in the pristine
and blend lms indicating that the aggregates of 4eg are ordered
but disconnected, while no clear peaks were observed in the
diffraction of blends with 4eh suggesting the formation of large,
disordered aggregates. Based on this observation, the higher msat
values in 4eb/4ef:PIDTBT devices are a result of better charge
transport within the connected, ordered domains of the BTBT
molecules on the top surface of the blend lms. In addition, the
HOMO levels of 4eb and 4ef closely match that of PIDTBT
(Fig. 1e); this is crucial in minimizing energetic disorder for hole
transport between the crystalline domains of small-molecules
and the amorphous polymer.12e,23
© 2022 The Author(s). Published by the Royal Society of Chemistry
Conclusions

In summary, we have developed a modular synthetic approach
to the unsymmetrical BTBT scaffold; an underexplored archi-
tecture in molecular semiconductors. The BTBT materials are
prepared from readily available partners using a metal-free,
Pummerer CH–CH-type cross-coupling followed by a New-
man–Kwart reaction of the coupling products. Access to
unsymmetric BTBT structures permitted the study of their
material properties; varying the functional groups attached to
the conjugated core of the BTBT scaffold modulated the
molecular orbital energy levels and self-assembly properties.
Preliminary investigation into the structure–property relation-
ships of the unsymmetrical BTBT molecules in S-M:polymer
blend transistors highlighted the inuence of molecular struc-
ture on the charge transport ability in thin-lms. We showed
that devices fabricated using the phenyl and methoxy func-
tionalized unsymmetrical BTBT molecules show higher hole
mobilities than comparable devices fabricated using pristine
PIDTBT or blends with the symmetrical C8-BTBT. Improved
access to unsymmetrical BTBTmolecular semiconductors using
a modular synthetic approach provides a foundation for future
studies targeting improved transistor performance, for
example, through the use of secondary dopants such as uori-
nated fullerene derivative, C60F48 or molecular Lewis acids,
B(C6F5)3 and [Zn(C6F5)2] in ternary blends that have been widely
studied in PIDTBT blends containing the symmetrical
C8-BTBT.12,22

Data availability

Crystallographic data for 4ef has been deposited at the CCDC
under 2103832.
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ACYT) Mexico Scholarship (478743) and R. U. K. an EPSRC
Doctoral Training Program Health Care Technology Student-
ship. We thank the University of Manchester (Lectureship to G.
J. P. P.) for their generous support.

Notes and references

1 A. F. Paterson, S. Singh, K. J. Fallon, T. Hodsden, Y. Han,
B. C. Schroeder, H. Bronstein, M. Heeney, I. McCulloch
and T. D. Anthopoulos, Recent Progress in High-Mobility
Organic Transistors: A Reality Check, Adv. Mater., 2018, 30,
1801079.

2 (a) O. Inganäs, Organic Photovoltaics over Three Decades,
Adv. Mater., 2018, 30, 1800388; (b) L. Yao, A. Rahmanudin,
N. Guijarro and K. Sivula, Organic Semiconductor Based
Devices for Solar Water Splitting, Adv. Energy Mater., 2018,
8, 1802585.
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