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nce pathway search to resolve
catalytic glycerol hydrogenolysis selectivity†

Pei-Lin Kang, a Yun-Fei Shi,a Cheng Shang ab and Zhi-Pan Liu *abc

The complex interaction between molecules and catalyst surfaces leads to great difficulties in

understanding and predicting the activity and selectivity in heterogeneous catalysis. Here we develop an

end-to-end artificial intelligence framework for the activity prediction of heterogeneous catalytic

systems (AI-Cat method), which takes simple inputs from names of molecules and metal catalysts and

outputs the reaction energy profile from the input molecule to low energy pathway products. The AI-Cat

method combines two neural network models, one for predicting reaction patterns and the other for

providing the reaction barrier and energy, with a Monte Carlo tree search to resolve the low energy

pathways in a reaction network. We then apply AI-Cat to resolve the reaction network of glycerol

hydrogenolysis on Cu surfaces, which is a typical selective C–O bond activation system and of key

significance for biomass-derived polyol utilization. We show that glycerol hydrogenolysis features a huge

reaction network of relevant candidates, containing 420 reaction intermediates and 2467 elementary

reactions. Among them, the surface-mediated enol–keto tautomeric resonance is a key step to facilitate

the primary C–OH bond breaking and thus selects 1,2-propanediol as the major product on Cu catalysts.

1,3-Propanediol can only be produced under strong acidic conditions and high surface H coverage by

following a hydrogenation–dehydration pathway. AI-Cat further discovers six low-energy reaction

patterns for C–O bond activation on metals that is of general significance to polyol catalysis. Our results

demonstrate that the reaction prediction for complex heterogeneous catalysis is now feasible with AI-

based atomic simulation and a Monte Carlo tree search.
1 Introduction

Glycerol is an important biomass-derived platform chemical1–4 and
its selective conversion to other chemicals,5–10 particularly, 1,2-
propanediol (1,2-PDO)11–16 and 1,3-propanediol (1,3-PDO)17–20 are of
great signicance in industry. Among the many catalysts tested,
Cu-based catalysts are regarded to be the best to selectively convert
glycerol to 1,2-PDO with low/zero selectivity to 1,3-PDO and other
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deep hydrogenolysis products (e.g. propanol). Considering that 1,3-
PDO is a more valuable chemical than 1,2-PDO,7 there has been
considerable interest to quantify the reaction kinetics and to
improve the 1,3-PDO selectivity. However, due to the complex
nature of the polyol interaction with catalyst surfaces, the reaction
mechanism remains hotly debated:3,7 the high selectivity to 1,2-
PDO for glycerol hydrogenolysis on Cu-based catalysts has been
puzzling for decades. The complexity originates mainly from the
huge reaction networkwithmany likely reaction intermediates due
to the presence of all 13 chemical bonds, i.e. ve C–H, three O–H,
three C–O and two C–C, in glycerol that are apparently possible to
break on catalysts.3

Fig. 1 shows the proposed reaction mechanisms for glycerol
hydrogenolysis in the literature dating back to the 1980s: six
different reaction routes to 1,2-PDO and 1,3-PDO5,12,18,21–23 were
proposed, each in a different color. Since 1,2-PDO is observed to
be themajor product on Cu-based catalysts (see the ESI, Table S1†
for collected experimental data), the pathways to 1,2-PDO assume
the preference of breaking one of the two primary C–O bonds but
with varied patterns, including 1,2 b-elimination dehydration
(blue arrows,12,22 Fig. 1), direct C–O bond breaking (red,23 green23),
and retro-Michael addition reaction (black5 and purple21). These
pathways are, however, in contrast with the general chemistry
knowledge that the secondary C is chemically more active than
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Proposed reaction pathways of glycerol to 1,2-PDO and 1,3-
PDO transformation on Cu-based catalysts in the literature. Note that
each proposed step in the scheme may contain several elementary
steps.
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the primary C, and more importantly, cannot explain satisfacto-
rily the high selectivity to 1,2-PDO but low/zero selectivity to 1,3-
PDO (brown18) and the deep hydrogenolysis products.

The glycerol hydrogenolysis reaction thus illustrates well the
dilemma of selectivity control in heterogeneous catalysis where
the current knowledge on elementary reaction steps, being diffi-
cult to glean from experiment, is much short of one's expectation
towards the rational design of the reaction. The participation of
catalysts (e.g. metal surfaces) in reactions not only greatly
increases the likely intermediates (e.g. adsorbed atoms, radicals),
but also creates catalyst-specic preference for specic reaction
patterns. The theoretical methods available to date generally fail
to provide fast and accurate guidance to catalyst and reaction
design. In particular, the valence bond theory well recognized in
chemistry oen cannot predict even qualitatively the activity and
selectivity in heterogeneous catalysis.

Instead, quantum mechanics based atomistic simulations
are now popularly resorted to for elucidating the reaction
kinetics of heterogeneous catalysis, which are however limited
largely to small reaction systems (e.g. less than 100 atoms) on
well-dened catalyst surfaces due to the high cost and poor
scaling in computation. In fact, theoretical attempts were made
to expedite the surface reaction exploration as early as the
1990s. These methods involve rst the generation of the likely
reaction patterns of molecules according to the octet rule or the
bond matrix, such as Netgen (Broadbelt et al.),24,25 RMG (Green
group),26,27 RING (Rangarajan et al.)28 and pReSt (Valchos
group).29 The kinetics data of reactions between enumerated
reaction pairs, i.e. the reaction energy (energy difference
between the product and the reactant) and reaction barrier
(energy difference between the transition state and the reac-
tant), while being difficult to obtain, can then be estimated by
empirical/approximate approaches, such as the Brønsted–
Evans–Polanyi (BEP) relationship,30,31 scaling relationship,32–34

and UBI-QET method.35,36 In these methods, the reaction energy
may be fetched either from experimental data, or estimated by
the group additivity approach, the gas phase bond energies, and
© 2022 The Author(s). Published by the Royal Society of Chemistry
the atomic binding energy, or directly calculated by on-the-y
density functional theory (DFT) calculations, whilst the reaction
barrier is estimated from the reaction energy by the BEP rela-
tionship or can be explicitly determined by locating the transi-
tion state (TS).37–43 While the scheme appears logically sound,
there are still many methodological difficulties associated with
the accurate reaction prediction. For example, the BEP rela-
tionship is a crude approach, i.e. the error bar of reaction
barrier estimation is generally above 0.2 eV; the TS location
requires the pre-knowledge of reaction coordinates and has
a high computational cost even with DFT.

