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of pair interactions†

Fabian Jirasek, *a Robert Bamler,b Sophie Fellenz,c Michael Bortz,d Marius Kloft,c

Stephan Mandt‡e and Hans Hasse‡a

Predictive models of thermodynamic properties of mixtures are paramount in chemical engineering and

chemistry. Classical thermodynamic models are successful in generalizing over (continuous) conditions

like temperature and concentration. On the other hand, matrix completion methods (MCMs) from

machine learning successfully generalize over (discrete) binary systems; these MCMs can make

predictions without any data for a given binary system by implicitly learning commonalities across

systems. In the present work, we combine the strengths from both worlds in a hybrid approach. The

underlying idea is to predict the pair-interaction energies, as they are used in basically all physical

models of liquid mixtures, by an MCM. As an example, we embed an MCM into UNIQUAC, a widely-used

physical model for the Gibbs excess energy. We train the resulting hybrid model in a Bayesian machine-

learning framework on experimental data for activity coefficients in binary systems of 1146 components

from the Dortmund Data Bank. We thereby obtain, for the first time, a complete set of UNIQUAC

parameters for all binary systems of these components, which allows us to predict, in principle, activity

coefficients at arbitrary temperature and composition for any combination of these components, not

only for binary but also for multicomponent systems. The hybrid model even outperforms the best

available physical model for predicting activity coefficients, the modified UNIFAC (Dortmund) model.
Introduction

Information on thermodynamic properties of mixtures is of
crucial importance in chemical engineering and chemistry.
However, providing this information is hampered by a combi-
natorial problem: the number N of known components is
increasing rapidly (it is presently in the order of N ¼ 108,
counted by entries in the CAS Registry1); if only binary mixtures
are considered, the number of mixtures that can be formed
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from these components already goes with N2. Even if only
technically relevant components and their mixtures are
considered, the numbers are still extremely high. Consequently,
experimental data on thermodynamic properties are available
only for a small fraction of the relevant mixtures, especially as
the corresponding experimental investigations are tedious.
Therefore, methods for the prediction of thermodynamic
properties of mixtures are essential in practice.

The present work is focused on thermodynamic properties of
uid mixtures. Physical models for describing these properties
are generally based on the concept of pair interactions, which are
commonly described by pair-interaction energies. All types of pair
interactions in a multicomponent mixture can be investigated
by studying the pure components (for the like interactions) and
the binary subsystems (for the unlike interactions). Therefore,
physical models for thermodynamic properties of uidmixtures
are generally developed using data on pure components and
binary mixtures; based on this, they can also be used to predict
properties of multicomponent mixtures. In the application of
models of thermodynamic properties, their predictive capabil-
ities are of prime importance. To assess them, the relation of
the data used in the model development (the training data) to
the data to be predicted is important. Regarding thermody-
namic properties of mixtures, we distinguish two categories of
predictions here:
© 2022 The Author(s). Published by the Royal Society of Chemistry
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(i) Those, in which for a given system (a xed set of
components) only the conditions are changed compared to the
training data (e.g., temperature, pressure, or concentration of
the components); we refer to this as generalization over
conditions.

(ii) Those, in which the system itself is changed, i.e., was not
included in the training data; we refer to this as generalization
over systems.

While (i) involves continuous variables, (ii) is discrete. In the
nomenclature of the present paper, we follow the common
usage, which says that ‘mixture’ can have two meanings: in the
rst, it simply designates the combination of specic compo-
nents (regardless of their concentrations, e.g., ‘water + ethanol’),
in the second, also the concentrations are included in the term
(e.g., ‘water + ethanol with xwater ¼ 0.1 mol/mol’). In cases where
this ambiguity can lead to misunderstandings, we use the term
‘system’ instead of ‘mixture’ when we refer to the rst case.

The most common types of thermodynamic models of
mixtures are models of the Gibbs excess energy GE, such as
UNIQUAC2,3 or NRTL,4 and equations of state (EoS).5 These
models excel in generalizing over conditions. By virtue of the
underlying thermodynamic theory, they can also be used for
generalizing over properties, i.e., if trained on data for a specic
property, they can be used to predict a different but related
property; this is an important issue, which, however, is not in
the focus of the present work.

