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Elastogranular columns and beams

Arman Guerra, †a Casey Lautzenhiser, †a Xin Jiang, a Kate Flanagan,a

David Rak,a Skylar Tibbitsb and Douglas P. Holmes*a

String and grains can be combined to create structures capable of bearing significant loads. In this work,

we prepare columns and beams through a layer-by-layer deposition of granular matter and loops of

fiber strings, and characterize their mechanical properties. The loops cause the grains to jam, and the

inter-grain contact leads to a Hertzian-like constitutive response. Initially, one force chain that

propagates vertically through the column bears most of the compressive load. As the magnitude of the

load is increased, more force chains form in the column, which act in parallel to increase its stiffness,

akin to a ‘‘super-Hertzian’’ regime. Applying a compressive prestress enables the structures to withstand

shear, enabling the fabrication of cantilevered beams. This work provides a mechanical framework to

use elastogranular jamming to create rapid, reusable infrastructure components, such as columns,

beams, and arches from inexpensive, commonplace materials, such as rocks and string.

1 Introduction

The art of dry stone walling is considered by UNESCO to be one
of the intangible cultural heritages of humanity.1 Dry stone
structures lack mortar, and rely on the precise, layer-by-layer
placement of stones to provide structural integrity. In lieu of an
adhesive binder, the combination of friction and geometric
interlocking provides the structures with significant strength, a
process more generally described by the jamming of granular
matter. Granular matter will jam, undergoing a phase transi-
tion from a fluid-like state to a solid-like state, when the density
of the granular packing reaches a critical point.2–5 As this
density of particles increases, so does the number of contacts
that a particular grain has with its neighbors, until the packing
is said to be jammed and isostatic, and each particle is in a
state of mechanical equilibrium. The jammed state is strongly
dependent on several criteria, including the frictional proper-
ties, shape, and polydispersity of the grains, and it has been
shown that truly novel and complex physics develop near the
jamming point.6 Once the system reaches the jammed state,
the collective behavior of the grains is akin to a solid material.
However, for packings of disordered particles at low pressure
near this jamming transition, global forcing does not trivially
translate to local contacts, and these systems show increasingly
complex deformation fields under shear loading.7 As a result,
while the total granular structure can withstand large applied

loads in some directions, they may be quite fragile when loaded
in others.8 This interplay is why grains can sustain a finite
angle of repose under the influence of gravity,9 and yet require
intricate placement with interlocking shapes to adopt more
complex forms.10–13

The stabilization of soils is perhaps even more tightly entwined
with human history than the art of dry stone walling. Chemical
stabilization, by the addition of lime to soils, was used by early
civilizations in Mesopotamia and Egypt.14,15 For thousands of years,
humans have lived in dwellings made of bricks formed by combin-
ing mud and straw.16 The underlying principles of chemically or
structurally reinforcing earth were revisited in the late 1960’s,17 with
a particular focus on stabilizing slopes prone to erosion.18 Soil
erosion is often caused by deforestation and the displacement of
deep-rooted grasses, as networks of plant roots act as stabilizers.19–21

In addition to these natural stabilizers, there has been a sustained
interest in using synthetic fibers as a means to stabilize a variety
of subterranean granular matter, including soils,22–25 sand,26–29

aggregates,30,31 silt,32 and ash33 stabilized by synthetic fibers, yarns,
geotextiles, laminates, and randomly oriented inclusions.

The addition of elastic fibers with a negligible bending
rigidity to a granular medium increases the number of contacts
on each grain, and adding additional confinement to the
granular particles. It has been shown that highly confined
granular materials behave qualitatively different from loose or
bulk grains.34–36 In this case, the added confinement allows
jamming to occur at a lower granular packing density. In turn,
the entangled network of fibers gives the grains an intermedi-
ate, scale reinforcing structure. Granular jamming caused by
the confinement of a slender body inside a granular medium
results in an intricate coupling of elastic and granular
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interactions that exhibit bending, buckling, and reconfiguration of
the slender elastic structure and its surrounding grains.37–41 Tuning
particle shape alone has a strong influence on the mechanical
response of granular materials.11,42,43 Combining elastic and gran-
ular materials to form an elastogranular structure38 can allow
for further reinforcement, and enable the formation of jammed,
free-standing elastogranular architecture.44–46 Engineering elasto-
granular columns and barriers presents a means for large-scale,
reversible and reusable structures,10,12,47 which present modern
analogs to subterranean elastogranular reinforcement, a task pre-
viously achieved using mechanically stabilized earth48 and fabric.49