Recent years have seen great success in developing articial
intelligence (AI) methods for organic retrosynthesis,44–56 which
relies on two key merits that appear to be unique to organic
reactions: rst, a large reaction database from organic experi-
ments is available on the market (e.g. Reaxys, and SciFinder
databases); second, the general validity of the octet rule in
describing elementary organic transformation. It is thus
possible to relate an organic reaction to the reactant and
product using numerical descriptors, such as Simplied
Molecular Input Line Entry Specication57 (SMILES) and
Extended-Connectivity ngerprints58 (ECFP) where the bond
order matrix can be used to detect the structural change. On the
other hand, the situation in heterogeneous catalysis is rather
different. The reaction steps occurring on surfaces are
numerous and generally not separable until the nal products
are obtained. As exemplied in Fig. 1, acetol is the only one
among all proposed intermediates that can be conrmed via
experiment.12,23 Furthermore, an accurate account of heteroge-
neous reactions is virtually not possible due to the structural
complexity of solid catalysts (various surface structures and
compositions). It is no wonder that the reaction database for
heterogeneous catalysis is not established from experiment, not
even mentioning the AI-based reaction prediction based on the
heterogeneous reaction database.

Herein we propose a general AI framework for predicting
heterogeneous catalysis activity, namely the AI-Cat method. Our
method provides a one-go solution, from the building of
a heterogeneous catalytic reaction database, to the end-to-end
activity prediction using machine learning. The reaction data-
base is collected by using our recently developed global neural
network (G-NN) potential59–61 that, in combination with
stochastic surface walking (SSW) global optimization,62 can fast
explore reactions on surfaces. The end-to-end activity predictor
combines two neural network (NN) models, one for predicting
possible reaction patterns and the other for providing the
reaction barrier and energy, with the Monte Carlo (MC) tree
search to resolve the low energy pathways in a reaction network.
We illustrate our method in resolving the complex reaction
network of glycerol hydrogenolysis on Cu and rationalizing the
high selectivity of glycerol to 1,2-PDO.

2 Theoretical methods

Owing to the lack of experimental kinetics data on elementary
reactions in heterogeneous catalysis, any successful AI model
for predicting heterogeneous reaction activity must be able to
Chem. Sci., 2022, 13, 8148–8160 | 8149
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Fig. 2 Procedure to generate identifiers for molecules on surfaces
using Surface-sensitive atom-centered Extended-Connectivity
FingerPrint (s-ECFP). The iterative procedure for generating s-ECFP is
illustrated using the adsorbed O end (1O) of HCOO as the example.
Each iteration creates an identifier for the substructure in a circle
around the central atom. The identifier at iteration 1 only represents
the information of the 1O atom, its attached bonds and the surface in
bonding. By enlarging the circles, the next iterations include more and
more information associated with the substructure centering on the
1O. Duplicate identifiers will be removed, for example, the substructure
of 1O at the iteration 3 is the same as the one of atom 2C at the iteration
2. The explanatory text in red indicates the added features for s-ECFP
compared to the ECFP.
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build a reaction database by its own, from which the reaction
pattern and kinetics information can be abstracted. The
subsequent machine learning of these reaction data would then
require sensitive reaction descriptors that can distinguish
molecules/fragments on surfaces. Before proceeding to present
our AI-Cat method, we rst introduce the molecule descriptor
for surface reactions developed in this work.

It is well established that an organic molecule can be
uniquely identied using the atom-centered extended-connec-
tivity ngerprints, i.e. ECFP-x where x represents the largest
possible fragment that has a width of x bonds (diameter in
bonds) with respect to the center atom. ECFP can abstract the
topological information of the molecule from the bond matrix,
which can be readily established for heavy atoms (non-H atoms)
if the octet-rule is satised. The ECFP is thus not quite
compatible with heterogeneous catalytic systems for two
reasons: (i) unsaturated reaction intermediates (adsorbates on
surfaces) are common; and (ii) H atoms, either as adsorbates or
attached to molecular fragments, are of key signicance to
distinguish different molecular states.

For describing surface reactions uniquely, we modied ECFP
descriptors in three places: (i) the bond matrix generation
allows the adsorbed atoms to not obey the octet rules and takes
into account the periodicity, if necessary; (ii) the information of
the catalyst, e.g. the type of metal, is embodied into the initial
identier for adsorbed atoms; (iii) H atoms are treated equally
as the heavy atoms. The thus-modied ECFP-x is named surface
sensitive ECFP-x (s-ECFP-x), which can produce the unique
identier for adsorbed molecules/fragments. For example, for
an adsorbed HCOO that has an O adsorbed on the surface
(HCOO*, * indicates the adsorbed atom), s-ECFP-x will consider
the fragment to be formate HC(]O)O* by maximally letting
non-adsorbed atoms (HCO) to obey the octet rule. By this way,
the adsorbed carboxyl (C*(]O)OH) and formate (HC(]O)O*)
can be readily distinguished.

An example of generating the s-ECFP-4 digital code for
a coadsorbed formate fragment and H atom is given in Fig. 2
(also see ESI Section 2† for details). The new features in s-ECFP
as compared to the traditional ECFP are highlighted by the red
explanatory text. An iterative procedure is applied to every
atom to create a series of identiers by gradually increasing
the radius around the central atom, as indicated by the red
circles around 1O. Every iteration takes into account the
topological information related to the circled atoms and the
bonds connecting them. Aer all atoms are treated, a set of s-
ECFP-4 ngerprints are generated to form a vector as the
unique descriptor of the structure. We would like to comment
that the s-ECFP-4 descriptor can distinguish different adsor-
bed molecules, including single molecules and coadsorbed
molecules (e.g. HCOO and H in Fig. 2), but does not record
their relative physical distance. This treatment is largely valid
for metal catalysis since the adsorbate diffusion is generally
facile and thus not important for evaluating the catalytic
activity.

We now turn to the AI-Cat method, which relies on the s-
ECFP-4 descriptor to distinguish different reactions. There are
two parts in the AI-Cat method, i.e. (i) reaction database
8150 | Chem. Sci., 2022, 13, 8148–8160
construction; (ii) AI model for activity prediction. The AI model
can be further decomposed into two NN prediction models and
an MC tree search module. They are elaborated in the following
section.
2.1 Algorithm for constructing the reaction database and the
reaction database for catalytic reactions on Cu surfaces

With the advent of G-NN potential based global potential energy
surface (PES) sampling as implemented in the SSW-NNmethod,
it is now feasible to predict unknown chemical systems in an
automated way. In the past few years our group has managed to
generate a series of four-element G-NN potentials M–C–H–O (M
¼ Fe, Co, Ni, Cu, Ru, Rh, Pd Ag, Ir, Pt and Au) covering the most
common catalytic metals and these G-NN potentials are acces-
sible from the LASP61 project website (https://
www.lasphub.com). These G-NN potentials (see ESI Section 2†
for details) allow for fast PES evaluation in the SSW reaction
sampling (SSW-RS)39,63 of common C1–C3 reactions on these
metal surfaces.64 This work focuses on the building of the
reaction database for catalytic reactions on Cu surfaces.