In their basic form, GE models and EoS are only partially
useful for generalizing over systems: for the reasons given
above, they are usually trained on data for binary systems, but
can then be used for modeling those binary systems only for
which data were available during the training. In contrast,
predictions of properties of unstudiedmulticomponent systems
with GE models and EoS oen turn out to be sufficiently accu-
rate, under the condition that the model was trained on data for
all constituent binary subsystems.6

To overcome the lack of generalization over (binary) systems,
group-contribution (GC) approaches like UNIFAC,7–9 modied
UNIFAC (Dortmund),10,11 and the Predictive Soave–Redlich–
Kwong (PSRK) EoS12,13 have been developed. They are based on
the idea that components can be split into structural groups
and, instead of considering pair interactions between compo-
nents, pair interactions between these groups are modeled. As
the number of relevant structural groups is comparatively small
(in the order of 100), the combinatorial problem described
above thereby becomes tractable. GC methods contain group-
interaction parameters that are usually trained on data for
binary systems containing the pertinent groups. They can then
be used for predicting the properties of systems for which no
data are available.

Unfortunately, the applicability of these GC methods is still
hampered by incomplete group-interaction parameter tables.
This is due to both the elaborate procedure of tting new group-
interaction parameters, and the fact that oen not enough
pertinent experimental data are available for a meaningful t.
The problems resulting from an inadequate database also lead
to poor performances of GC methods when applied to systems
with components that contain groups for which only a few
© 2022 The Author(s). Published by the Royal Society of Chemistry
training data points are available. The most prominent alter-
natives to GC methods are quantum-chemical approaches,
namely COSMO-RS.14,15 In principle, COSMO-RS enables
predictions for any system based on quantum-chemical calcu-
lations, which are, however, computationally costly and not
trivial for complex components. Furthermore, also these
methods are tuned on experimental data, but the number of
parameters is typically low and common users do not change
them.16 Compared to GCmethods, quantum-chemical methods
are oen found to be somewhat less accurate in the prediction
of thermodynamic properties.17

We have recently introduced a completely new approach for
predicting thermodynamic properties of unstudied binary
systems.18–21 This approach is based on employing matrix
completion methods (MCMs) from machine learning (ML),
where the MCMs are prominently associated with recom-
mender systems.22,23 E.g., for movie recommendations, these
methods can implicitly learn and quantify similarities among
users and similarities among movies by observing interaction
patterns (ratings or clicks) between them, allowing to predict
preference scores for unseen pairs of users and movies. In
a similar spirit, our previous work18,19 employed MCMs for
predicting activity coefficients gN

ij of solutes i in pure solvents j
at innite dilution and constant temperature, where the MCM
learns similarities among the solutes and among the solvents.
Applying the MCM approach for predicting thermodynamic
properties is based on the fact that properties of binary mixtures
at constant conditions, such as isothermal gN

ij , can be stored in
matrices, where the rows and columns represent the compo-
nents i and j that make up the mixtures. As these matrices are
only sparsely occupied by experimental data, the prediction of
the unobserved entries constitutes a matrix completion
problem. In our previous work,18,19 we employed a matrix
factorization following eqn (1):

gN
ij ¼ f(qi$bj) (1)

The value of gN
ij is thereby modeled by the dot product of two

vectors qi and bj, which contain the so-called latent features and
capture properties of the solute i and the solvent j, respectively,
and which are inferred from the sparse available data on the
mixture property gN

ij . The function f was chosen to be the
exponential function, taking into account that the gN

ij are by
denition non-negative and span a wide range of values.
Moreover, this choice is also a physical one since the excess
chemical potential mE,Nij of the solute i at innite dilution in the
solvent j depends linearly on ln gN

ij .
The basic idea behind this MCM approach is that information

on the pure components (as quantied by qi and bj) is implicitly
contained in the mixture data, i.e., in the way the components
interact with each other, which manifests itself in the observable
mixture property gNij . This information is captured by the MCM
and stored in the latent features qi and bj of the components i and
j. Using eqn (1) in the trained model, the inferred latent features
allow predicting gNij also for previously unstudied combinations i–
j. As demonstrated in our previous work,18,19 this approach even
outperforms the present state-of-the-art method for predicting
Chem. Sci., 2022, 13, 4854–4862 | 4855
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activity coefficients, namely the modied UNIFAC (Dortmund)
model,10,11 if gNij at 298 K are considered. We have also extended
the approach to modeling the dependence of gNij on the temper-
ature T, by simply exploiting the fact that this dependence can be
well described by gNij (T) ¼ Aij + Bij/T with system-specic but
temperature-independent parameters Aij and Bij in many cases.20