Current research efforts in architectural jamming10,12,47 have
demonstrated that elastogranular structures can be utilized as
engineering structures if we can better understand how to design
and build them with designed mechanical properties.

While the mechanics of subterranean elastogranular struc-
tures have been examined using triaxial testing and numerical
methods,50–52 much less is understood about free-standing
structures. The authors recently examined the minimum cri-
teria to enable free-standing elastogranular structures, finding
that for columns of grains surrounded by loops of fiber, the

critical spacing Sc=2R ¼ max 3 sin a;
2 sin aþ 1

1þ 2bhe

� �
of exterior

loops is a function of the grain radius (R), the angle of repose
(a proxy measure of friction and grain geometry, a), and a
dimensionless, hydroelastic scale bhe which is a ratio between
the hydrostatic force from the grains on the loops and their
bending rigidity.53 When the weight of the grains is large
compared to their bending rigidity, i.e. when bhe is large,
friction dominates and the angle of repose sets the critical
minimum spacing to form a free-standing column. Rigid loops,
i.e. when bhe is small, can increase this minimum spacing when
the hydrostatic load is small. While this initial work deter-
mined the criteria to form structures that can bear their own
weight, it did not provide insight into their mechanical
response to external loads.

In this work, we examine the mechanical response of
elastogranular columns and beams prepared with a variety of
granular matter and fiber reinforcement (Fig. 1). We find that
the stiffness of the columns is a function of the grain stiffness,
average radii, and degree of order of the granular material,
while the stability of grains within the column, and therefore
the ‘‘smoothness’’ of their loading response, depends on the
amount of added fiber. Finally, we will examine the effects of
shear on columns by compressing them and then orienting
them horizontally like cantilever beams. With sufficient pre-
load, elastogranular beams can bear significant load perpendi-
cular to their long axis, providing a resistance to shear that is
proportional to the magnitude of the applied compressive load.

2 Columns
2.1 Experiments

For this work, we prepared elastogranular columns via the
layer-by-layer deposition of rocks and loops of fiber within a

slip-cast mold. We used a variety of particles to represent a
range of frictional properties, and stiffness, including crushed
marble, granite, sandstone, rubber spheres, plastic garden
stones, and chopped rubber particles (average grain radii R
ranging from 1–1.25 cm). We studied elastogranular columns
prepared with two types of elastic fiber loops: exterior loops of
radius 40 mm, and interior loops of radius 15 mm (twisted
nylon, 18 gauge). Slip-cast molds were prepared with a piece of
Mylar film (0.127 mm thick, McMaster) taped into a cylinder of
the target diameter (80 mm) and height (120 mm). To form a
layer we deposited grains by hand, and tamped gently with a
circular acrylic plunger until we reached a desired layer thick-
ness approximately equal to the average grain diameter 2R.
During this deposition process, we placed exterior fiber loops at
consistent intervals such that the loops were evenly spaced, and
no loops overlapped as depicted in Fig. 2. For columns pre-
pared with both interior and exterior fiber, we also placed
multiple internal loops as depicted in Fig. 2. To parameterize
the amount of external and internal fiber, we consider the area
ratio ce = Ae/AC and volume ratio ci = Vi/VL respectively, where Vi

is the total volume of interior fiber in one layer, VL is the volume
of rock in one layer, Ae is the total surface area of external fiber
coverage, and AC is the total surface area of the column. Note
that minimum Ae is controlled by the critical loop spacing.53 To
understand what effect the fiber has on the mechanical proper-
ties of the columns, we constructed many columns, varying ce

from 0.13 to 0.76 at ci = 0, and ci from 0 to 0.05 at ce = 0.26.
We then removed the mold and probed their mechanical

properties. We performed displacement-controlled compres-
sion tests using an Instron 5943 (maximum load 500 N) at a
rate of 5 mm min�1. Excluding the cyclical loading described in
Fig. 3, ten compression tests were run for each sample: the first
to a maximum load of 450 N, the subsequent cyclical tests