In initiating the automatic reaction database generation, we
require a minimum amount of information as input, including
the metal species (e.g. Cu), the type of surface (e.g. (111), (100)
surfaces), and the C : H : O composition (e.g. the type and the
number of molecules, such as CO, H2, H2O, methanol, and
glycerol). The program then utilizes the SSW-RS method to
search for all the likely distinct reactions at the given C : H : O
composition on the surface, which is an iterative procedure to
explore all the likely reactions until no new low energy minima
are identied.

The scheme of the SSW-RS method is shown in Fig. 3a with
each small circle representing a minimum and the dotted large
circle representing the range of SSW-RS explorations centering
© 2022 The Author(s). Published by the Royal Society of Chemistry

https://www.lasphub.com
https://www.lasphub.com
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2sc02107b


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

0 
Ju

ne
 2

02
2.

 D
ow

nl
oa

de
d 

on
 7

/1
9/

20
25

 1
1:

02
:0

4 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
this minimum. By automatically switching the starting minima
in different iterations as indicated by the cycle n (n¼ 1, 2,., see
Fig. 3a), the global PES will be mapped out and all the likely
reaction pairs, initial state (IS) and nal state (FS), together with
the identied transition state (TS) can be obtained. The SSW-RS
method has been described in detail previously, for example, to
explore the reaction space of gas phase organic reactions.65 In
this work, the s-ECFP descriptor is utilized to judge whether
a newly found reaction is distinct from others.

Fig. 3b and c illustrate how a reaction database is established
from the raw SSW-RS data. We use the following two strategies
for purifying the raw data to maintain the key kinetics infor-
mation. First, as there may well be many different pathways for
the same elementary reaction (Fig. 3b), we only abstract the
lowest energy minima for stationary points (IS and FS), and the
lowest energy for the saddle points (TS) as long as the TS
connects correctly to the IS and the FS as indicated by s-ECFP.
This treatment ignores the kinetics for the transformation
between molecular congurations on the surface (e.g. diffusion)
since they are in general low-barrier fast reactions, particularly
for C1–C3 small molecules. This stores the correct reaction
energy and the lowest energy barrier between the reaction pair.
Second, too rare reactions, e.g. those identied only once from
SSW-RS, are not considered since kinetically relevant reactions
should occur frequently.
Fig. 3 Reaction database generation with the help of SSW reaction samp
a distinguishable state that has many connections (pathways) to other s
large circle that collects the pathways linking to the centering state. By a
a complex reaction system can be established (also see text). (B). Illustra
only the lowest energy IS, TS and FS, i.e. the reaction pair information, ar
the reaction energy. (C). Illustration of extracting the reaction pattern asso
center atom is uniquely identified by s-ECFP. Finally, the reaction databas

© 2022 The Author(s). Published by the Royal Society of Chemistry
Based on the elementary reaction pairs, the reaction patterns
can then be extracted and also stored in the reaction database
with a unique reaction pattern identier (indexed by integers
from 1 to n). Following the shell-based scheme to describe
a reaction, proposed by Christ et al.66 and Saller and
coworkers,67 we dene the reaction patterns of surface reactions
by the bond matrix elements for the reaction center atoms and
their rst neighbors, and the reaction center atoms' identiers
(s-ECFP) (also see ESI Section 3† for details). As illustrated in
Fig. 3c, for a *C(]O)OH + H* / HC(]O)OH surface reaction,
the reaction pattern is rst represented by a (4� 4) bond matrix
of the reacting substructures of C(]O)OR + H and HC(]O)OR
where R represents any connecting groups that are out of
reaction centers and not recorded in the reaction pattern. The
diagonal matrix element represents the atomic number (H:1,
C:6, and O:8), while other elements represent the bond order
between atoms. In addition, we also record the s-ECFP identier
of reaction center atoms of reactants for the purpose of reaction
center recognition. The reaction pattern identier will be the
output for the AI model for reaction prediction, and utilized for
predicting the kinetics data of a reaction, as presented below.
2.2 AI-Cat model for activity prediction

The AI model for activity prediction utilizes the MC tree search
algorithm to identify the low energy pathways connecting the
ling. (A) Scheme of SSW reaction sampling. Each small circle represents
mall circles. Each SSW reaction sampling is represented by the dotted
utomatically selecting the state for sampling, the reaction network for
tion of multiple pathways connecting to the same reaction pair, where
e recorded in the reaction database to provide the reaction barrier and
ciated with the reaction pair using the bond matrix where the reaction
e includes both the reaction pattern and the reaction pair information.

Chem. Sci., 2022, 13, 8148–8160 | 8151
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input reactant to the target product. During the reaction
network search, the MC tree search algorithm needs to acquire
two NNs persistently, namely a reaction pattern (R-Pat) unit to
enumerate the most likely reaction patterns of a given reactant,
and a kinetics information (K-Info) unit to provide the essential
kinetics data.

2.2.1 MC tree search. The MC tree search is the central unit
governing the reaction network exploration and realizing the
activity prediction. The method was commonly utilized for the
sequential decision-making problems, such as games, auto-
mated theorem proving and more recently retrosynthesis.45,68

We here briey introduce the algorithm with emphasis on its
connection with the R-Pat and K-Info units.

Pi ¼ e
�
EaðiÞ
kbT

Pn

j¼1

e
�
EaðjÞ
kbT

(1)

We consider a whole reaction network as a tree structure
with each node representing an intermediate state (containing
all species, including both the reacting species and spectator
species) and the edges being the state-to-state connections
governed by kinetics. Each node is associated with three values
that can be updated during tree search, i.e. the action value Q,
the visit count N and the reaction probability P. For a newly
identied node, the initial value for Q and N is 0, and that for P
is set as the probability from the father node to the current node
computed from eqn (1), which is a weighted rate constant,
where i denotes the current node and Ea(j) is the reaction barrier
from the father node to its jth child node in eqn (1). Terminal
nodes need to be dened for stopping a search along one tree
branch, which belong to either one of the three situations, (i)
the target; (ii) the dead-end states with no further connections
or connecting only to those with no further connections, and
(iii) the states with too high overall barriers to access. The
overall barrier of a multiple-step process corresponds to the
energy difference calculated from the TOF-determining transi-
tion state (TDTS) and the TOF-determining intermediate (TDI)
in the energetic span model69 (the maximum energy height
needed to overcome along a reaction pathway).