In the present work, we further expand the MCM approach
by combining it with the physical modeling of thermodynamic
properties of mixtures. We thereby exploit the fact that all
physical models of mixtures are based on the idea of pair
interactions, described by pair-interaction energies as critical
parameters. We propose to predict these pair-interaction ener-
gies by an MCM to obtain a new hybrid concept for the predic-
tion of properties of mixtures. The feasibility and the merits of
this widely applicable approach are demonstrated by using the
well-known GE lattice model UNIQUAC2,3 as an example.

En passant, we come back to the derivation of the UNIQUAC
equation, in which two asymmetric pair-interaction parameters
DUij s DUji were introduced instead of using one symmetric
pair-interaction energy Uij ¼ Uji as it follows from the lattice
theory. The two adjustable parameters DUij and DUji were
introduced as a workaround to get more exibility for tting
binary phase equilibrium data. We show that this workaround
is not necessary and base our considerations on the physical
symmetric interaction energies Uij ¼ Uji, explicitly including
those for the like interactions Uii.

The resulting new model, which we call ‘MCM-UNIQUAC’ in
the following, combines the capabilities of the MCM regarding
the generalization over binary systems with those of the physical
model UNIQUAC regarding the generalization over conditions. It
is a hybrid method that takes advantage of the strengths of both
worlds; in particular, it also enables predictions of properties of
multicomponent systems by virtue of the physics behind UNI-
QUAC, a feature a data-driven MCM cannot provide.
Development of MCM-UNIQUAC

The idea behind our approach is shown in Fig. 1. At its heart, an
MCM is used to predict pair-interaction energies Uij of
Fig. 1 Illustration of embedding an MCM into a physical model of mixture
to pair-interaction energies Uij. Red part: the physical model relates Uij to
Yellow part: ln gij are directly related to observable mixture properties (e
liquid equilibria (SLE)26) by thermodynamic laws.

4856 | Chem. Sci., 2022, 13, 4854–4862
a physical model of mixtures, which is UNIQUAC in the present
work. The physical model relates the pair-interaction energies
to temperature- and concentration-dependent properties of the
binary mixtures of the components i and j. This could, in
principle, be any property of interest. In the present work, we
have chosen a fundamental thermodynamic property, the
activity coefficient gij of component i in a binary mixture with
component j normalized according to Raoult's law. The activity
coefficients, in turn, are directly related to observable mixture
properties (e.g., vapor–liquid equilibria (VLE),24 liquid–liquid
equilibria (LLE),25 and solid–liquid equilibria (SLE)26) by ther-
modynamic laws. This enables training the approach on the
corresponding thermodynamic data of different types so that
many data sources are accessible. The model can be written as:

ln gij(T,xi) ¼ fUNIQUAC(T,xi,Pi,Pj,Uii,Ujj,Uij) (2)

where the function fUNIQUAC contains the UNIQUAC equation,
which is dened in eqn (S.1)–(S.7) of the ESI.† Here, T is the
temperature and xi is the mole fraction of component i in the
binary mixture. Eqn (2) contains two types of parameters: rst,
the geometric pure-component parameters Pi and Pj, which are
reported for many components (e.g., in the Dortmund Data
Bank (DDB)27) or can be readily estimated (e.g., with the
approach described in connection with the development of the
UNIFAC method7); and second, the pair-interaction energies,
where we distinguish the like interactions Uii and Ujj, which are
also pure-component parameters, and the unlike interactions
Uij (i s j), which are binary parameters. It follows from the
physical interpretation of Uij as pair-interaction energies that Uij

