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Upstream wall vortices in viscoelastic flow past a
cylinder†

Cameron C. Hopkins, * Simon J. Haward and Amy Q. Shen *

We report a novel inertia-less, elastic flow instability for a viscoelastic, shear-thinning wormlike micellar

solution flowing past a microcylinder in a channel with blockage ratio BR = 2R/W = 0.5 and aspect ratio

a = H/W E 5, where R E 100 mm is the cylinder radius, W is the channel width, and H is the channel

height. The instability manifests upstream of the cylinder and changes form with increasing Weissenberg

number over the range 0.5 t Wi = Ul/R t 900, where U is the average flow velocity and l is the

terminal relaxation time of the fluid. Beyond a first critical Wi, the instability begins as a bending of the

streamlines near the upstream pole of the cylinder that breaks the symmetry of the flow. Beyond a

second critical Wi, small, time-steady, and approximately symmetric wall-attached vortices form

upstream of the cylinder. Beyond a third critical Wi, the flow becomes time dependent and pulses with a

characteristic frequency commensurate with the breakage timescale of the wormlike micelles. This is

accompanied by a breaking of the symmetry of the wall-attached vortices, where one vortex becomes

considerably larger than the other. Finally, beyond a fourth critical Wi, a vortex forms attached to the

upstream pole of the cylinder whose length fluctuates in time. The flow is highly time dependent, and

the cylinder-attached vortex and wall-attached vortices compete dynamically for space and time in

the channel. Our results add to the rapidly growing understanding of viscoelastic flow instabilities

in microfluidic geometries.

1 Introduction

Viscoelastic fluids are a class of complex fluid that have
rheological properties intermediate between a viscous fluid
and an elastic solid. The elasticity in viscoelastic fluids is due
to the formation of complex microstructures arising from the
presence of macromolecules like polymers, DNA, or proteins,
or aggregations of surfactants, colloidal particles or bubbles.1

Of particular relevance to the present work is the influence of
extensible molecules or aggregates such as high-molecular-
weight polymers or wormlike micelles (so-called ‘living’
polymers.2,3) Subject to shearing flow, the rearrangement of
these molecules or micelles can lead to a reduction in the resis-
tance to the flow (shear-thinning viscosity), while under exten-
sional flow, the stretching of the molecules or micelles can lead to
an increase in the extensional viscosity (extension-hardening).

Flow of a viscoelastic fluid can become unstable due to
nonlinearities arising from elasticity and/or inertia.4 The rela-
tive strength of elasticity in a flow compared to dissipative
viscosity can be quantified by their ratio via the dimensionless
Weissenberg number Wi = l _g, where l is the fluid relaxation
time, and _g = U/L is a characteristic shear rate, where U and
L are a characteristic velocity and length-scale, respectively. The
relative strength of inertia to viscosity in a flow can be quanti-
fied by their ratio via the dimensionless Reynolds number
Re = rUL/Z, where r is the fluid density and Z is the fluid
viscosity. At the small length-scales LBO(100 mm) accessible in
microfluidic devices,5,6 viscoelastic flow experiments can be
performed at negligible inertia (Re{ 1), but high elasticity
(Wic 1). Such flows are prone to instability in a variety of
different geometries, driven entirely by elastic effects.4,7–15

These elastic instabilities can affect widespread industrially and
biologically relevant processes such viscoelastic flow in porous
media,16–24 hemodynamics,25–27 and jet fragmentation.28,29

A common morphological structure that appears due to
elastic instability is the formation of a vortex, or vortices,
upstream of a geometric feature in a channel.30–44 For the
creeping flow (i.e., Re{ 1) of shear-thinning viscoelastic poly-
mer, wormlike micellar, or DNA solutions in a microchannel
with a 901 L-bend, a lip vortex can form at the re-entrant,
upstream corner of the bend.30–33,45 Similarly, upstream vortices
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have also been observed attached to the walls in the flow of
viscoelastic, shear-thinning fluids in the cross-slot,34–38 and abrupt
contraction geometries.39–44

More relevant to the present study is viscoelastic flow past a
cylinder in a channel. Flow past a cylinder has long been
considered a benchmark test for the study of viscoelastic
fluid dynamics.46–49 This geometry incorporates extensional
kinematics near the stagnation points at the upstream and
downstream poles of the cylinder, and shear in the gaps
between the cylinder and walls.48,50 These competing influ-
ences can be varied by changing the channel blockage ratio
BR = 2R/W, where R is the cylinder radius and W is the channel
width (Fig. 1). How the elastic flow instability manifests in this
system depends significantly on fluid rheology and the geo-
metry of the channel. For creeping flow of a constant-
viscosity, highly-elastic Boger fluid past a macro-scale cylinder
(R = O(1 mm), with channel aspect ratio a = H/W E 6, where
H is the channel height), over a range of blockage ratio
0.17 r BR r 0.50, the strength of elasticity in the flow was
found to have almost no influence on the velocity profile
upstream of the cylinder, but resulted in the formation of a
low-velocity wake downstream of the cylinder that developed a
three-dimensional cellular structure along its length.48

In contrast, for creeping flow of a weakly elastic but
constant-viscosity dilute polymer solution past a microcylinder
(R = 20 mm) with BR = 0.1 and a = 5, the flow was found to
destabilize upstream of the cylinder; polymers were stretched
in the upstream extension-dominated region of the flow and
were accelerated past the cylinder, leaving a very long, slow-
moving wake downstream of the cylinder that shielded the

downstream stagnation point from the flow.51 For test fluids
that are both viscoelastic and shear-thinning, creeping flows
past high aspect-ratio (a = 5), low blockage-ratio (BR r 0.2)
microcylinders have been observed to destabilize to a state with
a strong lateral asymmetry where most of the fluid flows
preferentially around one side of the cylinder. Detailed experi-
ments and numerical simulations suggest that this steady flow
asymmetry arises due to a combination of extension in the
wake and shear-thinning in the gaps between cylinder and
walls.20,52–58

For viscoelastic flow past high-blockage-ratio microcylinders
(BR Z 0.5) in low-aspect-ratio channels (a r 0.6), experiments
show dynamics that are significantly different from those
observed in flow past smaller blockage ratio cylinders in higher
aspect ratio channels. For both constant viscosity, highly elastic
polymer solutions,59 and shear-thinning, viscoelastic wormlike
micellar solutions,60 the elastic instability results in the for-
mation of a stagnant vortex region attached to the upstream
pole of the cylinder. A recent numerical study61 of the two-
dimensional flow of a viscoelastic fluid modelled by the finitely
extensible nonlinear elastic model with the Peterlin closure
(FENE-P) past cylinders with BR Z 0.5 has also revealed similar
upstream vortices attached to the cylinder. It is clear that the
rheology of the test fluid, and the channel aspect and blockage
ratios can significantly affect the nature of the elastic flow
instability. In these studies on flow past BR Z 0.5 cylinders,59–61

there are potential signs of upstream wall vortices, however
they are not explicitly mentioned in the papers and they appear
intermittently or together with the upstream cylinder vortex.

