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Advanced artificial synaptic thin-film transistor
based on doped potassium ions for neuromorphic
computing via third-generation neural network†

Yixin Cao,‡a Tianshi Zhao, ‡a Chun Zhao, *ab Yina Liu,cd Pengfei Song,ab

Hao Gaoe and Ce Zhou Zhaoab

As the basic and essential unit of neuromorphic computing systems, artificial synaptic devices have great

potential to accelerate high-performance parallel computation, artificial intelligence, and adaptive

learning. Among the proposed artificial synaptic devices, the synaptic transistors are well considered to

be one of the most suitable devices for simulating artificial intelligence. So far, synaptic transistors based

on iontronic have been proposed and proved to demonstrate great potential in artificial intelligence

applications. However, little research specifically focused on improving the device’s ability to mimic

synaptic behaviour. Here, we proposed the enhancement of synaptic properties of the solution-based

thin-film transistors based on potassium ion conduction in the dielectric layer for the first time. Due to

the formation of a gated electrical double-layer, the transistor exhibited an enlarged memory window.

Based on this, the excitatory postsynaptic current in the synaptic thin-film transistor was modified

accordingly, which further enhanced the suitability of the proposed synaptic thin-film transistor for

simulating biological synapses. In addition, considerable synaptic properties were evaluated elaborately,

including paired-pulse facilitation, short-term memory, long-term memory, and spike-time-dependent-

plasticity. Most importantly, according to the impressive results of the Artificial Neural Network

algorithm’s image recognition simulation, the simulation image recognition rate based on the mentioned

artificial synaptic devices reached as high as 92%. Last but not least, in order to simulate biological

neurobehavior more closely, the Spiking Neural Network algorithm was also successfully implemented

to complete the specified machine learning task, which further proved the great potential of the

synaptic devices in advanced low-power neural network systems.

Introduction

With the increase in the amount of data and demand for
parallel computing, modern computers based on the von
Neumann architecture are facing severe challenges of ineffi-
cient information processing.1–3 Inspired by biological neural
network systems, massively parallel neuromorphic computing
was then proposed accordingly.2,4 Unlike the traditional logic

circuit with transistors connected by only one or less than a
handful of other components, one neuron in the neural net-
work could connect to a thousand other neurons.2 Since
information processing can be highly parallel within a dense
neural network, the data selection characteristics of neural
networks are considered to be more power-efficient for artificial
intelligence than the existing von Neumann computing
architecture.5–8 The basic and essential unit in a neural net-
work is the synapse, which is regarded as the functional
connection between two adjacent neurons in the biological
brain.9 The strength of the synapse, i.e., the synapse weight,
could be adjusted and memorized, through which the neuron
can transfer and analyze the information.7,9,10 Therefore, the
development of artificial synaptic devices towards an artificial
neural network to mimic similar functions of the biological
neural network is greatly worthy of investigation. Over the past
decades, significant efforts have been extensively devoted to
developing a synaptic device to trigger synaptic plasticity and
non-volatility. In order to mimic and simulate synaptic activity,
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typically, the two-terminal memristors with reversible analogue
switch behavior such as oxide-based resistance random access
memory (RRAM),11,12 ferroelectric memory,13,14 and phase-
change memory (PCM)15,16 were well studied and reported.
Nevertheless, it is considered to be a significant obstacle for
them to enable both learning and signal transmission
simultaneously.17 In addition, the reduced control of conduc-
tance changes and asynchronous read/write operations limits
the further application of two-terminal memristor devices as
synaptic elements. Although several solution schemes based on
consecutive update-verify procedures have been initiated and
attempted to modify the weight adjusting procedure of synaptic
devices,3 they further induced energy-expensive and device-to-
device access, and increased the complexity of peripheral
circuit design from application perspectives. Consequently,
the energy-saving advantages of neuromorphic computing in
data processing will no longer hence exist.18–21

To overcome these mentioned challenges, synaptic transistors
have been proposed accordingly, such as ferroelectric-gate synaptic
transistors and electrolyte-gate synaptic transistors.9,14,22,23 Com-
pared with two-terminal memristor devices, the synaptic transistor
with individually controllable three terminals can effectively prevent
crosstalk between adjacent devices, allowing selective and parallel
weight update.24 In addition, the channel conductance between the
source (S) and the drain (D) electrodes of the synaptic transistor-like
devices could be adjusted by the gate (G) voltage, which is recog-
nized as synapse weight.10 Therefore, neuromorphic computing is
widely considered to be realized with a broad application prospect
via three-terminal synaptic transistors. Recently, the mechanism for
devices to possess synaptic properties has been proposed tentatively,
such as electrostatic modulation, iontronic theory, and ferroelectric
effect theory.2,14,25–28 Moreover, many kinds of research are worth
discussing on how to optimize the mechanism of synaptic devices.
At the same time, it is worthwhile to study the mechanism of the
synaptic transistors from the perspective of material characteriza-
tion. In addition, diverse research of neuromorphic applications still
relies on traditional algorithms that have a weight updating process
different from the real biological neuron system, such as ANN.
Therefore, simulating biological neural networks more realistically
in neural networks is of significant worth studying.