Fig. 1 (a) Elastogranular columns increasing in scale with a fixed volu-
metric ratio of fibers to grains. Jamming facilitates the formation of
elastogranular (a) columns, (b) cantilever beams, and (c) arches. All scale
bars 40 mm.
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(loading/unloading) to a maximum load of 200 N. For the
entirety of this loading process, we also measure the displace-
ment of the loading plate (which is equivalent to the end-
shortening in the columns) d. In this work we only analyze
experimental data in this force range because of the limitations
of our equipment. However, we have also seen that these
columns can handle a much larger load than we could probe
– for instance, when compressed in a hydraulic press, columns
constructed with marble grains could withstand a load capacity
of 30 kN, and only collapsed when the grains began to
pulverize.

2.2 Numerical simulations

In addition to our physical experiments, we also performed
numerical simulations to allow for precision in fiber placement
and for construction of columns with extreme values of ce

(values near Sc and values near the saturation limit, where
Ae E Ac). These simulations also allowed us to investigate the
processes internal to the columns, motivating the analysis that
we used to understand the nature of their mechanical response.
We implement numerical simulations using the Large-scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS)54 in
the manner outlined in Guerra (2021)53 (Fig. 2). The simulated
columns had the same dimensions as the physical columns, a
grain diameter of 1.1 cm, and fiber diameter 1.5 mm. For the
grains, we consider spherical particles with similar character-
istics to hard rubber (Young’s modulus Eg = 6.5 � 107 Pa,
Poisson’s ratio n = 0.4, coefficient of sliding friction ms = 1.16
and rolling friction mr = 1), and for the fibers we consider loops
with Young’s modulus Es = 109 Pa. We vary ce from 0.38 to 0.89,
and use ci = 0, that is, we do not consider any simulations with
internal fiber, simply because simulating fiber is computation-
ally expensive. We also do not perform any simulations of the
cantilever beams for the same reason. We discuss these and
other possible additional simulations in the conclusions.

For each simulation, grains are randomly poured into a
cylinder while the fibers are fixed in place. That cylinder is then
removed, the fibers freed, and a circular force plate is inserted
on top of the column (Fig. 2). Due to the computational
demand of the simulations, loading rate could not be matched
to physical experiments, however we found that a loading rate
of 100 N s�1 was sufficiently slow to ensure an iso-static
response. The compression cycles were modeled after physical
experiments and begin with a strain surface setting cycle with a
peak load of 450 N, followed by 3 subsequent cycles with peak
loads of 200 N. All image analyses and visualizations of simu-
lated columns are completed using the Open Visualization Tool
(OVITO).55 We found that the simulations displayed similar
qualitative and quantitative (Fig. 4) characteristics to physical
experiments throughout the loading process.

2.3 Analysis

The primary means by which we will characterize the mechan-
ical properties of these elastogranular systems is through the
use of force–displacement analyses, in which load is applied to
an object, and the displacement is measured at the point of
contact with the loading apparatus. In Fig. 3, we show the first
11 cycles of the force–displacement response of a column
cyclically loaded in uniaxial compression N = 100 times, where
each cycle has a peak load of 200 N. There is a significant
amount of hysteresis between loading and unloading the
column, especially at small N, and some of this dissipation
occurs due to the plastic-like permanent deformation of the
column due to a cycle of loading, which we refer to as dc. We
find that dc/H B N�1 (Fig. 3a inset). If we zoom in on the first
cycle (Fig. 3b), we see the source of this plastic deformation –
for small displacements the force response appears to be

Fig. 2 (a) The process for column construction utilizing both interior and
exterior fibers. From left to right – the empty cylindrical mold – the
top–down view of the method of construction within the cylindrical
mold – a completed column. (b) Simulation images of a column being
constructed and subsequently loaded.