In this work, we present microfluidic flow experiments using
micro-particle image velocimetry on the flow of a viscoelastic,
shear-thinning wormlike micellar solution past a microcylinder
with BR = 0.5 in a high-aspect-ratio microchannel (a E 5).
We observe a novel flow instability that manifests upstream of
the cylinder. With increasing Wi, it begins with bending
streamlines near the upstream pole, followed by the formation
of wall-attached vortices (steady and time dependent), and
finally the formation of a vortex attached to the upstream pole
of the cylinder. We perform a detailed quantitative analysis of
the different stages of the flow instability, and analyze the time-
dependent behaviour of the flow. The time dependence is
discussed in the context of the complex stress-relaxation
dynamics of the wormlike micelles.

2 Experimental methods
2.1 Microfluidic device

The microfluidic channel used in this work was fabricated from
fused silica using the subtractive three-dimensional (3D) print-
ing technique of selective laser-induced etching.6,62 A sche-
matic diagram of the geometry is shown in Fig. 1(a), and
brightfield micrographs are shown in Fig. 1(b) and (c). The
channel has width W = 408 mm in the y direction, and height
H = 2030 mm in the z direction. The length of the channel in the
flow (x) direction is 25 mm. A single microcylinder is situated in

Fig. 1 (a) Schematic diagram of the flow geometry. (b) Top-view, and
(c) side-view micrographs of the microfluidic channel illustrate the mea-
sured dimensions of the channel and cylinder. The coordinate system is
indicated with the origin located at the center of the cylinder.
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the center of the channel. The diameter of the microcylinder is
2R = 204 mm. These dimensions yield a channel blockage ratio
BR = 0.5, and channel aspect ratio aE 5. The coordinate system
is indicated in Fig. 1 with the origin situated at the geometric
center of the microcylinder.

2.2 Wormlike micellar test solution

The fluid used in this study is a well-characterized wormlike
micellar solution comprised of 100 mM cetylpyridinium chloride
(CpyCl) and 60 mM sodium salicylate (NaSal) (both acquired
from Sigma-Aldrich and used without further purification) dis-
solved in milli-Q water. The mixture of surfactant and counterion
at these concentrations is known to form giant wormlike micelles in
solution.63,64 The solution was prepared by adding weighed quan-
tities of the surfactant and counterion to the appropriate volume of
milli-Q water. The solution was stirred vigorously for three days at
room temperature and then allowed to rest for two weeks in a dark
space prior to use in the experiments.

The shear rheology of the wormlike micellar solution was
measured at T = 24 1C (the same temperature as the subsequent
flow experiments) using a DHR3 stress-controlled rotational
rheometer (TA Instruments Inc.) fitted with the 40 mm, 11 angle
stainless steel cone-and-plate geometry. Fig. 2(a) shows the
steady shear viscosity Z and shear stress s versus the applied
shear rate _g. The solution exhibits a constant plateau viscosity
Z0 E 27.5 Pa s at low shear rates. With increasing shear rate, the
viscosity transitions to a strongly shear-thinning regime spanning
approximately 3 decades in shear rate from 100 t _g t 103 s�1.
Over this range of _g, the shear stress is approximately constant,
indicating shear banding.65–67 However, we note here that shear
banding is not a rheological feature necessary for the flow
instability observed in this work to occur. This will be discussed
more in Section 4. The shear stress starts to increases again for
_g t 103 s�1, and the shear viscosity approaches a high shear-rate
plateau viscosity. The shear rheology is well-described by the
Carreau–Yasuda generalized Newtonian fluid model:68

Zð _gÞ ¼ Z1 þ ðZ0 � Z1Þ 1þ _g
_g�

� �a� �n� 1

a
; (1)

where ZN = 2 mPa s is the infinite-shear-rate plateau viscosity,
_g* = 0.62 s�1 is the characteristic shear rate for the transition to
shear thinning, n = 0 is the power-law index in the shear-thinning
region, and a = 1.93 is a dimensionless fitting parameter that
controls the rate of the transition between the low shear-rate
constant viscosity plateau and the intermediate shear-thinning
regions. These parameters were determined by fitting eqn (1) to
the measured shear viscosity. The fit parameters are listed in Table 1.

The first normal stress difference N1 and first normal stress
coefficient C1 were measured using an ARES G2 strain-
controlled rotational rheometer (TA Instruments Inc.) fitted
with the 50 mm, 11 angle stainless steel cone-and-plate geo-
metry. Fig. 2(b) shows N1 and C1 versus _g. With increasing _g, N1

is well-described by the increasing power law function

N1 (_g) = b _gm, (2)

where b = 35.6 Pa sm and m = 0.67. By definition, C1 = N1/ _g2,
therefore C1 = b _gm�2, where b and m are the same as above.
These parameters are included in Table 1. The shear stress and
viscosity were also measured using the ARES G2 rheometer and
agree well with the data shown in Fig. 2(a) measured with the
DHR3 rheometer.

Fig. 2 (a) Shear viscosity Z and shear stress s, and (b) first normal stress difference
N1 and first normal stress coefficient C1, plotted versus shear rate _g for the
100 mM:60 mM CpyCl:NaSal solution. The black curves in (a) are fits of the
Carreau–Yasuda model (eqn (1)). The black curves in (b) are fits of a power-law
model (eqn (2)). (c) The elastic G0 and viscous G00 moduli as a function of angular
frequency o under small-amplitude oscillatory shear with strain amplitude g = 5%.
The red curve is the fit of the single-mode Maxwell model (eqn (3)) to the data. The
inset shows the moduli normalized by the plateau modulus G0 presented in a
Cole–Cole plot. The black curve is a fit of a circle with a diameter of 0.87.

