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Machine learning in computational chemistry:
interplay between (non)linearity, basis sets,
and dimensionality

Sergei Manzhos, * Shunsaku Tsuda and Manabu Ihara *

Machine learning (ML) based methods and tools have now firmly established themselves in physical

chemistry and in particular in theoretical and computational chemistry and in materials chemistry. The

generality of popular ML techniques such as neural networks or kernel methods (Gaussian process and

kernel ridge regression and their flavors) permitted their application to diverse problems from prediction

of properties of functional materials (catalysts, solid state ionic conductors, etc.) from descriptors to the

building of interatomic potentials (where ML is currently routinely used in applications) and electron

density functionals. These ML techniques are assumed to have superior expressive power of nonlinear

methods, and are often used ‘‘as is’’, with concepts such as ‘‘non-parametric’’ or ‘‘deep learning‘‘ used

without a clear justification for their need or advantage over simpler and more robust alternatives. In this

Perspective, we highlight some interrelations between popular ML techniques and traditional linear

regressions and basis expansions and demonstrate that in certain regimes (such as a very high

dimensionality) these approximations might collapse. We also discuss ways to recover the expressive

power of a nonlinear approach and to help select hyperparameters with the help of high-dimensional

model representation and to obtain elements of insight while preserving the generality of the method.

1. Introduction

Constructing an input–output mapping is an often-encountered
problem in physical chemistry. Rational design of materials is
facilitated by understanding the dependence of performance
characteristics (such as the catalytic activity of surfaces or nano-
particles used in heterogeneous catalysis, the ionic conductance
of solids used in solid oxide fuel cells and metal ion batteries, the
band gap of organic and inorganic materials used in optoelec-
tronic application, etc) on a set of descriptors.1–8 This depen-
dence is in general multi-dimensional, with descriptions typically
including multiple atomistic composition descriptors, electronic
structure related descriptors, and others.9–12

Machine learning (ML) methods are more and more often
used for this purpose as they allow one to build structure–
property/performance mappings in a black-box way, with lim-
ited need for a domain-specific method or software choice. ML
is also more and more used in method development for
computational and theoretical chemistry. Machine-learned
interatomic potentials are now routine,13–18 and there is good

potential for machine-learned functionals for DFT (density
functional theory), including exchange correlation and kinetic
energy functionals, to be available in end-user codes in the near
future.19–25

Two classes of ML methods stand out as the most widely used
in the above applications: neural networks (NNs)26 and kernel-
based regression methods such as Gaussian process regression27

or kernel ridge regression.28 Even though a single-hidden layer
NN is a universal approximator, multilayer NNs are often used,
from traditional multilayer feed-forward NNs to more complex
architectures such as convolutional NNs, making use of the
concept of ‘‘deep learning’’. The kernel methods are used for
their ‘‘non-parametric’’ nature and have been argued to possess a
higher learning power than NNs.29,30

It is the generality of these ML techniques that permits their
application to such diverse problems. It also allows easy use by
non-experts including students. This generality comes at a
price of a lack of insight provided by physically motivated
models. ML techniques (and black-box methods in general)
are also notoriously bad at extrapolation. This means that
despite their generality, domain knowledge should be used to
define descriptors in such a way that the ML method is not
called in the extrapolation regime. ML approaches such as NN
and other non-linear methods also require more data than
physically motivated models and simple linear regressions.
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This can be an issue in high-dimensional spaces, as data
acquisition may be costly (for example, CPU-costly ab initio
calculations), and the low-density of data may not allow
for quality ML. We note that data density is bound to be low
in high-dimensional spaces, and this issue cannot be resolved
by simply adding more data by virtue of the curse of
dimensionality.31

ML methods are often used ‘‘as is’’, with concepts such as
‘‘non-parametric’’ or ‘‘deep learning‘‘ used without a clear
justification for their need or advantage over simpler and more
robust alternatives such as plain linear regressions or single
hidden layer NNs. ML techniques are assumed to have the
superior expressive power of nonlinear methods. In this Per-
spective, we highlight some interrelations between popular ML
techniques and traditional linear regressions and basis expan-
sions and demonstrate that in certain regimes (such as a very
high dimensionality of the feature space) these approximations
might collapse. We also discuss ways to recover the expressive
power of a nonlinear approach with the help of high-
dimensional model representation (HDMR)32–35 which also
allows introducing elements of insight while preserving the
general nature of the method.