Fig. 3 (a) The first 11 cycles of the loading of a cylinder. In the inset we
show how dc decreases with cycle number. (inset) The plastic deformation
of a column seems to scale with the inverse of the cycle number. (b) We
zoom in on the first (orange) loading cycle of the column, and compare it
with five loadings of piles of grains. The dotted line is an empirical fit with a
slope of 1. (c) The loading response (blue line taken from (a) above)
eventually adopts a slope of 3/2 corresponding to a Hertzian response.
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similar to that of a pile of grains loaded in compression under
small displacement, where the majority of that displacement is
due to rearrangement of particles. We find empirically that this
seems to follow a power law of F B d, although we do not
propose a mechanism for why that is the case. The experi-
mental setup described in this work (and our capacity for
visualizing granular of the grains) is not sensitive enough to
capture these small rearrangements at low d, and the simula-
tion time to develop a framework for this behavior is prohibi-
tive, and therefore we leave a more mechanistic approach to the
low-displacement force response of elastogranular structures to
future work.

In Fig. 3c, we show the force–displacement curve for one of
the later loading cycles from Fig. 3a. We find that, after this
initial grain rearrangement regime, in this log–log plot the
curve approaches a slope of E3/2. We can understand this
behavior through classical approaches for analyzing the contact
between two non-adhesive elastic spherical bodies, as devel-
oped by Hertz (1882)56 and further extended by Johnson
(1987).57 This approach yields the following relation between
force (F) and displacement (d)

F = Kd3/2. (1)

where K = (4/3)E*R*1/2 is the ‘‘Hertzian stiffness,’’ E* = ((1� n1
2)/

E1 + (1 � n2
2)/E2)�1 is the effective Young’s modulus, R* = R1R2/

(R1 + R2) is the effective radius, and Ei, ni, and Ri are the Young’s
moduli, Poisson’s ratios, and radii of the bodies. We might
expect then that this 3/2 slope in the force–displacement is due
to the elastic deformation of the granular materials, since any

elastic deformation of the fiber would induce a different
slope.58

Next, we will build upon the contact mechanics of single
particle response to understand the response of the elastogra-
nular columns. In Fig. 4a, we show simulations of a specific
column at increasing load from left to right, where the opacity
of the granular particles is set by their pressure. We can see that
at low load, there is approximately a single ‘‘force chain’’59–62

which traverses from the top of the column to the bottom. As
this load increases and the particles deform, the number of
force chains increases until many grains are part of a force
chain. We can predict the force–displacement response of a
force chain (assuming all particles remain in contact over the
course of their loading, and particles do not slide against each-
other) by considering the particles as being in-series with each-
other, such that their total stiffness will be

1

Kc
¼
Xn
I¼1

1

Ki
(2)

where Kc is the stiffness of the chain of grains, n is the number
of grains in a chain, and Ki is the stiffness of grain i. This simply
comes from the fact that if you compress a stack of particles
(such as the one shown in the inset of Fig. 4b) each particle
experiences the same compressive force, and so the total
deformation is simply the sum of the deformations of each
particle. Since the stiffness is inversely proportional to the
deformation, it is also inversely proportional to the number
of particles. Instead of using the mathematical value of K listed
above (since we do not know the Young’s moduli of our
particles, or the average radii Ri of the surface features of the
grains), we perform additional force–displacement experiments
on single grains, and find an average fit value of K for each
particle type. If we assume that the stiffness of each grain is the
same, then we have that Kc = K/n. If we consider only one force
chain to be bearing the majority of the load (Fig. 4a) then we
would expect that the stiffness of the entire column would
simply be the stiffness of one force chain. Or in other words,
combining eqn (1) with the predicted chain stiffness (K/n) and
rearranging,

Fn

KR3=2
¼ d

R

� �3=2

(3)

In Fig. 4b we plot this non-dimensionalized response – where
the data is colored by our fit values of K – for all grain types
(circles), and for our simulated columns (squares). All force–
displacement curves indeed collapse to what eqn (3) indicates,
except for the experiments with rubber spheres. During con-
struction of columns with these particles, because of the careful
layer-by layer approach, these particles tended to pack into a
regular lattice. We expect that, because of this lattice arrange-
ment, multiple force chains become active closer to the begin-
ning of the loading cycle (though not all of them, as force
networks are still disordered in lattice arrangements of gran-
ular particles63). We expect that it is this effect that leads the
columns to be stiffer than our model predicts.