Table 1 A summary of the rheological properties of the 100 : 60 mM
CpyCl:NaSal wormlike micellar test solution at T = 24 1C

Z0

[Pa s]
ZN

[mPa s]
_g*

[s�1]
a n b

[Pa sm]
m G0

[Pa]
l

[s]
lbreak

[s]
lrep

[s]

27.5 2 0.62 1.93 0 35.6 0.67 24.8 1.54 0.53 4.48

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

3 
Ju

ne
 2

02
2.

 D
ow

nl
oa

de
d 

on
 1

/2
3/

20
25

 7
:4

2:
23

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2sm00418f


This journal is © The Royal Society of Chemistry 2022 Soft Matter, 2022, 18, 4868–4880 |  4871

The elastic and viscous moduli, G0 and G00, were measured
by small-amplitude oscillatory shear with a strain amplitude
g = 5%, which is within the linear viscoelastic regime. The
results are shown in Fig. 2(c). The moduli are well-described by
the single mode Maxwell model given by:

G0ðoÞ ¼ G0ðloÞ2
1þ ðloÞ2;G

00ðoÞ ¼ G0lo
1þ ðloÞ2; (3)

where G0 is the plateau modulus and l is the terminal relaxa-
tion time. These parameters were determined by fitting eqn (3)
to the measured moduli. The results are shown in Fig. 2(b) and
Table 1. Wormlike micelles are distinct from polymers because
they can relax stress via both reptation and the dynamic break-
age and reformation of the micelles.2,3,63,64 By following the
methods described by Cates and coworkers,2,3 the diameter of
the circle fit to the data shown in the Cole–Cole plot in the inset
of Fig. 2(b) can be used to determine the timescales associated
with reptation and the breakage and reformation of the
micelles. This procedure yields the reptation timescale lrep = 4.48 s,
and the breakage and reformation timescale lbreak = 0.53 s, which are

related to the terminal relaxation time via l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lbreaklrep

p
.

2.3 Flow control and dimensionless parameters

The wormlike micellar test solution was pumped through the
microfluidic channel using two syringe pumps (Cetoni GmbH).
One pump was used to inject, and the other to withdraw fluid
at the same volumetric flow rate Q; with average flow velocity
U = Q/WH. Two 25 ml Hamilton Gastight syringes were used
with polyether ether ketone (PEEK) fingertight fittings and
polytetrafluoroethylene (PTFE) tubing. The range of flow rate
Q imposed in this study was 0.0007 r Q r 3.1 ml min�1, hence
average flow velocity 0.014 r U r 62.2 mm s�1. In the
dimensionless Weissenberg and Reynolds numbers, we use
the cylinder radius as the characteristic length-scale and the
average flow velocity as the characteristic velocity. Hence, the
Weissenberg number is

Wi ¼ Ul
R
; (4)

where the fluid relaxation time is taken to be the terminal
relaxation time, and we assume that it does not depend on
shear rate.

To account for the shear-thinning viscosity of the test fluid
in the Reynolds number, we define it in two different ways
using the zero-shear-rate and infinite-shear-rate viscosities:

Re0 ¼
rUR

Z0
; and Re1 ¼

rUR

Z1
: (5)

The density of the fluid r = 997 kg m�3 is assumed to be
equal to the density of the DI water solvent.

To quantify the relative strength of elastic to inertial forces
in the flow, we use the elasticity numbers

El0 ¼
Wi

Re0
¼ lZ0

rR2
; and El1 ¼

Wi

Re1
¼ lZ1

rR2
: (6)

Over the range of Q imposed in this work, 0.5 t Wi t 900,
Re0 t 2.3 � 10�4, and ReN t 3.1, which yield El0 E 4.1 � 106

and ElN E 300. Therefore, we conclude that elastic force is the
dominant force in the flow, and even under the highest flow
rate imposed in this work, Re is small. We note that due to
shear localization of the wormlike micellar solution at the
channel walls,69–73 the flow is plug-like far from the cylinder
(Fig. 3), so the fluid is under negligible shear as it appro-
aches the cylinder. Therefore the dimensionless parameters calcu-
lated using Z0 may be more representative of the relative strengths
of the forces in the flow for this work, and so inertia may be
assumed to be negligible and we will not discuss it further.

2.4 Flow visualization

Quantitative and spatially resolved two-dimensional (2D) flow
fields were obtained using micro-particle image velocimetry
(mPIV, TSI Inc.).74,75 The fluid was seeded with a low concen-
tration of 2 mm-diameter fluorescent tracer microparticles
(Fluoromax red, Thermo Scientific Inc.). The mPIV measure-
ments were recorded at the mid-plane (z = 0) of the channel
using an inverted microscope (Nikon Ti) with a 4� Plan Fluor,
NA = 0.13 numerical aperture objective lens and a high speed
camera (Phantom Miro) working in frame-straddling mode.
With this camera and microscope objective, the field of view
was 2.56 mm � 1.60 mm with a measurement depth of 159 mm,
approximately 8% of the height of the channel. At each
imposed flow rate, the flow was held for at least 60 seconds,
i.e., \30l, before recording the mPIV data. For time-steady
flows, mPIV frame pairs were recorded at 25 pairs per second
for 10 seconds. For time-dependent flows, mPIV frame pairs
were recorded at 50 pairs per second for 30 seconds. Frame
pairs were processed both individually and by ensemble-
averaging. The velocity field u = [u, v], where u is the
x-component of the velocity and v is the y-component of the
velocity, was determined via cross-correlation between frame
pairs using OpenPIV, an open-source Python package.76