Here we propose a novel technology of doping potassium
(K+) ions in the dielectric layers to enhance the synaptic
characteristics of solution-processed synaptic thin-film transis-
tors (TFT) for the first time. For biological individuals, as an
indispensable element in the human body, K+ ions play an
important role in nerve signal transmission.23 For a gated
transistor-like device, the K+ in ion conducted dielectric con-
tributes to the formation of the electric double-layer (EDL) at
the interface between the dielectric and semiconductor layer,
which leads to an increase of the controllable and repeatable
memory window.2 As a result, the transmission characteristic
curve of the synaptic transistor will be more adaptable to mimic
the synaptic activity. In addition, due to the effects of electro-
static modulation and electrochemical doping, devices doped
by K+ ions have greater relaxation time, causing the artificial
synaptic transistor similar to the real biological synapse. For

the proposed synaptic transistor, the indium oxide (InOx) and
alumina (AlOx) were served as the n-type channel and dielectric
materials, respectively. Both AlOx and InOx thin films were
prepared by solution method, which is well proved to have low
cost and high composition controllability.29 The synaptic plas-
ticity was then simulated, such as paired-pulse facilitation
(PPF), short-term memory (STM), long-term memory (LTM),
spike-time-dependent-plasticity (STDP). Furthermore, the
image recognition process was simulated using Artificial
Neural Network (ANN) and Spiking Neural Network (SNN)
algorithms. The simulated image recognition rate by ANN
algorithms after 20 learning epochs reached 92%, which is
close to the theoretical value that the learning rate is 1 (96%). In
addition, although ANN’s deep learning model has proven its
powerful learning capabilities, it requires expensive computing
resources and significant power consumption, making it diffi-
cult to be applied on the mobile edge devices such as smart-
phones and watches.30 Furthermore, ANN employs a
‘‘classical’’ backward propagation approach in order to demon-
strate classification. The backward propagation has no relation
with neuromorphic computing as it only utilizes the static
weight of the synapses (G+ � G�) but not their complex
temporal properties. Therefore, the SNN algorithm, another
advanced neuromorphic calculation model for the 3rd genera-
tion neural network with significant energy efficiency, has been
proposed. Being an artificial neural network constructed using
knowledge observed in biology, SNN uses spatiotemporal infor-
mation (such as STDP) to update synaptic weights based on
local learning rules,31 in which neurons connect neurons
through synapses with adjustable weight values. Moreover,
some recent study suggests that the STDP learning rule is
involved in the formation of associative memory.32 Therefore,
SNN is capable of more closely mimicking the working mode of
biological synapses. In this work, the Mixed National Institute
of Standards and Technology (MNIST) data set was also suc-
cessfully identified under the SNN algorithm and well proved to
obtain extremely low energy consumption.

Experimental section

For the solution preparation, the AlOx precursor solution with a
concentration of 2.5 M was prepared by dissolving aluminium
nitrate nonahydrate (Al(NO3)3�9H2O, Aladdin) in deionized
water (DI water). Based on the K+ doping concentration, the
0, 1, and 10 at% K+ ion-doped AlOx precursors were prepared by
adding 0, 0.025, and 0.25 M potassium chloride (KCl, 99.99%
metals basis, Aladdin) into the AlOx precursor solution, respec-
tively. The InOx precursor solution with a concentration of
0.15 M was prepared by dissolving indium nitrate hydrate
(In(NO3)3�xH2O, Aladdin) in deionized water (DI water). Subse-
quently, the prepared precursor solutions were ultra-sonicated
and filtered through a 0.45 mm poly (ether sulfone) (PES)
syringe to obtain transparent solutions.

