Biomaterials Science ## CORRECTION View Article Online Cite this: Biomater, Sci., 2023, 11, ## Correction: Selenium-driven enhancement of synergistic cancer chemo-/radiotherapy by targeting nanotherapeutics Xinxin Liu, ^a Zhongwen Yuan, ^a Zheng Tang, ^a Qi Chen, ^a Jiarun Huang, ^a Lizhen He* and Tianfeng Chen*a,b DOI: 10.1039/d2bm90091b rsc.li/biomaterials-science Correction for 'Selenium-driven enhancement of synergistic cancer chemo-/radiotherapy by targeting nanotherapeutics' by Xinxin Liu et al., Biomater. Sci., 2021, 9, 4691-4700, https://doi.org/10.1039/ d1bm00348h. The authors regret that the incorrect images were used in Fig. 1G (N₂ adsorption-desorption isotherm) and in Fig. 2D (clonogenic assay of HeLa cells) in the original version of the manuscript. The corrected Fig. 1G and 2D are shown below. Fig. 1 (G) N₂ adsorption-desorption isotherm. ^aDepartment of Neurology and Stroke Center of The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China. E-mail: hlz6371@jnu.edu.cn, tchentf@jnu.edu.cn ^bThe Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Guangzhou 510632, China Correction **Biomaterials Science** Fig. 2 (D) HeLa cells were cultured in 6-well plates with specific concentrations of SeD@MSNs-FA and radiation (2 Gy), and a clonogenic assay was performed over 8 days. The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.