3 Results
3.1 Flow behaviour

Fig. 3 shows a selection of time-averaged velocity fields normal-
ized by the maximum velocity that capture the evolution of the
instability observed for increasing Wi. Note that the velocity
fields upstream and downstream of the cylinder are plotted
separately because they were measured in non-coincident
experiments and therefore do not match precisely. For some
Wi, the flow is laterally asymmetric downstream of the cylinder,
e.g., Fig. 3(b) and (c). However, these effects are extremely weak
compared with the downstream asymmetries observed for
viscoelastic flow past low-BR cylinders,20,51–58 and the flow
regains symmetry beyond the distance of approximately 10R.
In the present case, by far the most significant phenomena are
observed upstream of the cylinder, so we will focus on the
instability that forms upstream for the remainder of this work.
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For sufficiently low Wi = 2.5, the flow upstream of the
cylinder is steady and symmetric (Fig. 3(a)). As Wi is increased
beyond a critical value Wic1 E 19.5, the streamlines bend near
the upstream pole of the cylinder due to the elastic compres-
sional stress at the stagnation point (Fig. 3(b)). In the case
shown, fluid approaching the cylinder initially along the line
y = 0 follows the bent streamline so that it turns to go below
[y o 0] the cylinder before changing direction to go above [y 4 0]
the cylinder. The volume of fluid initially extending below the
cylinder causes a reduction in the gap available for the remaining
fluid to pass the cylinder. Therefore, that fluid attains a higher
flow velocity than on the opposite side of the cylinder (apparent in
Fig. 3(b) and (c)). This causes a small lateral asymmetry in the flow
velocities on either side of the cylinder similar to that seen in
viscoelastic flow past cylinders with a smaller BR,20,52–56 however
the mechanism that generates it is fundamentally different. Note
that although both cases shown in Fig. 3(b) and (c) display a
bending of the streamlines towards the bottom of the cylinder,
the direction of the instability is random, and bending in the

opposite direction was also observed. To further demonstrate the
flow behaviour along the bending streamlines, Movie S1 included
in the ESI† shows a time-dependent, magnified view of the
particle images and velocity field near the upstream stagnation
point for the Wi = 38 case shown in Fig. 3(b).

For Wi beyond a second critical value Wic2 E 60, vortices
form that are attached to the walls upstream of the cylinder at
x E � 2.5R (Fig. 3(c)). With increasing Wi, the vortices extend
upstream. The flow becomes strongly time dependent beyond a
third critical value Wic3 E 125. This coincides with a divergence
in the size of the vortices to yield one vortex that is significantly
larger than the other (Fig. 3(d)). In addition, a small vortex
forms intermittently that is attached to the upstream stagna-
tion point of the cylinder. However, it does not exist for very
long because the wall-attached vortices dominate the flow until
higher Wi. This will be discussed more in Section 3.4 and 3.5.
Note that because the velocity fields shown are time-averaged,
the re-circulation structure within the vortices is smoothed
out for all but the largest vortex on the bottom wall in Fig. 3(d).

Fig. 3 Time-averaged velocity fields measured for flow of the wormlike micellar solution past a BR = 0.5 cylinder at (a) Wi = 2.5, (b) Wi = 38, (c) Wi = 100,
(d) Wi = 180, (e) Wi = 897. The velocity fields are normalized by the maximum velocity in each respective case. Upstream and downstream velocity fields
were measured in separate non-coincident experiments and are thus presented separately.
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The vortices can be seen more clearly in Movies S2–S5 (ESI†)
showing the time-dependent velocity fields at Wi = 90, 148, 190
and 507, respectively. A fully 3-dimensional characterization of
these vortices is beyond the scope of this work. However, Fig. S1
in the ESI† shows time-averaged velocity fields imaged in the x–z
plane at y E 1.8R and y E �1.8R at Wi = 97, 145, and 175, and
accompanying time-dependent velocity fields in Movies S6–S8
(ESI†). Fig. S1 (ESI†) indicates that along the height of the channel
(z direction), the smaller vortices present in Fig. 3(c) and (d) are in
fact comprised of several small vortices stacked along the height of
the channel. It is also evident that the larger vortex in Fig. 3(d) spans
the full height of the channel, and merges with two more large
vortices on the top and bottom walls of the channel (z = � H/2).

Finally, for Wi beyond a fourth critical value Wic4 E 255, the
vortex that forms attached to the upstream stagnation point of
the cylinder grows substantially in length and persists in time
(Fig. 3(e)). As will be discussed later, this flow state is highly
time dependent. The cylinder vortex fluctuates in length and
competes dynamically with the wall vortices for time and space
in the channel, see Movie S5 included in the ESI.†

3.2 Characterization of the Bending Streamline Instability

The four stages in the evolution of the flow state with increasing
Wi will now be analyzed separately. We start with an analysis of

the bending of the streamlines near the upstream pole of the
cylinder by looking at the spatial dependence of the y-component
of the fluid velocity, v(x, y) (Fig. 4). The y-component of the fluid
velocity along the symmetry line y = 0 normalized by the average
fluid velocity, v(x, 0)/U, is plotted in Fig. 4(a) for select values of Wi.
Note that the bending is always in the same direction in Fig. 4(a),
and that the cases shown in Fig. 3(a)–(d) are also plotted in
Fig. 4(a). For low Wi = 2.5, v(x, 0)/U does not deviate significantly
from 0. At the other Wi shown, all greater than Wic1, v(x, 0)/U
initially decreases below 0 as it approaches the cylinder, before
increasing to a maximum slightly upstream of the cylinder.
The precise position of the maximum depends on Wi, however
for simplicity we select an arbitrary position near the maxima,
x = �1.4R, to record the velocity for analysis. We define
vp = v(�1.4R, 0) as a probe velocity to quantify the degree to
which the transverse flow velocity deviates from zero upstream of
the cylinder. The normalized magnitude of the probe velocity
|%vp/U| is plotted versus Wi in Fig. 4(b) for four independent
experiments. For low Wi, |%vp/U| E 0. As Wi is increased beyond
the first critical value Wic1, the streamlines bend upstream of the
cylinder and vp acquires a non-zero value, hence |%vp/U| increases.
The growth of |%vp/U| with Wi is well described by the phenomen-
ological Landau-type quartic potential that is minimized as:

Wi = Wic1 (g|%vp/U|2 + h|%vp/U|�1 + 1), (7)