As shown in Fig. 4A, MC tree search has four phases that are
executed iteratively until the lowest energy pathway is
identied.

Phase 1 selection: starts from the root node, a selection
procedure is performed iteratively to identify the most prom-
ising next node according to the priority score Vi.

Vi ¼ Qi

Ni þ 1
þ Pi

ffiffiffiffiffiffiffi
Nfa

p
Ni þ 1

(2)

In eqn (2), the subscript i and fa indicate the current node
and its father node. The selection traverses the tree by selecting
the node with maximum V until reaching an unvisited node (N
¼ 0). The search will thenmove to phase 2 if the selected node is
unvisited, or to phase 4 if the node needs to be expanded (N ¼
1).
8152 | Chem. Sci., 2022, 13, 8148–8160
Phase 2 rollout: starts from the selected, non-visited node,
a rollout procedure is carried out by enquiring the R-Pat unit to
obtain the target product. The rollout stops if a target node is
met or the maximum depth Dmax of the search is reached. Every
enquiry of the R-Pat unit gives a number of possible reaction
patterns, CRP, leading to the new product nodes. Due to the fast
increase of nodes, we limit CRP to 3, i.e. the top 3 likely reaction
patterns, and Dmax to 10.

Phase 3 reward: Q and N are updated immediately aer
phase 2 for the nodes traversed in the branch from the selected
node to the root node. Q will be rewarded by adding 1 if the
target product is reached, or be punished by deducting 1. The
visit count N increases by 1 for the whole branch nodes. The
current node thus changes to a visited node.

Phase 4 expansion: starts from the selected, visited node (N ¼
1), the expansion of the tree is performed by enquiring both the
R-Pat and the K-Info units to generate the child nodes for the
current node. Fig. 4B shows the owchart of the expansion phase.
As shown, the reactant is rstly converted to an s-ECFP-4 code
and fed into the R-Pat unit, which returns a probability distri-
bution over all possible RPs (RP1 to RPn). Then, for the k most
probable RPs, by applying each one to the reactant for generating
the product (the child node) and thus the reaction R, the K-Info
unit is utilized to obtain the reaction barrier and reaction energy
associated with each child node. Finally, the child nodes are
ranked by the reaction barrier info. To avoid the explosion of the
tree size, we limit the maximum number of child nodes to 15,
where the child node should not appear previously in the same
branch and the overall barrier to the child node needs to be less
than a preset maximum barrier (e.g. 2.5 eV or 0.3 eV above the
current lowest energy pathway, the reference).

By iteratively executing these four phases, a tree of reaction
networks is established and the pathways from the reactant to
the target product are recorded and ranked according to the
predicted overall reaction barrier. It is worth mentioning that
the key feature of our AI-Cat model is the accessibility to the
kinetics information of predicted elementary reactions. By
setting the current lowest energy pathway as the reference, we
can efficiently rule out the node with a too high overall barrier
(e.g. 0.3 eV higher than the reference with the consideration of
the likely error of K-Info unit prediction) in the phase 1 selec-
tion (by setting as terminal nodes). This leads to a highly effi-
cient removal of irrelevant and redundant branches and thus
the tree search converges quickly to the low energy pathways. It
is worth mentioning that the complexity of MCTS depends on
the input chemical composition: the molecules dened by the
input and the available reaction patterns learned from the
database.

2.2.2 R-Pat unit. The R-Pat unit takes the input from the
reactant identier and yields the likely reaction pattern identi-
ers as the output. The input is given by a vector with the value
indicating the presence/absence of a particular s-ECFP-4
descriptor in the reactant. In this work, we utilize feed-forward
NN to train the R-Pat unit by learning the reaction database,
where the network has two hidden layers with 512 and 512
neurons of Relu nonlinearities, and the last layer is a Somax
layer giving the probability distribution for all possible reaction
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Monte Carlo tree search (MCTS) to identify the lowest energy pathway in a complex reaction network. CO + H2O reaction on Cu(111) is
utilized to illustrate the MCTS, and how MCTS enquires the R-Pat and K-Info units for reaction information is illustrated by the HCOO + H
reaction as indicated in the dotted purple box. (A) MCTS procedure that includes four phases: selection, rollout, reward and expansion, which are
iteratively performed to explore the reaction network. Red arrow: the interactive section traverses the tree by selecting the node with maximum
priority score V. Green arrow: the fast rollout evaluation starts from the selected node. Blue arrow: update the reward according to the rollout
result for nodes traversed in the branch from the selected node to the root node. (B) The flowchart of the expansion phase showing the working
mechanism, where the R-Pat unit and K-Info unit are utilized to obtain the kinetics information so that the child nodes are ranked. (C) R-Pat unit
to predict reaction patterns for a given reactant. (D) K-Info unit to predict quantitatively the reaction barrier and energy.
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patterns appearing in the reaction database. By applying these
reaction patterns to the input structure, we can recover the
associated reactions dened by the reactant and product.

Fig. 4C illustrates the working mechanism of the R-Pat unit
to predict likely reactions from the input HC(]O)O* + H. First,
a set of s-ECFP-4 are generated from HC(]O)O* + H, which are
mapped to an input vector that is 3475 dimensions in total
where only 8 associated with HC(]O)O* + H are indexed and
the rest are zero. The probability distribution is then predicted
by the R-Pat unit. Taking the predicted most likely reaction
pattern, i.e. RP1: RC–O + H / RC–OH, as the example, a reac-
tion is generated as HC(]O)O* + H / HCOOH where HCOOH
is the product.
© 2022 The Author(s). Published by the Royal Society of Chemistry
2.2.3 K-Info unit. The K-Info unit takes the input from the
reaction information and outputs the reaction barrier and
reaction energy. The input is a vector concatenated by three
vectors, two from the s-ECFP-4 of the reactant and product, and
one from the general reaction information that has nine
dimensions, containing the highest, lowest and average reac-
tion barriers and reaction energy, and the surface type. Similar
to that in the R-Pat unit, a feed-forward NN is utilized to train
the K-Info unit by learning the reaction database, where the
network has two hidden layers with 512 and 256 neurons of
Sigmoid nonlinearities, and the last layer is a linear layer that
gives give the reaction barrier and energy.
Chem. Sci., 2022, 13, 8148–8160 | 8153
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Fig. 4D illustrates the architecture of the K-Info unit using
the HC(]O)O* + H / HCOOH on Cu(111) as an example. The
input takes the information from the reactant (HC(]O)O* + H),
the product (HCOOH) as predicted by the R-Pat unit, and the
general reaction information associated with the reaction
barrier, energy and surfaces. The unit predicts the reaction
barrier of 0.78 eV and reaction energy of 0.18 eV for HC(]O)O*
+ H / HCOOH on Cu(111).
2.3 G-NN potential and DFT calculations