¼ Uji.
Furthermore, it follows from the derivation of UNIQUAC that

all model parameters are independent of temperature and
concentration. We use this assumption throughout the present
work but note that some authors work with temperature-
dependent parameters. Further, as already mentioned in the
introduction, it is common in the literature not to use the
symmetric pair-interaction energies Uij ¼ Uji as parameters, but
rather the two parameters DUij s DUji, which are calculated by:
s (here: the lattice model UNIQUAC). Blue part: application of an MCM
temperature- and concentration-dependent activity coefficients ln gij.
.g., vapor–liquid equilibria (VLE),24 liquid–liquid equilibria (LLE),25 solid–

© 2022 The Author(s). Published by the Royal Society of Chemistry
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DUij ¼ Uij � Ujj; DUji ¼ Uij � Uii (3)

The correlations between DUij and DUji dened by eqn (3) are
usually ignored and the two parameters are tted independently
for each binary system i–j under consideration, simply to
increase the exibility of the model.§ Fitting DUij and DUji

independently to data for binary systems of N $ 3 components
will, in general, lead to results that cannot be reconciled with
eqn (3), as demonstrated in detail in the ESI.† For MCM-
UNIQUAC, we only consider the truly physical pair-interaction
energies Uij.

UNIQUAC allows generalizing (i.e., interpolating and
extrapolating) over temperatures and concentrations, but not
over mixture components. Applying UNIQUAC to a mixture for
which no parameters are available requires at least some
mixture data points for determining the pair-interaction
parameters. This is a severe restriction, as experimental data
are oen unavailable, especially for mixtures. To overcome this
limitation, we introduce MCM-UNIQUAC to extend UNIQUAC
so that it can generalize over temperatures and concentrations
and over binary systems.

The proposed generalization over binary systems is achieved
by an MCM and illustrated in the central (blue) panel in Fig. 1.
We thereby model the unlike pair-interaction energies Uij as
a sum of dot products:

Uij ¼ qibj + qjbi, i s j (4)

where qi and bi as well as qj and bj are the feature vectors for the
components i and j, respectively, and the right-hand side of eqn
(4) is constructed in such a way that the physical constraint Uij ¼
Ujici,j is enforced, resulting in a symmetric matrix U of the pair-
interaction energies. Besides the feature vectors, the like pair-
interaction energies Uii and Ujj are considered as parameters of
MCM-UNIQUAC. Note that all parameters of MCM-UNIQUAC are
component-specic (Pi, Pj, qi, bi, Uii, Ujj), but they are, except for Pi
and Pj, inferred from mixture data. Aer tting these parameters,
a complete set of pair-interaction energies for all conceivable
binary combinations i–j of all considered components is obtained
from eqn (4).

MCM-UNIQUAC was trained end-to-end on a set of measured
logarithmic temperature- and concentration-dependent activity
coefficients in binary mixtures ln gij (red panel of Fig. 1). We
used data from the DDB27 here; in specic, we used ln gij

derived from binary vapor–liquid equilibrium (VLE) data using
the extended Raoult's law, cf. eqn (S.14) in the ESI,† which we
augmented with temperature-dependent data on binary activity
coefficients at innite dilution ln gNij . In total, we obtained a set
of 363 181 experimental data points for ln gij for 12 199
different binary systems i–j involving 1146 distinct components
i, j at varying concentrations and temperatures ranging from
183 K to 638 K. The considered N ¼ 1146 components result in
N(N � 1)/2 ¼ 656 085 possible different binary systems. Exper-
imental data are only available for 12 199 of these systems, i.e.,
data are available for less than 2% of all systems and, conse-
quently, only less than 2% of these systems can be modeled
© 2022 The Author(s). Published by the Royal Society of Chemistry
with UNIQUAC in the conventional way. More details on the
data set are given in the ESI.†

The systems for which data are available were divided into
three sets: 80% were used for training the model (training set),
10% were used for setting the model's hyperparameters (vali-
dation set), and 10% were used for testing the predictions (test
set). We trained our model using the probabilistic program-
ming language Stan28 and resorted to Variational Inference29–31

for performing approximate Bayesian inference. Details on the
random data split, the model training (including the source
code to run the model in Stan), and the hyperparameter selec-
tion are given in the ESI.†

Aer the training, MCM-UNIQUAC can predict temperature-
and concentration-dependent activity coefficients in any binary
and multicomponent mixture of the considered 1146 compo-
nents. The activity coefficients can, in turn, be used for pre-
dicting observable mixture properties, such as VLE or other
phase equilibria (yellow panel in Fig. 1). We demonstrate the
predictive capacity of MCM-UNIQUAC by considering the data
from the test set in the following section.