For TFTs fabrication, the heavily doped n-type silicon (n++ Si)
was utilized as the gate substrate. In order to prepare the
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dielectric layer, the AlOx precursor solution with and without
specific K+ ion doping were spun onto the plasma-treated n++ Si
substrate and then annealed at 300 1C under ambient atmosphere
for 30 minutes. After that, the InOx precursor solution was spun
onto the surface of the dielectric layer and then annealed at 250 1C
for 30 minutes in an ambient atmosphere. Finally, the Al source and
drain electrodes were deposited onto the semiconductor layer
through thermal evaporation. The channel length (L) and width
(W) were 10 and 150 mm, respectively, with a thickness of 100 nm.

The surface roughness of the K+ doped AlOx layers was
observed by atomic force microscopy (AFM, Bruker Nanoscope
V). The surface morphology of the AlOx layers was characterized
by using a scanning electron microscope (SEM, Hitachi S4700).
The element distribution of the sample was characterized by
using the energy-dispersive X-ray spectroscopy (EDS, Hitachi
S4700). The chemical bonds were measured through X-ray
Photoemission Spectroscopy (XPS, Thermo scientific ESCALAB
250Xi with Al Ka X-ray source). The electrical characteristics
and synaptic characteristics test of the TFTs were revealed
utilizing a semiconductor analyzer (Keysight, B1500 A) in the
dark condition at room temperature.

Results and discussion

Generally, as depicted in Fig. 1a, for biological individuals,
signals are transmitted from presynaptic neuron to postsynap-
tic neuron through synapses in nervous systems.33 When pre-
synaptic neurons receive external stimuli, ions in the
extracellular fluid enter synaptic neurons through ion conduc-
tion and form memory by generating graded potentials and
action potentials.34 In order to mimic the behaviour of biolo-
gical synapses, the electrochemical artificial synaptic TFTs
based on K+ doped AlOx dielectric and InOx semiconductor
were fabricated as described in Fig. 1a. For these devices, the Al
gate electrode, InOx semiconductor, and K+ ions represent the
presynaptic neuron, the postsynaptic neuron, and neurotrans-
mitter, respectively. Fig. 1b shows the transfer characteristic
curves of the TFTs with or without K+ ions doped AlOx dielectric
layer, indicating typical characteristics of n-type TFTs. Accord-
ing to the results, under the gate voltage (VG) swept forward and
backwards from �2 to 4 V, the devices with K+ doped AlOx

dielectric exhibit an obvious counter-clockwise hysteresis win-
dow than the ones without K+ doping. This could be utilized as

Fig. 1 (a) Schematic diagram of the K+ doped AlOx synaptic TFT. (b) Transmission characteristics of AlOx with and without K+ doped. (c) AFM images of
AlOx with and without K+ doped. (d) SEM image of surface topography in AlOx surface view. The EDS mapping of (e) N, (f) K, (g) O elements in AlOx coating
on Si substrate. (h) K+ ions migration in the K+ doped AlOx solid-state electron by bias spikes. (i) XPS image of the surface InOx film.
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the basis for the synaptic properties of the devices. In addition,
from the distribution diagram in Fig. S1 (ESI†), it could be
concluded that the device memory window in this work shows
the normal distribution. In order to further investigate the
surface morphology of the thin films, the AFM measurement
was then operated, and the result is shown in Fig. 1c. The root-
mean-square (RMS) roughness value of the AlOx film without K+

ions is 0.138 nm, while the AlOx film doped by K+ ions is
0.202 nm. This phenomenon shows that doping did not dete-
riorate the surface roughness of AlOx, and all the deposited
films are of nanoscale smoothness which is beneficial for
fabricating a high-quality channel layer and advantageous for
obtaining TFT with high stability.35,36 The SEM image in Fig. 1d
also indicates that the produced K+ doped AlOx film exhibits
flat and dense properties. The element map scanning during
the EDS analysis was operated accordingly, and the results are
shown in Fig. 1e to Fig. 1g. It is worth noting that Fig. 1f
demonstrates that the doped K+ ions are evenly distributed in
the film.

In the biological neuron network, information transmission
is mainly in the form of a bioelectrical pulse. The nerve fibres of
each neuron are not directly connected but separated by other
substances. When a bias input reaches the end of presynaptic
neurons, basic ion neurotransmitters are released into
synapses, resulting in new electrical bias spikes on adjacent
postsynaptic neurons.36 Similarly, for artificial synaptic TFT,
the mobile K+ ions in the AlOx dielectric act as neurotransmit-
ters, resulting in the changing of the channel conductance. The
mechanism of channel conduction modulation is proposed in
Fig. 1h. When the positive electric spike is applied to the gate of
the synaptic TFT, the moving K+ ions will drift toward the
dielectric/semiconductor interface.37 These migrated K+ ions
could modulate the channel conductance through two types of
iontronic modulation processes: EDL modulation (under weak
bias peak) and electrochemical doping (under strong bias
voltage).25,37 For EDL modulation, the migrated K+ ions will
accumulate at the dielectric/semiconductor interface, inducing
the accumulation of channel electrons.38,39 Consequently, the
channel conductance will increase. Once the external electric
field is removed, K+ ions will diffuse back to their original
equivalent position due to the concentration gradient within a short
period of time, and the EDL will then disappear. For electrochemical
doping, other than the EDL modulation, part of the migrated K+