The quaternary Cu–C–H–O G-NN potential used for SSW-RS reac-
tion data collection was trained by using LASP soware,61 which
iteratively learns the global PES data generated by SSW global
optimization (see ESI Section 2† for the detailedmethodology). The
Cu–C–H–O G-NN potential has a double-net architecture imple-
mented in LASP 3.0,70 a ve-layer (410–80–80–80–1) feed-forward
NN for all elements plus an auxiliary four-layer (258–80–80–1) feed-
forward NN for C, H and O elements, equivalent to 266 823
parameters in total. The potential was trained using a dataset of
90 726 distinct structures that are computed using plane wave DFT
calculations71,72 (DFT calculation setup can be found in the next
paragraph). The nal RMS accuracy of the G-NN potential is 3.77
meV per atom for energy and 0.10 eV Å�1 for atomic force (the G-
NN PES accuracy is also addressed in ESI Fig. S5†).

DFT calculations have been utilized to generate the dataset
for G-NN training and also for validating the surface reactions
reported in this work. All the total energy calculations were
carried out using the VASP soware,71,72 where the basis set is
expanded in plane waves and the electron–ion interaction is
represented by the projector augmented wave (PAW) pseudo-
potential. For the G-NN training dataset, the electron exchange
and correlation effects are described by the GGA-PBE func-
tional. For reaction pathway validations, the van der Waals
correction using the Grimme D3 approach (DFT-D3 (ref. 73))
has been added to the GGA-PBE total energy. In all calculations,
the kinetic energy cutoff utilized is 450 eV and the rst Brillouin
zone k-point sampling utilizes the Monkhorst–Pack scheme
with an automated mesh determined by 25 times the reciprocal
lattice vectors. The nite difference method with the displace-
ment of 0.01 Å for an atom is utilized to calculate the vibrational
modes and thus to determine the zero-point energy (ZPE).

To obtain the free energy prole of glycerol hydrogenolysis
(see Section 3.1), the ab initio thermodynamics approach74 is
utilized to correct the Gibbs free energy under the reaction
conditions (473 K). For all of the adsorbed states on the surface,
the vibrational entropy is taken into account based on the
harmonic frequency calculation using DFT-D3. The free energy
of gas phase molecules (glycerol, acetol, 1,2-PDO, and 1,3-PDO)
is computed under the typical experimental conditions (473 K,
total pressure of 1 atm, glycerol : H2 : H2O ¼ 1 : 140 : 12) used
in ref. 14, according to the standard thermodynamic equations.
3 Results

In this work we have explored extensively the common organic
reactions up to four C atoms (C1–C4) on three Cu surfaces,
8154 | Chem. Sci., 2022, 13, 8148–8160
namely, close-packed Cu(111), open Cu(100) and stepped
Cu(211), by using automated SSW-RS sampling with the
quaternary Cu–C–H–O G-NN potential. Our simulation yields
more than 200 000 reaction pairs and 24 130 different inter-
mediates, and aer removing the duplicate ones, the nal
reaction database contains 30 508 distinct reactions, 7776
reaction intermediates composed of 1188 distinct fragments/
molecules, and 5136 reaction patterns.

In our AI-Cat model, the R-Pat unit learns 7776 intermedi-
ates and 5136 reaction patterns associated with them, 90% of
them being set as the training set and the remainder as the
testing set. The probability of occurrence of a reaction pattern is
determined by the weighted rate constant in eqn (1), which is
used to supervise the training. Aer training the model, the top
3 accuracy for predicting the most probable reaction pattern is
perfect (99%) for the training set and 57% for the testing set;
and the top 15 accuracy for the testing set reaches 81%.

The K-Info unit learns the reaction dataset of 30 508 reac-
tions on three different Cu surfaces. By splitting the dataset into
90% training set and 10% testing set, the NN nally achieves the
accuracy of prediction with MAE of 0.061 and 0.054 eV for the
reaction barrier and reaction energy on the training dataset,
and MAE of 0.157 and 0.149 eV for the barrier and reaction
energy on the testing dataset, respectively. For the purpose of
the benchmarking of the AI-Cat model, we have rst analyzed
the AI-Cat accuracy on the reaction dataset and conrmed the
good performance of AI-Cat for different types of reactions,
which is much better than the simple BEP model (see ESI
Section 5† for details). We then tested AI-Cat prediction ability
for 21 different compositions by mixing 7 common small
molecules, including H2, CO, CO2, H2O, CH3OH, CH4 and
CH2]CH2, and AI-Cat gives the correct activity prediction for
the known reactions (see ESI Section 6† for details). We thus can
move on to treat the concerned system with a complex reaction
network, the glycerol hydrogenolysis on Cu.

By using the AI-Cat method, we are able to predict the likely
hydrogenolysis pathways starting from glycerol and H2 reac-
tants on Cu(111). Aer 150 000 MCTS, we obtained 420 distinct
intermediates and 2467 distinct elementary reactions, from
which the lowest energy pathways are collected.
3.1 Reaction pathways and microkinetics of glycerol
hydrolysis on Cu(111)