Results and discussion

The results that were obtained with MCM-UNIQUAC are shown
as bars in Fig. 2 (le), where the mean absolute error (MAE) is
reported both for the systems from the training set and those
from the test set; in Fig. S2 in the ESI,† we show the respective
results for the mean squared error (MSE). As expected, the error
metrics for the test set are larger (worse) than those for the
training set, but in both cases the overall agreement between
the results of MCM-UNIQUAC and the experimental data is
remarkable. We demonstrate this in Fig. 2 (right) by compar-
ison with the best available physical method for the prediction
of activity coefficients, the group-contribution model modied
UNIFAC (Dortmund),10,11 which is called ‘UNIFAC’ in the
following for brevity. Unfortunately, in contrast to MCM-
UNIQUAC, UNIFAC cannot be applied to all systems for which
data are available (denoted as ‘complete horizon’ in Fig. 2 (le))
because multiple group-interaction parameters are missing.
Hence, for a fair comparison of both methods, only those
subsets of the training set and of the test set for which UNIFAC
could be applied were used; this ‘UNIFAC horizon’ covers 7578
of 9759 systems from the training set and 961 of 1220 systems
from the test set.

Furthermore, as baselines, the scores obtained for the
different sets by directly tting UNIQUAC parameters to all
available data points are marked as lines in Fig. 2. We thereby
considered two variants: rst, UNIQUAC was used in the usual
manner by tting the two binary parameters DUij and DUji

individually to the data for each system i–j; this procedure is
denoted as ‘UNIQUAC (DU)’ in the following and the respective
results are shown as dotted lines in Fig. 2. Second, we tted the
symmetric pair-interaction energies Uij ¼ Uji to all data points;
this procedure is denoted as ‘UNIQUAC (U)’ in the following and
the respective results are shown as dashed lines in Fig. 2. Note
that considering the full set of 12 199 binary systems for which
experimental data are available, there are 24 398 parameters in
Chem. Sci., 2022, 13, 4854–4862 | 4857
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Fig. 2 Mean absolute error (MAE) of MCM-UNIQUAC on the training and test set (left) and comparison to UNIFAC based only on those systems
that can also be modeled with UNIFAC (right). Bars indicate the results of MCM-UNIQUAC and UNIFAC, and lines denote the baselines obtained
by directly fitting UNIQUAC pair-interaction parameters (DUij, dotted) or pair-interaction energies (Uij, dashed) to all available data points. Error
bars denote standard errors of the means.
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UNIQUAC (DU), whereas there are only 13 345 parameters in
UNIQUAC (U), of which 1146 are pure-component parameters
Uii.

Let us consider the scores of the baselines UNIQUAC (DU)
and UNIQUAC (U) rst. They simply indicate how well the data
can, in principle, be described with the physical model, i.e.,
UNIQUAC here. The rst astonishing message is that UNIQUAC
(U) works almost as well as UNIQUAC (DU), even though the
latter has almost twice as many parameters, cf. above. We have
therefore based our hybrid model MCM-UNIQUAC on the more
physical UNIQUAC (U).

Second, we observe in Fig. 2 that MCM-UNIQUAC is in
general exible enough for describing the data well, cf. the
relatively small differences between the scores of MCM-
UNIQUAC on the training set (blue bars) and the baseline
scores (lines).