Fig. 4 (a) The y-component of the fluid velocity v plotted versus the normalized x coordinate x/R along the line y = 0 for a selection of Wi. The dashed
gray line is located at x =�1.4R. (b) The magnitude of v evaluated at x =�1.4R and y = 0, vp, time-averaged and normalized by the average fluid velocity U
plotted versus Wi for all of the independent runs performed. The solid black curve is a fit of the Landau model (eqn (7)) to |vp/U| near the transition. (c) The
normalized variance of |vp|, (sv/U)2, plotted versus Wi for all of the independent runs performed. The inset plot shows a magnified view of the data over a
range of Wi near the onset of time dependent behaviour. The solid colored lines in the inset connect the data to aid the eye. The gray dashed lines in (b)
and (c) indicate the different critical Wi as described in the text.
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where the first critical Weissenberg number Wic1 = 19.5, the
growth rate coefficient g = 1.1, and the asymmetry term
h = �0.01 were determined by fitting eqn (7) to the data close
to the transition. The good fit indicates that the bending of the
streamlines is a supercritical pitchfork bifurcation. The results
from the independent experiments agree well with each other
and do not show hysteresis near this transition when increasing
or decreasing Wi quasistatically in steps of size dWi E 2.5.

Further increasing Wi beyond Wic1, |%vp/U| increases to a
plateau value of |%vp/U| E 0.6, which remains approximately
constant until the second critical Weissenberg number Wic2,
when wall-attached vortices form upstream of the cylinder.
Subsequently, |%vp/U| starts to decrease, and continues to decrease
over the rest of the Wi range studied. For Wi 4 Wic4, the probe
location is within the upstream cylinder vortex, so vp no longer
provides an accurate description of the bending streamline
instability in this range.

As a cursory study of the time dependent flow behaviour,
we analyze the amplitude of the time dependent fluctuations
by plotting the normalized variance of the probe velocity,
(sv/U)2, versus Wi in Fig. 4(c). For Wi o Wic1, (sv/U)2 E 0. For
Wic1 o Wi o Wic3, i.e., within the regime where the stream-
lines are bent upstream, and the regime where the vortices
have formed on the walls, (sv/U)2 gains a slight positive value,
indicating vp fluctuates with a relatively low amplitude.
However, the fluctuations are random and there is no clear
difference in (sv/U)2 in the regimes with or without the
upstream wall vortices. The onset of time dependence is
marked by a dramatic increase in (sv/U)2 when Wi is increased
beyond Wic3, where Wic3 E 125. Following the abrupt increase,
there is a general trend for the variance to decrease with
increasing Wi, however there is a fair amount of scatter in
the data between the separate runs. In addition, no clear
hysteresis is observed between runs when increasing or
decreasing Wi quasistatically in steps of size dWi E 5, as
highlighted in the inset plot in Fig. 4(c). A more detailed
analysis of the time dependent behaviour of the flow will be
presented in Section 3.5.

3.3 Characterization of the upstream wall vortices

Here we analyze the properties of the vortices that form
attached to the walls upstream of the cylinder. An example
time-averaged velocity field obtained at Wi = 148 is shown in
Fig. 5(a). In Fig. 5(b), the normalized x-component of the fluid
velocity, u/U, is plotted along the lines y/R = �1.9, near the top
and bottom walls. Far upstream of the cylinder, u/U E 1.
At positions within each vortex, u/U decreases to near 0. To
quantify the width of the vortices, W, we select an arbitrary
threshold value for the velocity u/U = 0.5, below which we define
to be ‘inside’ the vortex. Therefore, the width of each vortex is
the span of x/R where u/U r 0.5. The normalized position of
each vortex, w, is the midpoint of this range. The downstream
edge of the vortices is at x/R E �1.75 and it is approximately
constant when the flow is time-steady, i.e., for Wi o Wic3, and
therefore w andW are coupled. However, for Wi 4 Wic3, when
the flow is time dependent, w andW decouple, and the vortices

can maintain constant W with varying w by sliding along the
walls, or they can maintain constant w with varying W by
changing size symmetrically about their center-point. Since
the two vortices tend to be asymmetric in size, we distinguish
between them based on which is larger or smaller and use the
subscript ‘large’ or ‘small’ on w and W when necessary. Note
that w and W are quantities normalized by R.

We established in Section 3.2 that this system does not
exhibit hysteresis in the instabilities observed, and indepen-
dent runs agree reasonably well with each other. Therefore,
to simplify the presentation of the data, hereafter we have

Fig. 5 (a) A representative time-averaged velocity field normalized by U at
a value of Wi such that two asymmetric vortices are present upstream of
the cylinder. (b) u/U plotted vs. x/R along the lines y = �1.9R, near the top
and bottom walls. The gray dashed line indicates u/U = 0.5. The width of
the large and small vortices,W large andWsmall are indicated in the plot and
defined in the text. (c) The Wi-dependence of the center-position of the
vortices, w, and (d) their width W grouped by which vortex is larger or
smaller, and averaged over time and each independent run as described in
the text. The gray dashed lines in (c) and (d) indicate the different critical Wi
as described in the text.
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averaged the separate runs together into a single data set. The
error bars in the plots that follow account for both the time
dependence of the quantities at each Wi for each run, and the
variation between runs.

Fig. 5(c) and (d) show plots of w and W, respectively, versus
Wi. The second critical Weissenberg number Wic2 = 60 is
defined as the Wi at which upstream wall vortices first appear.
With increasing Wi beyond Wic2, the vortices gradually extend
upstream, i.e., w becomes more negative, and W increases.
As Wi is increased beyond Wic3, when the flow becomes
strongly time dependent, the position and size of the vortices
diverge. One vortex becomes substantially larger than the other,
while the smaller vortex does not change significantly in
size. The growth of wlarge and W large with Wi over the range
Wic2o Wi o Wic4 is approximately quadratic. For Wi 4 Wic4,
the flow is dominated by the vortex that is attached to the
upstream pole of the cylinder, and the wall vortices exist
intermittently. The data shown in Fig. 5(c) and (d) within
this regime account only for the moments in time when the
wall vortices exist. This will be discussed in more detail in
Section 3.5.