Fig. 4 (a) Simulation images where the load on the column is increasing
from left to right. In the center three images, the opacity of the granular
particles is set by the pressure from other particles, the loading cell, and
the floor (note that less opaque grains may appear gray). We see that the
number of force chains increases with load, starting with just one chain. (b)
If we nondimensionalize F and d using eqn (3) – that is, if we assume that
the stiffness of a column is the stiffness of one continuous force chain –
we find that the force–displacement curves (experiments – circles, simu-
lations – squares) of all column types (after the initial grain-settling period
at low d) fall onto the directly predicted curve (blue line), with the
exception of the rubber spheres, which pack into a lattice, increasing the
stiffness of those columns. The data is colored by the Hertzian stiffness K.
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For much of the post-grain-settling (elastic) section of the
force–displacement response of these columns, we indeed find
that the response fits well into the classical 3/2 understanding
of grain contact. And indeed, for some grain types, especially
those with higher K, the responses match this classical predic-
tion for the entire loading cycle. However, we find that when
d reaches the order of a grain radius (which we only observed
for some grain types, as we were not able to compress columns
made with very stiff grains this much Fig. 4b), the columns
seem to adopt a new response. We zoom in on the high-d
section of the force–displacement curves of the rubber chunks
in Fig. 5c, and find that at a consistent value of d/R, the
columns transition into a ‘‘super-Hertzian’’ regime, where the
force becomes proportional to a higher-than-3/2 exponent of d.

We already know, however, that when the force on the
columns is significant, the number of force-chains which are
in compression increases. This is analogous to the Steuermann
extension of Hertzian contact,57,64 in that the columns begin to
‘‘conform’’ to the applied load. When only one force chain is
loaded (at low d), the stiffness of the column is simply the
stiffness of this chain. But, as the displacement increases and
more force chains become loaded (Fig. 5a), they bear the load in
parallel, and we would expect that the in-parallel stiffness of
multiple chains is larger than the stiffness of one single chain.
We can formulate this mathematically based on the illustration
in Fig. 5b. We consider a column to be made up of m force

chains which will become activated at different d. We call dj the
necessary column displacement such that force chain j will
become active. If this arrangement is loaded, we would
expect that

Fn

KR3=2
¼
Xm
i¼1

Heavðd� diÞ
d� di
R

� �3=2

(4)

where the Heaviside step function (Heav(x) = 1 if x 4 0, 0
otherwise) simply ensures that we do not count any force
chains which are not yet loaded. In more plain terms, this
equation models the idea that force chain i will only become
active once we have surpassed the necessary displacement di

such that it activates. Furthermore, once it is active, it will
respond to its loading with a force given by eqn (1) where the
displacement is offset by di. We can also define gj = dj+1 � dj to
be the displacement between the formation of force chains j
and j + 1. In other words, once we have activated force chain j,
we must compress the column an additional gj to activate force
chain j + 1. If we assume that the height difference between
subsequent force chains is on the order of one grain radius
gi = g = r, we can find a numerical version of eqn (4). We plot
this in Fig. 5c (red line) and find that this model captures the
point of deviation from the 3/2 response (black dotted line), as
well as the slope in the super-Hertzian regime. We note that, as
we have zoomed in heavily on this section of our data, we can
now see that the prediction (blue line) which comes from our
nondimensionalization (eqn (4)) is off by a factor of order 1
(E1.4). Indeed, if the same zoom is performed for all particle
types in Fig. 4 we find similar kinds of deviations, where the
true stiffness of the columns is off from our prediction by a
factor of �2. We expect that this comes from the approxima-
tions that we made in arriving at eqn (3), as well as second-
order corrections coming from the exact shape of the grains,
their frictional properties, the mode of construction of the
column, etc.