ions will penetrate the InOx channel, causing the increase of the
channel conductance.40 After the removal of the gate voltage, the
penetrated K+ ions will gradually diffuse back to the original
equivalent position, and this process will take a long period of
time, leading to long-term retention of the increased channel
conductance.25–27 As mentioned above, the mobile K+ ions within
K+ doped AlOx dielectric contribute to the formation of an EDL and
electrochemical doping, resulting in short-term retention and long-
term retention, respectively.23,41–43 To prove the existence of the
EDL, the metal-insulated semiconductor structure device was fabri-
cated (Fig. S2, ESI†). Moreover, the capacitance–voltage (C–V) and
capacitance-frequency (C–F) were tested. Fig. S3a (ESI†) shows the
C–V test result, in which the gate voltage increases from �2 to 4 V

and the capacitance of the device increases from 1.6 � 10�7 to
5.3 � 10�7 F cm�2. During the artificial synaptic TFT operation,
these specific capacitances are maintained at a high level. Com-
pared with the control group without K+ doping, the capacitance
increased significantly, considering K+ and protons in K+ doped
AlOx strongly accumulate on the InOx/K+ doped AlOx interface to
form EDL under the action of an electric field, which can be
regarded as a nanogap capacitor with ultra-high capacitance,
thereby increasing the capacitance.38 Fig. S3b (ESI†) illustrates the
C–F test result. The specific capacitance distribution can be divided
into two areas, the high-frequency area with a small capacitance
value (410 kHz) and the low-frequency area with a large capaci-
tance value (o10 kHz)). The one in the high-frequency region
(410 kHz) refers to a bulk electrolyte capacitance with a fast-
charging speed. The increase in capacitance in the low-frequency
region (o10 kHz) is reasonably related to the formation of an EDL
at the InOx/K+ doped AlOx interface. The EDL obtains large capaci-
tance through the migration and accumulation of ions on the
interface.25,37 Furthermore, the C–V relationship at several frequen-
cies was tested, and the results are shown in Fig. S3c (ESI†). At
10 kHz–1 MHz, the capacitance exhibits a weak Vgs dependence. At
1 kHz, with the increase of Vgs, the capacitance increases signifi-
cantly, indicating the presence of pseudocapacitance. Through the
integration of the C–V curve, the total accumulated charge QT can be
found:43

QT ¼
Ð
CdVgs ¼ QM þQF

where QM is the mobile charge and QF is the faradaic charge.
The result is shown in Fig. S3d (ESI†). The total charge
generated by the C–V integration at 10 kHz–1 MHz is almost
the same, indicating that the interface charge has electrostatic
properties. The QF can be ignored at these frequencies, and
the total charge is equal to the mobile charge. At the frequency
of 1 kHz, the QT in the devices showed the largest value. This
could also be mainly attributed to the formation of interface
EDL.43 To demonstrate the existence of electrochemical dop-
ing, X-ray photoelectron spectroscopy (XPS) scanning was
performed on the surface of the InOx layer before and after
a long-time strong gate bias (1000 s, 4 V) had been applied to
the TFTs with or without K+ doping. In order to make the
comparison more obvious and explicit, 10% K+ doped AlOx

was used for the experiment. According to the results in
Fig. 1i, through the application of gate bias, the peaks of K
2p (292.6 eV) could be found in the InOx layer of the devices
with K+ doping while could not for the ones without K+

doping.44 However, since both the K+ doped AlOx layer and
the InOx layer were prepared by the aqueous solution method,
during the InOx fabrication, the precursor solution might
dissolve part of the K+ from the K+ doped AlOx dielectric.
Therefore, for K+ doped AlOx TFT without bias application, K+

ions could also be found on the InOx surface (Fig. S4, ESI†).
Nevertheless, according to the ratio of the peak intensities of K
2p3/2 and In 3d5/2 in the XPS spectra before (29.89%) and after
(35.13%) the gate bias, it could be concluded that the content
of K+ ions in the InOx layer induced by electrochemical doping
increases after the bias voltage (Table. S1, ESI†).
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In synaptic TFT, the excitatory postsynaptic current (EPSC) is
used to manifest the channel conductance and indicate the
response to presynaptic signals, i.e., the gate bias (Fig. 2a).45