3.4 Characterization of the upstream cylinder vortex

We characterize the upstream cylinder vortex in a similar manner
to the upstream wall vortices. An example time-averaged velocity
field at Wi = 897, when the flow is dominated by the upstream
cylinder vortex, is plotted in Fig. 6(a). We define the length of the
vortex L using the same threshold procedure as for the wall
vortices. Fig. 6(b) shows u/U plotted along the symmetry line y = 0.
In the case shown, u/U is small close to the cylinder, and u/U E 2
far from the cylinder. We define ‘inside’ the vortex to be the length
over which u/U r 0.5.

Fig. 6(c) shows the length L of the upstream cylinder vortex
plotted versus Wi. The fourth critical Weissenberg number
Wic4 = 255 is defined as the Wi above which the upstream
cylinder vortex grows significantly and persists over time.
As Wi is increased beyond Wic4, the vortex grows in length
and fluctuates significantly in time, with its mean length
increasing approximately linearly with Wi.

At Wi within the time-steady regimes, i.e., Wi o Wic3, LE1
across the full range of Wi. This does not indicate the presence
of a vortex of length L = 1, but rather is an artefact of the
threshold method for measuring L, since the flow velocity
always drops below the threshold value close enough (within
E1R) to the cylinder. For Wic3o Wi o Wic4, the time depen-
dent pulsing of the flow results in a periodic lengthening of the
low-velocity region near the upstream stagnation point of the
cylinder, and thus an increase in the mean and standard
deviation of L. This will be discussed more in Section 3.5.

3.5 Time dependence

The discussion of the results presented above was almost exclu-
sively on the general trends in the time-averaged quantities.
Here, we explore in more detail the time-dependent behaviour
of the transverse component of velocity near the upstream pole

of the cylinder, and the quantities describing the wall and
cylinder vortices.

Time series of |%vp/U|, w, W, and L at select values of Wi are
plotted in Fig. 7 (note that the scale of the axes forW, w, and L
vary between the columns). Fig. 7(a) shows time series for
Wi = 90, i.e., for Wic2 o Wi o Wic3. This Wi is less than the
value for significant time dependence, but is within the regime
where there are small wall vortices. All plots at this Wi show
that there are underlying low-amplitude random fluctuations
but no periodicity to the time dependence. In addition, w and
W show that the vortices are at slightly different positions and
vary slightly over time, but are similar in size. The distinction
between which vortex is labelled as larger or smaller is made at
t = 0 s, but for this case the two vortices are very similar in size,
and which vortex is larger changes over time. A video of the
velocity field at this Wi over the same time-range is included in
the Movie S2 (ESI†).

Fig. 7(b) shows time series at Wi = 148, i.e., for Wic3 o Wi o Wic4.
Over this range of Wi, all quantities show quasi-periodic pulsing
time dependence. The pulses in |%vp/U| vary in amplitude, but
their spacing in time is fairly regular. w and W also undergo
long-time variation that does not exhibit any clear periodicity
over longer time scales (430 s) than that shown here. At t = 0 s,

Fig. 6 (a) A representative time-averaged velocity field normalized by U at
a value of Wi such that the upstream cylinder vortex is the dominant
feature in the flow. (b) u/U plotted versus x/R along the line y = 0. The gray
dashed line indicates u/U = 0.5. The length of the vortex L is indicated in
the plot and defined in the text. (c) The Wi-dependence of L averaged over
time and over each independent run. The gray dashed lines in (c) indicate
the different critical Wi as described in the text.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

3 
Ju

ne
 2

02
2.

 D
ow

nl
oa

de
d 

on
 1

/2
3/

20
25

 7
:4

2:
23

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2sm00418f


4876 |  Soft Matter, 2022, 18, 4868–4880 This journal is © The Royal Society of Chemistry 2022

the two vortices have similar size and position, but w and W
diverge as time increases. Over the time range shown one vortex
shrinks, and thus wsmall moves closer to the cylinder, while the
larger vortex remains approximately constant in size. This long-
time behaviour is likely due to movement of the vortices along
the height of the channel (z direction) and variation in their
3-dimensional structure. See the ESI† and Movies S6–S8 (ESI†).
Overlaid on the long-time variation are quasi-periodic pulses
of similar frequency to those observed in |%vp/U|. The pulses in
|%vp/U| andW large occur coincidentally, however the pulse in wlarge

towards the cylinder occurs a short time (E40 ms) later. These
pulses are also apparent in wsmall, however they do not occur in
Wsmall. Inverse pulses in L also occur coincidentally with the
pulses in |%vp/U|, i.e., L is at a minimum when |%vp/U| is at a
maximum. The pulses in |%vp/U| are due to an increase in the velocity
of the fluid moving around the vortices and past the cylinder. This is
accompanied by a reduction in the size of the low-velocity region of
fluid near the upstream pole of the cylinder. This also causes the
larger vortex to be stretched slightly towards the cylinder, shifting the
downstream edge of the vortex closer to the cylinder, while the
smaller vortex slides along the wall towards the cylinder without
changing size. This is followed by a shift in the position of the large
vortex towards the cylinder that lags the pulse in time possibly due to
the inertia of the vortex. A video of the velocity field at Wi = 148 over
the same time-range is included in the Movie S3 (ESI†).

Fig. 7(c) shows time series at Wi = 190, i.e., within the same
time-dependent regime as in Fig. 7(b), Wic3 o Wi o Wic4, but

at a higher Wi. At this Wi, all quantities show similar behaviour
to that at Wi = 148 with a few key differences. First, there is a
more clear disparity in the size of the wall vortices; one of the
vortices is approximately three times larger than the other (note
the different scales of the w and W plots compared to those at
lower Wi). Second, the time dependence follows the same
general behaviour as discussed above but the frequency of
the pulsing is higher. This will be discussed further in Section
3.6 in the context of the frequency spectra of the time depen-
dence. Finally, short bursts of irregularity in the time-series for
L and |%vp/U| start to appear, for example at around t = 2 s. This
is due to the upstream cylinder-attached vortex starting to form.
However, the vortex cannot grow substantially in size because
the wall vortices occupy significant space in the channel and
are presumably more stable at this Wi. A video of the velocity
field at Wi = 190 over the same time-range is included in the
Movie S4 (ESI†).