In Fig. 4b, we find that the columns exhibit a similar
response regardless of the amount of external fiber that they
are constructed with. We show this again in Fig. 6b, where we
plot the average total stiffness of each column Kt normalized by
the stiffness of a column constructed with the lowest possible
ce, and ci = 0 against ce and ci. We find that increasing ce

increases the stiffness of some columns by at most a factor of
E1.8 (however this finding is not universal to all particle types)
and increasing ci has no regular effect on the column stiffness.
In other words, the fiber effect on the columns is mostly
kinematic, providing constraints on motion, while the grains
set the material response.

We did find, analogous to the work in Guerra (2021),53 that
increasing the amount of fiber, inside or out, increased the
stability of the particles in the columns. When loading a
column with a low amount of internal and external fiber, we
noticed large shifts in grain positions, which resulted in a
‘‘jagged’’ force–displacement response (Fig. 6d inset black).
Increasing the amount of fiber led to ‘‘smoother’’ curves
(Fig. 6d inset orange). To quantify this effect, we sum the

Fig. 5 (a) In our simulations, we find that as we compress a column made
up of particles whose material properties are modeled after the chopped
rubber, the number of force chains increases. (b) An illustration of our
mathematical model. As the column gets loaded, subsequent force chains
become active, supporting the load in parallel and increasing the stiffness
of the column. The necessary displacement to activate force chain i (di) is
shown for i = 3, and the displacement between subsequent force chains
forming gi is shown for i = 1, 2, 3. (c) If we zoom in on the high-load portion
of the force–displacement curve for the rubber chunks and overlay the
numerical result of our mathematical model (eqn (4), red line) we find that
our predictions capture the deviation from classical Hertzian behavior
(blue line) of the columns, as well as the slope in the super-Hertzian
regime.
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difference between all adjacent peaks and troughs throughout
the force–displacement profile, which we call

P
DF. We plot

this value in Fig. 6d and indeed find that it decreases with both
ce and ci. Experiments also suggest that internal loops increase
the maximum load bearing capacity of the column, by prevent-
ing rocks from being crushed under the compressive loads.
Preliminary results indicate that columns can withstand higher
ultimate loads, but fail in an explosive manner as the bounding
loops fracture, allowing particles to be forcibly ejected from the
column. A mechanistic understanding of the ultimate load of
elastogranular columns is beyond the scope of this work.

3 Beams

The elastogranular columns characterized in the preceding
section are formed by a layer-by-layer assembly which includes
elements (loops of fiber) that act to prevent grains from escap-
ing laterally, and ensure that the column will remain stable
under large compressive loads. However, since the columns
lack elastic elements that resist deformation in the long axis of
the column, the structures are remarkably weak in shear. By
maintaining a residual compressive load, or prestress, the
structures can resist shearing and bending, and self-support
their weight (Fig. 7). In the following section, we will form
cantilevered beams and characterize their effective shear mod-
ulus. Since the beams are not homogenous or isotropic, classi-
cal relations between E, G, and n do not hold. While Euler–
Bernoulli beam theory represents the simplest model for a
cantilever beam, since these structures are shearable, we will

develop insight into their shear modulus by employing the
Timoshenko beam theory.65