Our AI-Cat model predicts that 1,2-PDO is preferred over 1,3-
PDO with a lower overall barrier among total eight products that
have relatively low formation barriers (<1.6 eV). The key path-
ways are summarized in Fig. 5 and all pathway data from AI-Cat
are detailed in the ESI.† Here we summarize the lowest barrier
products, which are dihydroxyacetone, acetol, 1,2-PDO, prop-2-
ene-1,2-diol, 2-oxopropanal, glyceraldehyde, 3-hydrox-
ypropanal, and 1,3-PDO, where the predicted energy barrier
from AI-Cat differs by less than 0.3 eV. Among these products,
dihydroxyacetone and glyceraldehyde, while being facile to
form, are both endothermic intermediates and can further
convert to 1,2-PDO and 1,3-PDO. Acetol and 3-hydroxypropanal
are intermediates leading to 1,2-PDO and 1,3-PDO, respectively.
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Low energy pathways of glycerol hydrogenolysis on Cu(111) to 1,2-PDO and 1,3-PDO. (A) Low energy reaction network for glycerol
hydrogenolysis. The color of the arrow indicates the type of reaction, including dehydrogenation, hydrogenation and the C–O bond breaking.
DGa,o and DGrxn denote the Gibbs free energy overall barrier and reaction energy in each pathway starting from glycerol, respectively (also
plotted in (B)); (B) Gibbs free energy profile for four low energy pathways to 1,2-PDO and 1,3-PDO under typical experimental conditions (473 K
and a total pressure of 1 atm, glycerol : H2 : H2O ¼ 1 : 140 : 12, used in ref. 14). The solid lines are the dehydrogenation (deH) pathways initiated
by blue arrows in (A) and the dotted lines are the dehydration (deH2O) pathways initiated by hydrogenation (green arrow) and dehydration (red
arrow) in (A). The energy zero refers to glycerol in the gas phase at 473 K and 0.0065 atm; and its dehydrogenated product, state 2 (see (A)), is the
most stable species (�0.08 eV) before C–O bond breaking. The snapshots and free energy of key reaction transition states, TS1 to TS4, are also
shown.
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The remaining dehydration products, i.e. prop-2-ene-1,2-diol
and 2-oxopropanal, are less exothermic to form than 1,2-PDO,
but share the similar rate-limiting steps with 1,2-PDO. There-
fore, from the AI-Cat energetics, only 1,2-PDO and 1,3-PDO are
© 2022 The Author(s). Published by the Royal Society of Chemistry
likely products for glycerol hydrogenolysis on Cu surfaces,
where both molecules are thermodynamically highly favored
products (exothermic by more than 0.7 eV).
Chem. Sci., 2022, 13, 8148–8160 | 8155
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In order to determine the selectivity accurately and perform
the microkinetics simulation, we have further utilized DFT
calculations with van der Waals correction (DFT-D3 (ref. 73)) to
rene the reaction prole of the four lowest energy pathways,
where all minimum structures are fully relaxed and the TSs are
re-searched (the detailed comparison between G-NN and DFT
energetics is detailed in the ESI, Fig. S6†). All Gibbs free ener-
gies reported hereaer are from DFT based energetics.

Both 1,2-PDO and 1,3-PDO have two low energy pathways as
shown in Fig. 5, the dehydration pathway (Fig. 5a middle-to-top/
bottom vertical lines) and the dehydrogenation pathway (Fig. 5a
le/right circles), as distinguished by their initial steps. In
addition to these four low energy pathways, 1,2-PDO also has
a retro-Michael addition pathway, bifurcating from the dehy-
drogenation pathway to 1,3-PDO (see ESI Fig. S7†). Fig. 5b
highlights the lowest energy reaction proles for glycerol
hydrogenolysis to 1,2-PDO and to 1,3-PDO, which all belong to
the dehydrogenation pathway (the circles in Fig. 5a), together
with the two higher barrier pathways via initial dehydration.

By analyzing the low energy pathways from AI-Cat, we can
glean key information on this catalytic system. (i) The lowest
barrier elementary reactions are the dehydrogenation (blue
arrow in Fig. 5a) and the hydrogenation (green arrow) reactions,
which are followed by the C–O bond breaking (OH or H2O
removal) reactions (red arrow). As a result, in between every C–O
breaking, there are a series of dehydrogenation/hydrogenation
fast equilibrium steps, e.g. glycerol with dihydroxyacetone, 1,2-
PDO with acetol; (ii) the secondary C is always the rst reaction
site for both the dehydrogenation and the direct C–O bond
breaking, which is in line with the general knowledge in organic
chemistry; (iii) the 1,2 b-elimination dehydration (Fig. 1) and
the C–C bond breaking are kinetically prohibited on Cu
surfaces. These are consistent with the general tendency to
retain C–O and C–C bonds for common C1–C2 reactions on Cu
catalysts as shown in ESI Table S3.†

In the lowest pathway to 1,2-PDO, the secondary OH (linking
with the secondary C) of glycerol is rst dehydrogenated on
Cu(111) (state 2 Fig. 5a) followed by the secondary C–H bond
breaking to form dihydroxyacetone, which is also the key step
determining the selectivity. Next, dihydroxyacetone breaks one
of its terminal OH groups via a Cu-mediated keto–enol tauto-
meric resonance (surface Cu replacing H in the enol form) and
then undergoes a hydrogenation reaction to acetol, which is the
rate-limiting step with 1.25 eV overall free energy barrier with
respect to the adsorbed state 2, the most stable state along the
pathway. Aer the C–O breaking, acetol readily converts to 1,2-
PDO with three low barrier steps, involving hydrogenation and
water generation. The further hydrogenolysis from acetol to 2-
propanol is however kinetically prohibited (free energy barrier
1.45 eV) because of the high stability of acetol (see ESI Fig. S8†
for the reaction prole of deep hydrogenolysis).

The lowest energy pathway to 1,3-PDO follows exactly the same
pattern as that to 1,2-PDO except that the reaction is initiated
from the primary C and the overall barrier increases by 0.2 eV.
Obviously, the higher barrier in forming 1,3-PDO can be attrib-
uted to the fact that the aldehyde (glyceraldehyde) is less stable
than the acetone form (dihydroxyacetone) and so does the TS for
8156 | Chem. Sci., 2022, 13, 8148–8160
C–O bond dissociation. It should be mentioned that, as shown in
ESI Fig. S7,† even if glyceraldehyde is produced, the presence of
a low-barrier dehydration channel via the retro-Michael addition
reaction will still favor the selectivity to 1,2-PDO.

Compared to the dehydrogenation pathways, the dehydration
pathways (Fig. 5b dotted lines) generally have a higher free energy
barrier, 1.71 eV to 1,3-PDO and 1.77 eV to 1,2-PDO and are thus
essentially non-selective to these two products. The higher barrier
is mainly due to the poor ability of the protonated glycerol
precursor (states 1 and 7 in Fig. 5a) on Cu(111). From our DFT
calculations, the adsorbed state 2 in the dehydrogenation
pathway is 1.07 eV more stable than the protonated glycerol, in
which the vibrational zero-point-energy and van der Waals
interaction together account for 0.35 eV energy difference.