Third, by comparing the scores for the test set (red bars), we
nd that MCM-UNIQUAC clearly outperforms UNIFAC in
accurately predicting ln gij in both MAE and MSE (cf. Fig. S.2 in
the ESI†). This is particularly remarkable since UNIFAC has
been tted to most of these data points, whereas no data point
from the test set was used for training or validation of MCM-
UNIQUAC. An alternative representation of the results for the
test set is shown in histogram plots in Fig. S.3 and S.4 in the
ESI,† which underpin the superior performance of MCM-
UNIQUAC compared to UNIFAC. Similar results are found by
considering COSMO-SAC-dsp32,33 as baseline, as shown in
Fig. S.5 in the ESI.† Additionally, we discuss the inuence of the
number of training data points on the performance of MCM-
UNIQUAC in Fig. S.6 and Table S.1 in the ESI.†

We note that also a version of MCM-UNIQUAC based on
UNIQUAC (DU), i.e., based on the asymmetric pair-interaction
parameters, can be trained if and only if an end-to-end
training on ln gij is performed; the resulting performance is,
4858 | Chem. Sci., 2022, 13, 4854–4862
however, slightly worse than that of the model discussed above
as we demonstrate in Fig. S.7 in the ESI.†

MCM-UNIQUAC can not only be used for predicting activity
coefficients, but also for predictions of phase equilibria and
many other thermodynamic properties of any mixture consist-
ing of the considered 1146 components. We demonstrate this in
Fig. 3, which shows the results of the prediction of isobaric
vapor–liquid equilibrium (VLE) phase diagrams for eight binary
systems based on the extended Raoult's law, cf. eqn (S.14) in the
ESI.† All eight systems were chosen randomly from the test set,
i.e., not a single data point for these systems was used for
training MCM-UNIQUAC or setting its hyperparameters.
However, the selection was carried out in such a way as to cover
a wide range of different phase behaviors, ranging from high-
boiling azeotrope (top le) to heteroazeotrope (bottom right).
For details on the selection of the systems and the prediction of
the VLE phase diagrams with MCM-UNIQUAC, we refer to the
ESI.†

For all eight binary systems, excellent agreement between
the predicted phase diagram and the experimental data is
found, both qualitatively and quantitatively. Similarly, liquid–
liquid and solid–liquid phase diagrams and other thermody-
namic properties like excess enthalpies can be predicted with
MCM-UNIQUAC. Moreover, the physical foundation on which
the hybrid approach MCM-UNIQUAC builds, namely learning
and predicting pair-interaction energies between components
on the hypothetical lattice from data for binary mixtures, even
allows extrapolations from binary to multicomponent mixtures;
MCM-UNIQUAC thereby does not require any data of multi-
component systems for training. As an example, isobaric VLE
phase diagrams for two ternary systems are shown in Fig. 4.
These systems were selected such that all constituent binary
subsystems were neither part of the training set nor of the
validation set.
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Prediction of isobaric vapor–liquid phase diagrams for binary systems from the test set with MCM-UNIQUAC (lines) and comparison to
experimental data from the DDB27 (symbols). No data on any of the depicted systems were used for training MCM-UNIQUAC or setting the
hyperparameters. Blue: dew point curves. Red: bubble point curves.
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Fig. 4 Prediction of the VLE in ternary systems at constant pressure
with MCM-UNIQUAC and comparison to experimental data (exp.)
from the DDB.27 The pressure and the composition of the liquid phase
were specified, the composition of the corresponding vapor phase
was predicted (pred.). Top: acrylic acid (AcrAc) + acetic acid (AceAc) +
tetrachloromethane (TCM) at 100 kPa. Bottom: toluene (Tol) + iso-
propylbenzene (IPB) + a-methyl styrene (a-MS) at 101 kPa. No data on
any of the systems and any of the binary subsystems were part of the
training set or the validation set of MCM-UNIQUAC.
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For each data point, the pressure and the composition of the
liquid phase (blue symbols in Fig. 4) were specied. The asso-
ciated composition of the vapor phase in equilibrium was pre-
dicted with MCM-UNIQUAC (open red symbols) and compared
to the experimental composition of the vapor phase as reported
in the DDB27 (lled red symbols). We observe an excellent
agreement.