3.1 Experiments

To construct beams, we first construct a hollow elastogranular
cylinder (with marble, slate, and plastic particles) using a similar
process as outlined for the columns above (interior loops of radius
15 mm, exterior loops of radius 60 mm), with removable mylar
film along the inner and outer diameter. Through the middle of
each cylinder we run a flexible wire rope (Extra-Flexible Wire Rope
3/1600), with one end attached to a solid aluminum cap at the top
of the cylinder which acts to clamp down the structure with a
force which we refer to as the ‘‘pre-compression’’ (Fpre). We
include this pre-compression so that the beam does not collapse
when we eventually rotate it. The other end is attached to a DDE-
500N-002-000 miniature in-line load cell, allowing us to measure
(Fpre), which we vary by adjusting the length of the flexible wire.
We then rotate the set-up 901, and apply a cyclical load perpendi-
cular to the normal axis of the beam. Displacement (d) within the
force–displacement curves represents the distance that the end-
point of the beam is deflected. All applied beam theory is valid
only for small deflections and so we limit our analysis to the initial
1 mm of deflection (Fig. 7c). To further ensure this validity, one
would naturally choose beam lengths that are lower than the
elastogravity length, which is found through a balance of the force
required for beam deflection and the force due to gravity. How-
ever, we don’t know the expected beam deflection a priori, so
instead we select a length L = 240 mm, which we found, for all our
particle types, ensures that dg/D { 1 (dg/D o 0.1) where dg is the
deflection due to gravity (which arises when we orient the beam
horizontally), and D is the diameter of the beam (for instance,
we would not include results from the beams shown in
Fig. 1b and 7b, we include these simply to show how robust the
beams are to large deflections). To mitigate the end-shortening
caused by our imposed deflection, we set the beam on a roller
support (RB Linear Air Bearing Slide model A109 with 300 mm
travel).

3.2 Analysis

As we deflect these beams, there is significant shearing between
adjacent grains. We can understand the expected deflection of

Fig. 6 Columns with increasing (a) ce and (b) ci from left to right. (c) The
stiffness of a column Kt normalized by the stiffness of a column at the
minimum ce and ci vs. �ce (blue) and �ci (red) where the bar indicates that
the value of c is normalized by the maximum value that we used in our
experiments, where ce max = 0.64 and ci max = 0.05. We find that the
addition of fiber, inside or out, has a small and irregular (i.e. grain-type-
dependant) effect on the stiffness of a column as compared to the grain
stiffness. (d) We plot the sum of the height of jumps in the force against the
amount of fiber, and find that both interior and exterior fiber increases the
smoothness of the loading response. An example is shown in the inset,
where the black curve has no internal and little external fiber, and the
orange curve has the same amount of external fiber, and ci = 0.05.

Fig. 7 (a) We clamp columns of length L = 0.24 m and rotate them 901 to
form a beam. (b) A picture of the longest stable beam that we constructed.
(c) We consider only the first 1 mm of deflection of the beams in our
analysis.
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beams with shear using Timoshenko–Ehrenfest Beam theory,65

which predicts the following deflection per unit force:

d
L
¼ PL2

I

1

3E
þ I

AGkL2

� �
(5)

where P is the load, E is the Young’s modulus, L is the length, I
is the second moment of area, A is the cross-sectional area, G is
the shear modulus, and k is the geometry-dependent
Timoshenko shear coefficient of the beam (we used a circular
cross-sectional value of 0.89). Note that the first term in the
parentheses gives the deflection of a beam with no shear
(G - N), as given by classical Euler–Bernoulli beam
theory,65 whereas the second term gives the additional deflec-
tion which comes from shearing within the beam. In this
equation there are two unknown material constants – E and
G. We might expect that both depend on Fpre. For instance, as
the pressure on a granular array increases, so does its shear
modulus, as more grains will become more tightly packed and
locked in place.66 Similarly, we would expect E to increase with
the pre-compression on the beams because of our above
analysis. In the previous section we found that the elastogra-
nular beams have a Hertzian (F B d3/2) response in compres-
sion. The Young’s modulus is the slope of a linear fit to the
force–displacement curve and therefore, since the force–
displacement curve is nonlinear, it will change as the beam is
compressed. We can find the E by taking the derivative of our
relation from the previous analysis

E ¼ L

A

dF

dd
¼ 3

2

K

n

� �2=3
LFpre

1=3

A
(6)

where we have inserted our earlier estimate (eqn (3)) for the
expected stiffness of a column. To test this prediction, we pre-
tensioned each elastogranular beam to an initial load in incre-
ments of 50 N, from 100 N to 250 N, and then apply a uniaxial
cyclical compression test as outlined in the previous section.