Fig. 7(d) shows time series at Wi = 507, i.e., for Wi 4 Wic4.
This is within the regime where the cylinder vortex is present,
and it competes for time and space in the channel with the wall
vortices. The time series are much less regular in this case than
at lower Wi. The probe velocity vp is located within the cylinder
vortex and no longer accurately quantifies the velocity of the
fluid following the bent streamlines. The wall vortices are only
intermittently present, so the plots of w andW are discontinuous.
However, there is a key interplay between the length of the
cylinder vortex L and the variables describing the wall vortices.

Fig. 7 A selection of time series of the normalized probe velocity |vp/U| (first row), center-position of the vortices w (second row), the width of
the vorticesW (third row), and the length of the upstream cylinder vortex L (fourth row) as defined in the text. The columns distinguish the data by Wi,
(a) Wi = 90, (b) Wi = 148, (c) Wi = 190 and (d) Wi = 507. In (d), the small and large vortices are only intermittently present in the experiment, so wsmall and
wlarge are discontinuous, as discussed in the text. The blue dashed boxes highlight two moments of interest described in the text. Note the different scales
of the y-axes between the plots.
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As t approaches 1 s, L increases gradually and then decreases
sharply. The sharp decrease is accompanied by an abrupt
increase in W large from 0 to a relatively large value. However,
the smaller vortex does not appear. W large then decreases
gradually to zero over approximately 2.5 s while L gradually
grows, and then the process is repeated. Two occurrences of
the abrupt decrease in L and increase inW large are highlighted in
Fig. 7(d) by blue dashed boxes. This process describes a large
vortex forming at the upstream pole of the cylinder that fluctuates
and grows in size until, at its largest, it sheds from the cylinder
and migrates towards one of the side walls. The vortex then stays
on the wall for a short time until it is squeezed out of existence by
the formation of another cylinder vortex. In this case, the vortex
always sheds towards the positive side of the channel, however
both directions were observed in the experiments. The ‘smaller’
vortex is also intermittently detectable, or very small for the
duration of the experiment, so in Fig. 7(d)Wsmall E 0, and wsmall

is only sometimes present. A video of the velocity field at Wi = 507
over the same time-range is included in the Movie S5 (ESI†).

3.6 Power spectra

Since the periodicity of the time dependence is most evident in
the time series of |%vp/U| and L, and they both exhibit similar
pulsation time dependence, here we will focus only on the
frequency spectra of L. The power spectral density function of

L with its mean subtracted (PSD{L� �L}) is plotted in Fig. 8(a)
for the same time series as shown in Fig. 7. Note that the PSD
for the Wi = 507 case has been multiplied by 10 to separate
it from the spectra at lower Wi, but the other spectra have not
been shifted.

The PSD for the Wi = 90 case shows no distinct features. For
Wi = 148 there is a strong peak in the spectrum at fpeak E 5.7 Hz,
and higher harmonics can be discerned up to 4fpeak. This is
accompanied by a broad spectrum increase in the power. For
Wi = 190, the dominant peak in PSD{L � �L} is more broad and is
shifted to fpeak E 8.6 Hz. Finally, for Wi = 507, factoring in the
�10 shift in the spectrum, there is a further increase in the broad
spectrum amplitude of the power spectrum compared to a lower
Wi. No clear peak can be discerned in the spectrum, and at high
frequency it decays with a power-law slope approximately equal to
�2. A common feature of elastic turbulence is the power-law
decay of the velocity power spectra with slope E�3.5, with the
precise slope value depending on geometry.9,10,14 Despite the
high Wi, the signature of elastic turbulence is not observed in
this system, which suggests that the kinematics in the flow past
the microcylinder may serve to limit the elastic stress. For the
flow of the same wormlike micellar solution past a rigid, BR = 0.1
microcylinder, elastic turbulence was not observed at high Wi.53

However, if the BR = 0.1 cylinder was cantilevered and therefore
flexible, the signature of elastic turbulence was observed in its
flow-induced vibrations at high Wi.20 In the flow past the
cantilevered cylinder, elastic stress (flow-induced birefringence)
was found to be most intense at the free tip of the cylinder. The
deflection of the cylinder may therefore alter the kinematics in
the flow to permit the growth of elastic stress into the turbulent

regime. We note that although the power spectra shown in Fig. 8
are of the vortex length, power spectra of the velocity of the fluid
both upstream and downstream of the cylinder show the same
slope of �2 at the highest Wi probed (Wi E 900, not shown).

The trend for the dominant frequency to shift higher with
increasing Wi is observed across all of the experiments
(Fig. 7(b)). Note the narrow range of Wi plotted. We fit a
power-law function of the form given by eqn (8) to the data.
The fit yielded f0 = 2.8 Hz, a = 9.4 � 10�5, and b = 2.1.
The constant term f0 can be interpreted as the apparent
pulsation frequency at zero Wi, i.e., zero stress, and is similar
to the inverse of the breakage timescale 1/lbreak E 2 Hz. For
Wi 4 235, a dominant frequency can no longer be identified in
the spectra.

fpeak = f0 + aWib (8)

4 Discussion and conclusions

We have presented a detailed characterization of a new viscoe-
lastic flow instability for creeping flow past a microcylinder
with blockage ratio BR = 0.5 and aspect ratio aE 5. The way the
instability modifies the flow resembles the elastic instabilities

Fig. 8 (a) Power spectral density functions of the time series of L � �L for
the same Wi as shown in Fig. 7. The data for Wi = 507 have been shifted up
by a factor of 10 for clarity. The other data have not been shifted. (b) The
primary frequency peak in the power spectra fpeak, plotted versus Wi. The
error bars indicate the width of the peaks and are mostly smaller than
the size of the data points. The red curve is a fit of eqn (8) to the data.
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in several other systems including bending streamlines and an
upstream vortex attached to the cylinder reported in visco-
elastic flow past more confined microcylinders,59,60 upstream
lip vortices seen in L-bend30–33,45 and cross-slot34–38 geo-
metries, and corner vortices in contraction geometries.39–44