In the ESI,† we additionally provide a complete set of the
pair-interaction energies Uij, including the respective model
uncertainties in the form of standard deviations, for all 656 085
4860 | Chem. Sci., 2022, 13, 4854–4862
binary systems of the components considered here (the pair-
interaction parameters DUij of the commonly used version of
UNIQUAC can easily be calculated from these by applying eqn
(3)). This set of Uij was obtained from an end-to-end training of
MCM-UNIQUAC on the entire available data set of all 12 199
systems. If predictions for any system of the components
considered in this work are required, this parameter set should
be used.

Conclusions

In the present work, we describe a novel hybrid approach for
predicting thermodynamic properties of mixtures, which
combines methods from machine learning (ML) with physical
modeling. The basic idea is to predict the pair interactions
between components in mixtures using matrix completion
methods (MCMs). The approach is generic, it can be applied to
any mixture property, and any physical model based on pair
interactions can be used. As an example, we combined an MCM
with UNIQUAC, a well-known lattice model of the Gibbs excess
energy GE.

We trained our hybrid approach, MCM-UNIQUAC, on
experimental data on activity coefficients in binary mixtures of
1146 components from the Dortmund Data Bank (DDB). Out of
the possible 656 085 binary systems that can be formed from
these components, suitable experimental data were only avail-
able for 12 119 systems, corresponding to only 2%. In its basic
form, UNIQUAC can only be applied to this subset, as pair-
interaction parameters need to be tted to data of the respec-
tive systems. In contrast, MCM-UNIQUAC yields, in principle,
predictions for all 656 085 binary systems; we demonstrate the
predictive capacity of the model based on the systems for which
experimental data are available by withholding the test data
points during the training of the model. Moreover, by virtue of
being a model based on pair interactions, MCM-UNIQUAC can
be applied not only to binary systems but also to any multi-
component system that can be formed from the considered
1146 components; and it also yields predictions for any
composition and temperature.

We compared the quality of these predictions to those from
the best available physical model for this purpose, the group-
contribution model modied UNIFAC (Dortmund). However,
due to missing group-interaction parameters, the public version
of UNIFAC can at present only be applied to 9502 of the 12 119
binary mixtures for which data were available. We show that
MCM-UNIQUAC outperforms UNIFAC, even on a test set whose
data were not used for training MCM-UNIQUAC, whereas most
of these data were probably used for training UNIFAC.

In its commonly used version, UNIQUAC has two binary
parameters DUij s DUji (with i s j). It is known that they are
highly correlated and hard to interpret physically. In this work,
we have discovered that going back to the basic idea of the
lattice model and working directly with symmetric pair-inter-
action energies Uij ¼ Uij, i.e., with only a single binary parameter
for each binary system, gives almost the same quality of the
description of the phase equilibria in the studied binary
systems as working with the common version of UNIQUAC with
© 2022 The Author(s). Published by the Royal Society of Chemistry
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two binary parameters, which is highly remarkable. It can be
assumed that the pair-interaction energies Uij, which are now
available for 656 085 binary systems and 1146 pure compo-
nents, can be interpreted physically. As they are basically mean-
eld energies, this is probably only a rst step, and deeper
insights may be expected from applying the MCM in connection
with more sophisticated mixture models that account for
different types of interactions.

MCM-UNIQUAC combines the strengths of ML and physical
modeling – the MCM enables generalization over (discrete)
components, allowing predictions for unstudied binary
systems, whereas UNIQUAC generalizes over (continuous)
conditions and enables the extrapolation to multicomponent
mixtures. As demonstrated in examples, MCM-UNIQUAC allows
the direct prediction of phase diagrams as exemplied for
binary and ternary vapor–liquid phase diagrams. Furthermore,
our approach can be retrained easily whenever additional data
points become available; this is in contrast to established
group-contribution methods, which require extensive param-
eter tuning. Also, MCM-UNIQUAC does not rely on expensive
calculations as required by established quantum-chemical
prediction methods. Finally, by exploiting the fact that basi-
cally all established thermodynamic models for mixture prop-
erties rely on the description of pair interactions, our approach
can be further developed in many directions, e.g., by combining
MCMs with equations of state and even group-contribution
methods.

Data availability
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