We synced the internal load cell data and Instron load cell data
to find the total load on each cylinder throughout the testing
process. We plot fit values of E to these curves against our
expected value from eqn (6) in Fig. 8a, and find that the data
indeed collapse according to the relation, however, we seem to
be off by a constant factor of order 1 (E1.65) (Fig. 8a, dotted
line). Similar to in the previous section, we expect that this
comes from the approximations in our model. Because of this
constant factor, in the following analysis we will use the values
of E found from experiments rather than the result of eqn (6).

We can approximate G by fitting the Timoshenko–Ehrenfest
equation to the beam deflection data using a linear regression.
We show the results of some regressions in the inset of Fig. 8b,
and plot G as a function of pre-compression in Fig. 8b. As
expected, as the pre-compression is increased, there is a greater
resistance to shear between particles and the extracted shear
modulus terms increase accordingly.

4 Conclusions

When sufficiently combined,10–12,47,53 fiber and grains can
form load-bearing columns and beams. The mechanical
response of the elastogranular structures that emerge is hier-
archical: (i) at very small displacements (d/R { 1), deformation
is resisted by friction as the grains rearrange (empirically,
F B d); (ii) at small displacements (d/R o 1), the elastogranular
matrix jams, a single force chain propagates the length of the
column, and the elastogranular column exhibits a Hertzian
force–displacement response (F B d3/2); and finally (iii) at
moderate displacements (d/R E 1), multiple force chains
sequentially engage at consistent intervals of gi = R, and a
‘‘super Hertzian’’ mechanical response is observed. If there is a
new scaling, it appears to be at least (F B d2), however, this
potentially new power law is only observed just above (d/R E 1),
and so it would be presumptuous to assume this scaling will
hold over a larger range of data, or even that the data will be
represented by new power law at all. Our model suggests a
mechanism for this stiffening that would continue to increase
as additional force chains are formed, indicating that, unless
there are other mechanisms at play, the super-Hertzian beha-
vior of these elastogranular columns will not be characterized
by a simple power-law.

Fiber both stabilizes the column, and ensures a smooth
force–displacement response – neither interior nor exterior
loops appear to increase the stiffness of the columns by more
than a factor of 2 once there is enough fiber to stabilize the
grains. As assembled in this work, there is little to resist shear.
However, maintaining a uniaxial compressive prestress on the
structures causes them to remain jammed and withstand
marginal amounts of shear (G/E E 0.1). These preloaded
columns can form beams: spanning structures capable of
bearing transverse loads. The capacity to withstand compres-
sion and shear will enable the formation of more complex
structures, such as arches (Fig. 1c).

Fig. 8 (a) A plot of the fit Young’s moduli at different values of pre-stress
from experiments compared to our expected value based on eqn (6)
(green – slate, red – plastic, blue – marble). The solid line is our prediction,
and the dotted line shows that indeed the data collapse and seem to scale
as we expect, but our prediction is off by a constant factor. (b) In the inset,
we show linear fits (solid lines) to the force which is required to deflect
slate beams at different pre-compressions (increasing blue - yellow -

red). We find that these are around an order of magnitude smaller than the
Euler–Bernoulli prediction (gray dotted line). Using eqn (5), we can employ
these fitted values to find a value of the shear modulus, which we plot
against the pre-stress (spre = Fpre/A) on a column in the main frame.
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The ability to create rapid, reusable infrastructure compo-
nents through granular jamming, from inexpensive, common-
place materials, such as rocks and string, presents a new
approach to building engineering structures. Elastogranular
structures may aid in the construction of temporary shelters
during disaster relief efforts, and may enable inexpensive,
recyclable, and sustainable architectural elements, all of which
can dynamically adapt, unlike traditionally static architecture,
in response to a changing climate and environment. Novel
fabrication techniques, such as mixing elastic and granular
materials (thereby forming an elastogranular matrix) until
entanglement causes jamming, utilizing tensegrity mechan-
isms, or incorporating active matter (e.g. targeted root growth)
and smart materials (e.g. load sensing grains; shape-shifting
fibers), will enable the fabrication of structures that are built
from local and sustainable materials, and are transformable
and adaptable in real-time.
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