Microkinetics simulations based on the DFT free energy
prole are then applied to compute the steady-state rate, where
the species coverages are determined explicitly to compute the
rate. The computation is done by solving the ordinary differential
equation (ODE) of all reactions using the Backward Differentia-
tion Formula (BDF)method.75 The simulation is under the typical
reaction conditions, i.e. 473 K, pH2

¼ 1 bar, Pothers ¼ 0.0065 bar
(other saturated glycerol derivatives). All the kinetics data are
obtained from the above results and listed in ESI Table S6.†

Our simulation results show that the major pathways of the
1,2-PDO or 1,3-PDO generation are dehydrogenation pathways,
which contribute 2.1 � 10�4 s�1 and 2.3 � 10�7 s�1 for 1,2-PDO
and 1,3-PDO, respectively, and the dehydration pathways are
kinetically forbidden, which only contribute 1.6 � 10�9 s�1 and
6.9 � 10�9 s�1 for 1,2-PDO and 1,3-PDO, respectively. The nal
TOF is 2.1 � 10�4 s�1 for 1,2-PDO and 2.4 � 10�7 s�1 for 1,3-
PDO, which leads to a high selectivity of 99.88% to 1,2-PDO, in
agreement with the experiment selectivity of 96.1%.14,16

We would like to point out that the previous proposed
pathways to 1,2-PDO (see Fig. 1) are not favored kinetically: they
do not show up as the lowest energy pathways from our AI-Cat
search and are also conrmed as high barrier pathways by
manually checking with DFT calculations. For example, the
glyceraldehyde formation followed by the retro-Michael reac-
tion as suggested by Montassier et al.5 (black arrow in Fig. 1) has
been a popular mechanism for 1,2-PDO in the literature.13,21

However, our results show that glyceraldehyde formed by the
dehydrogenation at the primary C is kinetically less favored
than that at the secondary C in forming dihydroxyacetone by
0.22 eV (see Fig. 5b), although the subsequent retro-Michael
addition reaction is kinetically feasible. The other proposed
pathways include the formation of acetol (observed interme-
diate in experiments) as an intermediate, but those involving
either 1,2 b-elimination dehydration or direct C–O bond
breaking are non-site-selective, which are readily ruled out from
our AI-Cat search due to their high barriers.
3.2 Discussions on glycerol hydrolysis

Our new reaction mechanism for glycerol hydrogenolysis on Cu
catalysts can rationalize the experimental observations on Cu-
based catalysts reported so far, which are summarized as
follows.
© 2022 The Author(s). Published by the Royal Society of Chemistry
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First, acetol is a stable product together with 1,2-PDO. Ample
evidence from experiments12,23 suggests that acetol is indeed
generated from glycerol on Cu surfaces, instead of being
a dehydrogenated product from 1,2-PDO. In particular, the
selectivity could be dominated by acetol (90 mol%) when the
reaction is operated in a N2 atmosphere23 (250 �C and Cu/Al2O3

catalyst). Indeed, from our results, acetol can be thermody-
namically as stable as 1,2-PDO depending on H2 pressure and
thus can readily desorb from Cu surfaces. The high stability of
acetol also leads to further C–O bond breaking (to 2-propanol)
becoming kinetically impossible and the hydrogenation to 1,2-
PDO is le as the only viable route (see ESI Fig. S8†).

Second, dihydroxyacetone is a key intermediate in forming
acetol and 1,2-PDO. By comparing glycerol conversions on Cu–
ZnO (1 : 1) and Cu in a N2 atmosphere,21 Liu et al. found that
both acetol and its hydrogenated form 1,2-PDO are produced in
the absence of H2. This indicates that dehydrogenation should
be involved in the catalysis process, which would otherwise lead
only to the formation of the dehydration product (acetol) due to
the lack of H supply. Our results conrm that the dehydroge-
nation steps are kinetically most favored on Cu surfaces and
dihydroxyacetone is the precursor to acetol and 1,2-PDO.

Third, the selectivity to 1,3-PDO on Cu catalysts can be
improved if the dehydration pathways are invoked which are
however non-selective to 1,2-PDO and 1,3-PDO. Indeed, Huang
et al. showed that the SiO2-supported Cu–H4SiW12O40 catalyst
can reach a maximum 1,3-PDO selectivity of 32.1%, while 1,2-
PDO selectivity is also 22.2% at 83.4% conversion.18 Similarly, Li
et al. showed that 2Cu–6WOx–TiO2 can reach a maximum 1,3-
PDO selectivity of 32.3%, while 1,2-PDO selectivity is 27.6% at
12.7% conversion.19 From our results, the presence of strong
acidity as introduced by H4SiW12O40/WOx helps to stabilize the
protonated glycerol (states 1 and 7) and thus benet the non-
selective direct dehydration pathways over the selective dehy-
drogenation pathways. In line with this, the high H2 pressure
that depresses the dehydrogenation channel should also be
effective to increase 1,3-PDO selectivity. Indeed, we note that
under acidic conditions, by replacing Cu with Pt, the 1,3-PDO
selectivity can be much improved,76,77 which is in line with the
fact that the Pt surface can adsorb H stronger and achieve the
saturated H coverage. This effectively blocks the 1,2-PDO
selectivity that needs rst dehydrogenation. For example, the
Qiao group reported that tungsten-doped siliceous mesocellular
foam supported Pt catalysts (Pt/W-MCFs) can reach a high 1,3-
PDO selectivity of 65% at 423 K and H2 pressure of 4.0 MPa.77

We note that the mechanism identied here for glycerol
hydrogenolysis can be readily applied to understand the dehy-
dration of other polyols. For example, 1, 2-butanediol is re-
ported to be selectively converted to 1-hydroxy-2-butanone
(>95%) over the CuZnCrAlO (CuO : ZnO : ZrO2 : Al2O3 ¼
12 : 1 : 2 : 2) catalyst at 210 �C under a N2 atmosphere.78 The
selective dehydrogenation to ketone products is in line with our
nding that the dehydrogenation which is kinetically favored
selectively occurs at the secondary C and further dehydration is
kinetically unfavored because of the high stability (similar to
acetol). Similarly, 1,3-butanediol is found to be mainly con-
verted to 4-hydroxy-2-butanone (�42%) and 2-butanone (�35%)
© 2022 The Author(s). Published by the Royal Society of Chemistry
over 25.0 wt% Cu–SiO2 catalyst at 250 �C under a N2 atmo-
sphere.79 From our mechanisms, the main products should be
produced from the selective secondary C–OH dehydrogenation
(4-hydroxy-2-butanone) which is then followed by dehydration
via the retro-Michael addition (2-butanone).