When the gate bias is applied in the form of pulses, the EPSC in
the synaptic TFT could show a modulated trend that effectively
mimics the excitability changes in biological neurons (synaptic
plasticity). As shown in Fig. S5 (ESI†), a positive gate pulse
could cause an immediate increase of EPSC followed by a
gradual recovery, while a negative gate pulse leads to an
opposite response. Most importantly, the EPSC can be arbitra-
rily regulated, which is the research basis of synaptic
devices.42,46,47 In the neuromorphological system, neurofacili-
tation, also named paired-pulse facilitation (PPF), is known as
typical synaptic behaviour.48 Due to the memory effect, if two
presynaptic peaks are close enough, the EPSC peak resulting
from the first presynaptic peak cannot be eliminated entirely,
and the peak generated by the second presynaptic peak will be
enhanced accordingly.48,49 A pair of presynaptic spikes (4 V,
30 ms) with a pulse interval (Dt) of 20 ms was continuously
applied to the gate, as shown in Fig. 2b. The second EPSC peak
triggered by presynaptic pulses is much higher than that of the
first. Fig. 2c depicts the PPF index as a function of the interval
time between pairs of pulses. The PPF index curve can be fitted
as follows double-phase exponential function:50

PPF index = A2/A1 = 1 + C1 exp (�Dt/t1) + C2 exp (�Dt/t2)

where A1 and A2 are the first and second EPSC peaks, C1 and C2

are the initial facilitation magnitudes, and t1 and t2 are
relaxation time constants. The curve shows that PPF decreases
with the increase of Dt. For the case of AlOx TFT, the relaxation

times, t1 and t2, are estimated to be 76.1 ms and 93.1 ms,
respectively. For the case of K+ doped AlOx TFT, t1 and t2 are
estimated to be 136.2 ms and 166.5 ms, respectively, which is
similar to the relaxation time of synapses in organisms. The
higher value of time constants shows that K+ doping is indeed
more suitable for simulating biological synapses with long-
term memory characteristics.43,51 For K+ doped TFTs, the EPSC
levels of five consecutive presynaptic spikes at different voltage
levels with Dt of 50 ms are shown in Fig. 2d. With the increase
of presynaptic voltage from 1 V to 4 V, the amplitude changing
of EPSCs was also increased. The peak value of the postsynaptic
current was affected not only by the magnitude of voltage
stimulation but also by the pulses’ width. When the width of
the voltage pulse (4 V) increased from 50 ms to 1600 ms, the
EPSC peaks of the TFT have more than doubled, as shown in
Fig. 2e. Fig. 2f shows the EPSC levels of five presynaptic spikes
(4 V) at different frequencies (2 Hz–25 Hz). It could be obtained
that a higher frequency signal means a shorter interval between
each peak, and a shorter interval time leads to a promotion of
the EPSC. The ratio between the EPSC generated by the 5th
peak and the 1st peak is defined as the current gain (A5/A1). As
expected, the current gain enhanced with the pulse frequency.
When the pulse frequency is 25 Hz, the current gain reached
1.35, which is increased by 32% compared to the test result
under 2 Hz. Therefore, synaptic TFT can be used as high-
frequency filters for large-scale neural morphological comput-
ing systems with frequency or time coding.5,52 These results
indicate that the proposed synaptic TFT has synaptic plasticity
for various presynaptic voltage spikes, just like the character-
istics of biological nerves. The stronger the stimulus applied,