2. Popular machine learning methods
and some connections

The key promise of ML techniques is that they help avoid the
exponential scaling of the number of terms in a representation
and in the number of data needed to determine the terms of
the representation. The exponential scaling, the so-called curse
of dimensionality,31 holds for the direct product type of repre-
sentations (such as the Fourier expansion). The ML techniques
briefly recapitulated below are effectively representations mak-
ing use of non-direct product types of basis expansions, which
are also flexibilized by parameterization.

2.1. Neural networks as basis expansion with a non-direct
product basis

We do not aim here to give an introduction to neural networks,
the reader is referred for that to the abundant literature,15,26

but to highlight their certain properties. We are interested in
regression types of feed torward NN. A simple single-hidden
layer NN meant to represent a function f (x), x A RD can be
described by the equation

fk xð Þ ¼
XN
n¼1

cnksnðwnxþ bnÞ (2.1.1)

where we introduced the subscript k (dropped in the following)
to indicate that an NN may have multiple outputs (e.g. a
potential energy and its gradient or multiple wavefunctions of
the same potential). Eqn (2.1.1) assumes a linear output neuron
without the loss of generality, as a nonlinear monotonic output
neuron, as well as any output bias, can be subsumed into the
left hand side of the equation. We also introduced a subscript n
to account for the possibility of using different activation

functions sn for different neurons, although this is not com-
mon in applications. With any smooth nonlinear sn and even
with sn(x) = s(x) (i.e. all neurons having the same functional
form), this is a universal approximator36–39 in the sense that

8d4 0; 9No1: f xð Þ �
PN
n¼0

cns wnxþ bnð Þ
����

����o d.

Eqn (2.1.1) is an expansion over a flexible, tunable to the
problem basis set {sn}. Here we use the subscript n to indicate
that even when the functional form is the same for all neurons,
the basis functions are different due to the effect of wn, bn. This
view also holds for the multilayer NN

f xð Þ ¼
XNn

kn¼1
w

nð Þ
kn
sn;kn yknð Þ (2.1.2)

where

ykn ¼
XNn�1

kn�1¼1
w

n�1ð Þ
kn�1

sn�1;kn�1 . . .
XN1

k1¼1
w

2ð Þ
k2
s1;k1

Xd
i¼0

w
1ð Þ
k1i
xi

 ! !

(2.1.3)

and where the basis is {sn,kn
}. This also highlights the fact that a

nonlinear regression can be viewed as a linear regression over a
set of generally redundant descriptors y A RNn which nonli-
nearly depend on the vector of original descriptors x. Note that
in eqn (2.1.2) and (2.1.3) we subsumed biases into weights
(which can be done by introducing dummy variables x0 set to 1)
without loss of generality.

2.2. Kernel methods on the example of Gaussian process
regression – a fancy name for a linear regression

In Gaussian process regression (GPR)27 one postulates a covar-
iance function between training set data points x(i) and x(j):
k(x,x0). It is typically assumed to be one of Matern type of
functions

k xðiÞ; xð jÞ
� �

¼ s2
21�n

GðnÞ
ffiffiffiffiffi
2n
p xðiÞ � xð jÞ

�� ��
l

 !n
Kn

ffiffiffiffiffi
2n
p xðiÞ � xð jÞ

�� ��
l

 !

(2.2.1)

where s2 is a prefactor which is often set to the variance of the
target, and v and l are hyperparameters. G(v) is the Gamma
function and Kv is the modified Bessel function. v is typically
preset to one of N, 1/2, 3/2, 5/2, giving rise, respectively, to the
square exponential (Gaussian-like), simple exponential,
Matern3/2 and Matern5/2 kernels.40 The length parameter l
as well as the prefactor may be optimized with methods such as
MLE (maximum likelihood estimator)41 or other.42–46 The value
of the target function at an arbitrary point x is then
estimated as

f (x) = K* K�1 f (2.2.2)
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where f is a vector of all known f (x(n)) values, K is the
covariance matrix

K ¼

k x 1ð Þ;x 1ð Þ� �
þ d kðx 1ð Þ;x 2ð Þ�

kðx 2ð Þ;x 1ð Þ� kðx 2ð Þ;x 2ð ÞÞ þ d
� � � kðx 1ð Þ;x Mð Þ�

kðx 2ð Þ;x Mð Þ�
..
. . .

. ..
.

kðx Mð Þ;x 1ð Þ� kðx Mð Þ;x 2ð Þ� � � � kðx Mð Þ;x Mð ÞÞ þ d

0
BBBB@

1
CCCCA

(2.2.3)

and

K* = (k(x, x(1)), k(x, x(2)), . . ., k(x, x(M)), K** = k(x,x)
(2.2.4)

where M is the size of the training set. A ‘‘noise’’ hyperpara-
meter d is added to improve the generalization.