However, this work is the first to explicitly report the observa-
tion of upstream wall vortices in viscoelastic flow past a
cylinder. We note that although the wormlike micellar solution
used in this work has shear banding properties, shear banding
is not a requirement for the instability to occur. In Fig. S2
through S5 in the ESI† we present cursory flow experiments
using three viscoelastic fluids with contrasting rheological
properties: a weakly elastic, shear-thinning fluid; an elastic,
constant viscosity Boger fluid; and a shear-thinning but non-
shear-banding polymer solution. We demonstrate that neither
shear-thinning viscosity nor elasticity alone are sufficient for
the upstream bending streamline instability to occur, nor for
upstream wall-attached or cylinder-attached vortices to form.
However, flow of the shear-thinning but non-shear-banding
polymer solution yielded flow behaviour analogous to the
wormlike micellar solution. The requirement for the test fluid
to be both shear thinning and sufficiently elastic is consistent
with the rheological requirements for a lip vortex to form
upstream of a 90-degree bend31,45 or cross-slot geometry,34,35

and for the lateral flow asymmetry to occur in the flow of
viscoelastic, shear-thinning fluids past a cylinder with
smaller BR.55

The initial destabilization of the flow from steady and
symmetric to steady with bent streamlines near the upstream
stagnation point is likely due to the compression of the worm-
like micelles as they approach the cylinder. The micelles are
subsequently stretched by the contraction flow through the
gaps between the cylinder and walls. This instability is well-
described by a supercritical pitchfork bifurcation. This flow
state persists until two vortices form on the walls upstream of
the cylinder, which is accompanied by a reduction in the
normalized velocity of the fluid moving laterally near the
upstream stagnation point. The wall vortices are reminiscent
of upstream lip vortices seen in L-bend30–33 and cross-slot34–38

geometries. In those systems, the mechanism behind the
formation of the lip vortices is a combination of streamline
curvature and elastic tensile stress along the streamlines that
satisfy the Pakdel–McKinley criterion for elastic instability.7,8

In addition, shear thinning was also required to reduce stress
gradients near the corners in the geometry. Although there is
no geometric corner in the cylinder geometry in the present
work, the bent streamlines near the upstream pole may yield
similar conditions to those in the aforementioned studies.
The formation of the wall vortices therefore seems to limit the
curvature of the streamlines near the stagnation point, and
thus reduce the elastic stress in the flow. The growth of the
vortices with increasing Wi may also serve to reduce the
extensional rate of the fluid by increasing the distance over
which the fluid must accelerate to squeeze between the
cylinder and walls. The fact that the fingerprint of elastic
turbulence was not observed in the power spectra even at the

highest Wi probed in this study may further support this
supposition.

Over a limited range of Wi when the flow was time dependent,
the flow pulsed quasi-periodically with a frequency slightly higher
than the inverse of the time scale associated with the breakage
and reformation of the micelles 1/lbreak E 2 Hz. The pulsation
frequency increased from fpeak E 5 Hz at the onset of time
dependence to fpeak E 12 Hz at the highest Wi where quasi-
periodic pulsations were still observed. A fit of a power-law
function with an constant offset term yielded an apparent zero-
Wi frequency of f0 = 2.8 Hz, which is similar to the inverse of the
breakage timescale, lbreak, which was calculated from the small-
amplitude oscillatory shear rheology of the wormlike micellar
solution by using the model of Turner and Cates.2,3 Their model
makes the assumption that the micelles are under equilibrium
conditions, and the micelles dynamically break and reform to
relieve stress accumulated from a step-increase in strain. These
conditions do not accurately describe the state of the micelles
flowing past the cylinder in this work. The micelles are subject to
a complex combination of shear, compression, and extension.
These complex kinematics may explain why the pulsation
frequency is higher than 1/lbreak, and why it increases with
increasing Wi; the more stress the micelles are under, the more
frequently the micelles can break.

Interestingly, the time dependent behaviour differs from
that observed in flow of the same wormlike micellar solution
past a cylinder with a smaller BR.20,53 In those studies, for
similar Wi, the fluid pulsed with time dependence that was
governed by the terminal relaxation time l, rather than lbreak.
This may be because that instability originates at the down-
stream stagnation point of the cylinder, and develops into a
state where shear-thinning of the fluid and extension of
the micelles govern the behaviour of the system. Compression
is less significant, both at the upstream stagnation point due
to the lateral asymmetry in the flow, and because the gaps
between the cylinder and walls are relatively large, thus limiting
the contraction flow in the gaps. This suggests that the contrac-
tion flow through the cylinder-wall gaps in flow past a higher-BR

cylinder may contribute to the difference in the dynamics of
the flow. In addition, the quasi-periodic pulsing dynamics are
reminiscent of the pulse-like time dependence observed in the
shearing flow of wormlike micellar fluids in a Couette cell,77 and
the pressure-driven flow of wormlike micellar fluids in a capillary
channel,78 where the dynamics are attributed to the breakdown of
the micelle structure due to the strong shear or extensional
stresses in the flow. Similarly, here the stress accumulated by
the micelles from the rapid acceleration and extension into the
gaps of the contraction flow may be more readily relaxed via
micellar breakage, thus also limiting the extensional stress of
the micelles. The different time-dependent behaviour in flow
of a wormlike micellar solution past low-BR, and high-BR micro-
cylinders may provide a novel way to measure the terminal
relaxation time and breakage timescale, respectively, of wormlike
micellar solutions under stress.

The novel flow instability presented in this work offers an
additional result for the benchmark test of viscoelastic flow past
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a cylinder. The results discussed were entirely two-dimensional,
focused on the mid-plane of the channel. Due to the stark
difference in the behaviour of this instability with increasing
Wi compared to viscoelastic flow past microcylinders in low-
aspect ratio microchannels,59,60 the aspect ratio of the channel
likely plays a significant role in the flow dynamics. In addition,
a recent numerical study of two-dimensional viscoelastic flow
past a cylinder reproduced the upstream cylinder vortex, but no
clear sign of wall vortices was reported.61 A complete under-
standing of the complex dynamics responsible for the instability
will therefore likely require a fully 3D investigation of this flow.
3D numerical simulations of viscoelastic flow past a cylinder,
and a systematic experimental study that varies the channel
blockage and aspect ratios, and the rheology of the test fluid will
be instructive. Our results contribute to the rapidly growing
understanding viscoelastic flow instabilities in microfluidic
geometries,15,24,57 and should be considered in the design of
microfluidic devices and lab-on-a-chip systems that utilize visco-
elastic fluids.
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