Fig. 2 (a) The principle of signal transmission from pre-synaptic to post-synaptic in biological synapses and simulation of the electrical impulse of
artificial synaptic TFT. (b) Two consecutive presynaptic spikes (4 V, 30 ms) generate EPSC. Interval time (Dt) is 100 ms. (c) The PPF index is defined as the
function of the ratio of A2/A1 and two pulses (4 V, 30 ms) interspike interval (Vds = 4 V). (d) EPSC is generated by five presynaptic spikes (1 V to 4 V, 50 ms),
Dt is 50 ms (Vds = 2 V). (e) The enhancement effect of five consecutive presynaptic pulses (2 V) on EPSC, the pulse time varies from 50 ms to 1600 ms
(Vds = 2 V). (f) EPSC (Vds = 4 V) is generated by five presynaptic spikes (4 V, 30 ms) with different pulse frequencies (2 Hz–25 Hz).
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the stronger the response behaved.49,53 In contrast, under the
same pulses test for the TFTs without K+ doping, the EPSCs
quickly returned to the initial states after the removal of the
pulses without an obvious rising trend (Fig. S6, ESI†). These
results are well consistent with the above analysis and confirm
the effectiveness of K+ ion doping. In addition, the synaptic
behaviours of devices with 10% K+ doped AlOx TFT were also
measured (Fig. S7, ESI†). The excessive K+ ion doping caused an
intensive increase of the EPSC peaks to observe an upward
trend with good linear characteristics. This means that this type
of device is not suitable for further application in the machine
learning field, which will be introduced in detail in the latter
part. In addition, for artificial synaptic devices, lower energy
consumption values are more conducive for the realization of
large-scale calculations and more realistic simulation of biolo-
gical synapses. As shown in Fig. S8a (ESI†), the EPSC response
can still be triggered under extremely low Vds and electrical
impulse stimulation, and its energy consumption can be cal-
culated by the formula:54

E = Vds � Ids � t

where Vds is the voltage applied to the drain terminal of the
synaptic transistor, Ids is the current flowing from drain to
source terminal, and t is the width of the electrical pulse. The
result is shown in Fig. S8a (ESI†). The energy consumption of
our synaptic device is 2.5 fJ. The comparison of artificial
synaptic energy consumption between K+ doped AlOx artificial
synapse TFT and other recently published work are shown in
Fig. S8b (ESI†), which indicates a lower energy consumption of

this work, similar to a biological system (10 fJ per synaptic
event).55–65 This result indicated that the device in this work
has great potential in simulating the behaviours and energy
consumption of human brain synapses.’’

The multi-storage model proposed by Atkinson and Shiffrin
(as demonstrated in Fig. 3a) shows that human memory has
three components: sensory memory, STM, and LTM.66 The
external environment input of new information is firstly stored
in the sensory register as a sensor memory in a short period and
then selectively converted to temporary STM in short-term
memory storage or permanent LTM in long-term memory
storage. If the sensory stimuli are repeated frequently, STM
will be transformed into LTM. Due to the complexity of the
neural processes known to be realized in neural engineering, it
is difficult to prove that neural processes are interconnected.
However, the TFTs can simulate the synaptic function of STM
and LTM characteristics by using input repetitive pulse stimu-
lation. As shown in Fig. 3b, a series of electrical pulses (number
of 5, 10, 20, 50, 100, 200) with a fixed duration of 100 ms and a
voltage intensity of 4 V was applied to the synaptic device. It
shows that EPSC rises under a positive pulse, which can be
regarded as ‘‘learning’’. The learning state is defined as the
state at the end of the positive pulse. When presynaptic spikes
had finished, the synaptic weight decays spontaneously over
time. This decay process is similar to the forgetting process of
biological synapse behaviour. In Fig. 3c, with the increase of the
number of learning pulses, the drop of EPSC as a function of
time gradually slows down, indicating the transition from STM
to LTM.3,49 In addition, due to the presence of electrochemical

Fig. 3 (a) The multi-storage model of human memory was proposed by Atkinson and Shiffrin. (b) EPSC is generated by different numbers (5–200 times)
of presynaptic spikes (4 V, 80 ms), and EPSC is observed to be gradually increased. (c) As the number of applied pulses increases, it changes from STM to
LTM. After different numbers (5–200 times) of presynaptic spikes stimulate 60 s, the current is still stored. (d) Conductance change during learning (by
positive spike: 4 V, 100 ms) and erasing (by negative spikes: 2 V, 100 ms).

Paper Journal of Materials Chemistry C

Pu
bl

is
he

d 
on

 2
6 

Ja
nu

ar
y 

20
22

. D
ow

nl
oa

de
d 

on
 1

1/
22

/2
02

4 
9:

23
:4

8 
PM

. 
View Article Online

https://doi.org/10.1039/d1tc04827a


3202 |  J. Mater. Chem. C, 2022, 10, 3196–3206 This journal is © The Royal Society of Chemistry 2022

doping, the charge can be preserved for a long time. Further-
more, the learning process based on positive pulses is rever-
sible, which means that the negative pulse input could
accelerate the EPSC decrease process. Based on this, in addi-
tion to long-term potentiation (LTP), the device also exhibited
long-term depression (LTD) characteristics. The LTP and LTD
together formed the basis of neural computing. As shown in
Fig. 3d, 50 positive voltage pulses were applied to enhance the
synaptic weight (channel conductance, G) and simulate the
‘‘learning’’ function. Then 50 negative voltage pulses were
applied to depress the synaptic weight and represent the
‘‘erasing’’ function.