For more complex polyols, Sato et al. reported that 1,2,3-
butanetriol can transform into four major products over Cu–
Al2O3 catalyst at 250 �C under a N2 atmosphere,23 including 1-
hydroxy-2-butanone (selectivity 21.2%), 3-hydroxy-2-butanone
(15.5%), 2,3-butanedione (20.0%) and acetol (17.1%), and 1,2,4-
butanetriol mainly transforms into 1-hydroxy-2-butanone
(51.4%). Obviously, all main products are all ketones instead of
aldehydes, which is in line with our nding that the dehydro-
genation which is kinetically favored selectively occurs at the
secondary C.
3.3 Low-energy C–O bond cleavage channels in general

Our AI-Cat conrms that despite the huge number of possible
reaction intermediates from glycerol hydrogenolysis, the C–O
bond cleavage must follow several low energy reaction patterns.
This leads us to wonder howmany low energy reaction channels
are available for C–O bond cleavage on Cu surfaces, which
should be of general signicance for understanding polyol
catalysis on metals in general.

By analyzing our reaction database which contains 1948
reactions and 592 reaction patterns that are related to C–O bond
breaking, we identied six low energy reaction patterns, which
start from saturated or close-to-saturated molecules/fragments
where the unsaturated bond is terminated by the surface. These
six types of reactions are summarized in the le panel of Fig. 6
and ordered according to their reaction barriers on Cu surfaces.
They are further elaborated in the following.

Types I and II: the most feasible C–O bond breaking (barrier
< 0.5 eV) occurs on the C atom with dual C–O bonds. This
includes COOH/ CO + OH (type I) and R2C(OH)OR/ R2C]O
+ HOR (type II).

Types III, IV and V: these reaction types feature a non-sp3 C (a-
C) neighbouring the C–O bond, which generally have the barrier
of 0.5–1 eV. This unsaturated C can either be sp2 C atom with
a double-bond or a C radical site, which can adsorb on metal
surfaces and is thus stabilized as a reaction intermediate. These
a-C are in analogy to the allylic site or the a-site of carbonyl in
organic chemistry, and the presence of catalysts stabilizes the site
and makes these patterns widely present in the reaction data-
base. Among them, both III and IV are typical examples with a-
site sp2 C. Type III, RC(]O)CH(R)CH2(OR) / RC(]O)C(R)]
CH2 + *H + *OR, is the retro-Michael addition, also found in the
glycerol hydrogenolysis reaction network (glyceraldehyde to 2-
hydroxyacrylaldehyde); type IV, RC(]O)CH2(OR) / RC(–O*)]
CH2 + *OR, is the keto–enol tautomerization facilitated C–Obond
breaking, which is the key reaction in glycerol hydrogenolysis
(dihydroxyacetone / 6); type V reaction, R2C–*CH2(OR) /

R2C]CH2 + *OR, can be considered as an a-C radical pattern
appearing in the base catalyzed E2 elimination.

Type VI: the direct C–O bond breaking can occur by a rst
hydrogenation followed by dehydration with the barrier being
Chem. Sci., 2022, 13, 8148–8160 | 8157
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Fig. 6 (A) Six low-barrier C–O bond cleavage patterns (type I to VI) identified from the reaction database; (B) the charge density difference
contour plot for three low-barrier C–O bond cleavage TSs that appeared in glycerol hydrogenolysis, i.e., TS of retro-Michael addition (type III),
TS1 (type IV) and TS3 (type VI). Also see Fig. 5 for TS1 and TS3. The charge density difference is obtained by subtracting the total electron density of
the surface and the reacting molecule from that of the TS. The isosurface density is at 0.003jej/bohr.3 Blue: density increase; yellow: density
decrease.
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�1–1.5 eV. The reaction pattern is similar to the strong-acid-
promoted dehydration of alcohols in solution chemistry. This is
because themetal catalyst can act as the electron reservoir to store
the extra electron from H to allow the protonation of the alcohol.

To better understand how the surface promotes the C–O
bond breaking reactions, we have analyzed the electronic
structures for three reaction types appearing in glycerol hydro-
genolysis, i.e. TS1 in Fig. 5 (type III), TS from glyceraldehyde to
2-hydroxyacrylaldehyde in ESI Fig. S7† (type IV, a retro-Michael
addition mechanism) and TS3 in Fig. 5 (type VI). The charge
density difference isosurface contour plot for these TSs are
shown in the right panel of Fig. 6, which are obtained by sub-
tracting the total charge density of the surface and the reacting
molecule from that of the TS.

We found that in type III and IV patterns the Cu surface gives
rise to strong covalent bonding with the reacting molecule.
Specically, in type III the Cu–O bond at O1 helps to stabilize
the enol precursor and thus facilitates the retro-Michael addi-
tion. Similarly, in type IV (TS1) the Cu–O bond at the O2 site
donates an electron to the carbonyl O atom and thus assists the
keto–enol tautomerization to form the C–C p–p interaction. In
contrast, in the type VI reaction, there is no obvious orbital
mixing between the surface and the reacting molecule, instead
the surface acts as an electron acceptor to stabilize the hydro-
genated molecule, leading to the protonated TS.

4 Conclusion

By developing a general-purpose activity predictor for heteroge-
neous catalysis, the AI-Cat method, this work provides a new
perspective to the long-standing puzzles on the high selectivity of
8158 | Chem. Sci., 2022, 13, 8148–8160
glycerol hydrogenolysis to 1,2-PDO on Cu catalysts, and points out
the directions to optimize the selectivity towards 1,3-PDO. Our AI-
Cat method is an end-to-end approach to resolve the reaction
prole from simple inputs (e.g. glycerol, H2 molecules and Cu
catalyst). It predicts correctly the kinetic preference of 1,2-PDO
production in glycerol hydrogenolysis, which features the Cu-
mediated enol–keto tautomeric resonance to facilitate the primary
C–OH bond breaking at dihydroxyacetone. The overall barrier to
1,2-PDO is 0.20 eV lower than that to 1,3-PDO on Cu(111). Six low
energy C–O bond cleavage channels are discovered from the
reaction database, which is of general signicance for polyol
catalysis on metals. We demonstrate that AI-Cat possesses high
efficiency and much better accuracy than traditional BEP rela-
tionship approaches in reaction prediction. The age for automated
reaction prediction in heterogeneous catalysis is now coming.

Data availability

The database for reactions on Cu surfaces and the trained NN
models is available on the website (https://github.com/lasphub/
AI-Cat).
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The AI-Cat code is openly available on the website (https://
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