In order to investigate the stability of the device, 25 men-
tioned full-scale ‘‘writing’’ and ‘‘erasing’’ cycles were tested in
the device, as shown in Fig. 4a. The results show that the
device’s synaptic behaviour remains stable after 2500 pulses.
Ideally, the linear proportions existed between the increase and
decrease of G and the number of electrical pulses. In fact, the
cumulative conductance is unable to exactly follow a simple
linear correlation, which leads to non-linearity (NL) of the

synaptic weight update. The value of G could be then described
by function:3

GP = BP[1 � exp (gP/AP)] + Gmin

GD = �BP[1 � exp(P � g/AD)] + Gmax

BP/D = (Gmax � Gmin)/[1 � exp(�g/AP/D)]

GP and GD are the fitted conductance of ‘‘writing’’ and ‘‘eras-
ing’’ processes in Fig. 3d. P is the normalized pulse number, g
in this work is 1, and A is a parameter that can control the
nonlinear relationship between conductance and the number
of pulses and is inversely proportional to the value of NL
(Table. S2, ESI†).3 According to the results, the weight-
renewed NL has a relatively low gain for the potentiation mode
in the ‘‘learning’’ process (NLP = 0.8884), while the value of the
‘‘erasing’’ process (NLD = 3.54) is asymmetrically high. This
corresponds to previous studies that the positive and negative
pulses of the same amplitude cause the EPSC to rise and fall in
different amplitudes.67

Fig. 4 (a) Use 25-cycle pulses (50 positives (4 V) and 50 negatives (�2 V) pulses with a pulse duration of 50 ms and an interval of 50 ms) to simulate the
synaptic TFT channel conductance. (b) ANN structure used in the simulation. (c) Simulation of MNIST digit recognition accuracy based on synaptic TFT
perceptron neural network. (d) Mapping images of test data sets for three different learning epochs.
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To further explore the neuromorphic computational simula-
tion capabilities of K+ doped AlOx TFT synaptic devices, a
handwritten artificial neural network was developed, which
can simulate the numbers in the revised MNIST data set
through the ANN algorithm.3,68 Specifically, as shown in
Fig. 4b, since the synapse layer is composed of 28 � 28 input
neurons, the input pattern contains the same number of pixels,
which are fully connected with 7840 synaptic weights and
converted into 10 output neurons. It is worth noting that the
synaptic TFTs have only positive channel conductance, while
there are positive conductance and negative conductance in the
weight matrix. Therefore, the conductance difference between
two equivalents synaptic structures was defined as the synapse
weight, which can be expressed as W = G+ � G�. Here, the
symbol W represents the synapse weight. Based on the back-
propagation algorithm, W increases as G+ increases and
decreases as G� increases. As described in Fig. 3d, the G of
the device can be increased by applying a positive voltage pulse,
and the application of a negative pulse will cause the G of the
device to decrease. The conductance change extracted from the
‘‘learning’’ and ‘‘erasing’’ curves describes the detailed infor-
mation of the synaptic weight change. It can be concluded that
the Gmax/Gmin ratio of the synaptic device is 25.1. According to
previous literature, good linearity and a high Gmax/Gmin ratio
will improve the final recognition accuracy.67,69 In the simula-
tion, due to the high Gmax/Gmin ratio (25.1) and suitable
linearity (NLP = 0.8884, NLD = 3.54), the recognition accuracy
can reach 92% after 20 learning cycles, as shown in Fig. 4c.

Moreover, the experimental device’s recognition accuracy also
approaches the ideal accuracy based on linear weight updating
route and unlimited Gmax/Gmin (96% after 20 periods). As
shown in Fig. 4d, considering the handwritten number ‘‘3’’ as
an example, the output matrix was drawn in the mapped image
(28 � 28 pixels). Initially, the output was random without any
image information, and after 20 learning states, the shape of
‘‘3’’ became recognizable accordingly.

In addition, the SNN algorithm-based simulation for image
recognition was further attempted. Compared with ANN, SNN
is closer to the actual working model of biological synapses. As
shown in Fig. 5a, the ANN algorithm is based on a continuous
mathematically-defined nonlinear activation function. How-
ever, the information processing modes of the human brain
and the artificial neural networks are distinguished from each
other. Typically, the information is encoded as binary spikes in
the human brain, while most artificial neural networks use real-
valued vectors to represent data. As a comparison to ANN and
shown in Fig. 5a, the SNN is all-or-none output in response to
input spikes. It is also regarded as the ‘‘third-generation’’
neural network since it has the potential to replace deep
learning methods in the fields of computational neuroscience
and biological trusted machine learning.70 The binary (spike or
no spike) operation is considered to be more suitable for fast
and energy-efficient simulation on hardware devices.71 In addi-
tion, the SNN can emulate the human brain more faithfully
on artificial neuromorphic hardware due to its noise resiliency,
energy efficiency, and convenient implementation.72 The

Fig. 5 (a) ANN algorithm and SNN algorithm function diagram. (b) SNN algorithm weight update diagram. (c) STDP response based on K+ doped AlOx

synaptic devices. (d) Image recognition rate of SNN algorithm. (e) Different stage results of training the SNN using the MNIST data set. Via the generation
characteristics of the SNN, the image is reconstructed using the training weights connected to each output neuron to view the learning situation of the
network.
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shaping of weight is based on the following two rules: Firstly, any
synapses that contribute to the firing of postsynaptic neurons
should become stronger, and their value should increase; Secondly,
the synapse that does not contribute to the firing of the postsynaptic
neuron should be weakened. Typically, as shown in Fig. 5b, multiple
neurons are connected to a single neuron through synapses. Each
presynaptic neuron fires at its own rate, and the spike is sent
forward by the corresponding synapse. The strength of the spikes
converted to postsynaptic neurons depends on the strength of the
connecting synapses. Due to the input spike, the membrane
potential of the postsynaptic neuron increases and emits a spike
after crossing the threshold. When the postsynaptic neuron spikes,
it will monitor which presynaptic neurons help it fire. This can be
acquired by observing which presynaptic neurons spiked before the
postsynaptic neurons spiked. Therefore, the postsynaptic spike is
then induced by increasing the membrane potential, so the corres-
ponding synapse is strengthened accordingly.

In order to operate the SNN simulator, the STDP behaviour
of the device served as the principle rule to update the weights
and classify patterns, which is considered to be a biological
process used by the brain to modify its neural connections.
Fig. 5c shows the STDP curve of the synaptic device under
electric pulse Vds of 1 V and Vgs of 1 V with both pulse duration
of 30 ms. The STDP is the change in the synaptic weight (Dw)
between pre-and postsynaptic spikes which can be modulated
by using relative time duration between them.73 The Dw is
defined as (GPost � GPre)/GPre, where GPre and GPost are con-
ductance after the pre-and postsynaptic spikes, respectively. It
could be observed that if the pre-spiking precedes the post-
spiking (Dt 40), the connection strength of the synapse
between two neurons would be reinforced. On the contrary,
Dt o0 led to a depression phenomenon.

During the SNN simulation, the GPost weight used is the
conductance of 1 s after Vpost or Vpre, and the maximum time
interval Dt between Vpost and Vpre is 3.2 s during the process of
testing STDP. To prove this simulation further closer to the
actual hardware conditions, a time interval as an additional
inference period was added. Therefore, the 4.3 s, which is
slightly larger than the summation of Dt and one-second
postpone, was chosen as an additional inference period.
Fig. 5d shows the simulation result of image recognition using
the SNN algorithm. The recognition rate of the MNIST data set
after training reached 86%. Fig. 5e shows the weights of all
synapses connected to a specific output neuron (the number is
400) after training based on the MNIST dataset. The red line in
the figure represents the variable threshold. The threshold of
each mode was calculated based on the number of contained
activations. As shown in the inset diagram, the trained weight
matrix could successfully recognize the image.

Conclusions

In summary, the solution-processed synaptic TFTs with K+ doping
were fabricated and investigated. By doped K+ ions, the pristine
InOx/AlOx TFTs exhibited enhanced synaptic behaviour. Based on

the strong interfacial electric-double-layer coupling effect and elec-
trochemical doping effect, the K+ doped transistors showed an
obvious anti-clockwise memory window, which leads to a regulated
EPSC behaviour. Moreover, several essential synaptic properties
were measured, including PPF, STM, LTM, and STDP. Most impor-
tantly, under the simulation based on the ANN algorithm, the image
recognition rate of the MNIST database for the proposed K+ doped
device is as high as 92%. Based on the SNN algorithm, the image
recognition task was also successfully simulated and proved its
advantage in energy consumption. Overall, the TFTs experimental
results present a simple and low-cost method to enhance the
synaptic characteristics of artificial synaptic TFT, which is expected
to act as a basic computing unit in the next generation of the
neuromorphic system and has the potential to give birth to better
robots, self-driving cars, medical diagnosis, and other intelligent
human-computer interaction systems.
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