GPR is none other than a regularized linear regression, with
a Tikhonov regularization parameter d, over the basis bn(x) =
k(x, x(n)):28

f xð Þ ¼
XM
n¼1

bn xð Þcn ¼ Bc (2.2.5)

with coefficients c = K�1f. It is a linear regression where the
number of basis functions is equal to the number of data points
(matrix B is square). This means there are no degrees of freedom
left to appropriately optimize the basis parameters. The mean-
ing of ‘‘Gaussian process’’ derives from the use of a covariance
function for basis functions. Then eqn (2.2.2) can be viewed as
an estimate of the mean of a Gaussian distribution of values of
f (x), and the variance of that distribution can be computed as

Df (x) = K** � K* K�1 K*T (2.2.6)

Eqn (2.2.6) should not be used to compute error bars: the
estimate of the mean can be quite accurate even when the
fitting error is high. This happens in particular with additive
models.47–49 Note also that eqn (2.2.6) as written (and as it
usually appears in the literature) holds when the target is
normalized or when the kernel has a prefactor equal to s2, as
in eqn (2.2.1); otherwise it should be scaled by the variance.

3. NN vs GPR: expressive power of a
genuinely nonlinear method vs.
robustness of a linear regression
3.1. Expressive power and the number of parameters

Both NN and GPR are expansions over a non-direct product
basis. The basis functions of an NN, the neurons, are explicitly
parameterized (with different parameters of each neuron)
which gives rise to a large number of nonlinear parameters
and associated dangers of overfitting. We note, however, that
recent research indicates50 that overfitting need not happen
even when the number of NN parameters is larger than the
number of training data. In GPR, the basis parameters are
forced to have the same value in all basis functions and are
called hyperparameters. The number of neurons of a NN is
typically much smaller than the number of training data points.

In standard GPR, the number of basis functions is equal to the
number of training data. A single hidden layer NN with N
neurons-basis functions has (D + 1) � N nonlinear parameters
and (if it has a linear output neuron) N linear parameters
(eqn (2.2.1)). The GPR has M (number of training data) basis
functions, correspondingly M linear parameters and the num-
ber of nonlinear (hyper)parameters is small, often ranging from
one to D (length parameters of isotropic or anisotropic Matern
kernels). Granted, the fitting of a multitude of nonlinear
parameters is relatively CPU-costly, but as far as expressive
power is concerned, NN is still a competitive proposition. In ref.
30 it was argued that GPR is equivalent to an infinite NN, and in
ref. 29 it was demonstrated that GPR was ‘‘better’’ than NN in
that it obtained a lower (test set) error with the same number of
training data or alternatively that fewer data were needed to
achieve the same error. In the example of ref. 29 when fitting
625 samples of the six-dimensional potential energy surface
(PES) of the H2CO molecule, the GPR obtained a test error of
5.98 cm�1 with, respectively, 625 linear parameters and 625
basis functions. The NN required 1250 data and 100 neurons –
basis functions to obtain a similar test set error of 5.74 cm�1,
i.e. 700 nonlinear and 100 linear parameters. With 2500 train-
ing data, GPR obtained a test set error of 1.08 cm�1 with,
respectively, 2500 linear parameters and 2500 basis functions.
NN obtained a similar test set error of 1.12 cm�1 with 250
neurons – basis functions, i.e. 1750 nonlinear and 250 linear
parameters. In light of the above, that result can be read as
showcasing the more robust nature of a fixed-basis linear regres-
sion that is GPR when data are few rather than a higher expressive
power. The expressive power of an NN is higher due to the more
flexible (tuneable to each problem and independently for each
basis function) basis set it uses. An NN requires fewer basis
functions and sometimes fewer parameters overall than GPR.
Good results have also been demonstrated in the literature with
NNs which do not fit the nonlinear parameters at all – effectively
using random basis functions.51 Radial basis function neural
networks (RBFF), which are also universal approximators,52,53

feature more flexible basis functions of a similar type as GPR.

3.2. Sum of products property

Both NNs and GPR allow easy building of representations
in the sum-of-products (SOP) form important for quantum
dynamics54 and for any application where integration in multi-
dimensional spaces is important, as then the integrals factor,
i.e.

Ð
f xð Þdx ¼

PQÐ
dxi fi xið Þdxi. With an NN, this is achieved

by using a simple exponential neuron (s(x) = ex) in a single
hidden layer network:55

f ðxÞ ¼
XN
i¼0

c0n
Yd
k¼0

ewkxk (3.2.1)

Multiplicative NNs were also introduced for this purpose but
are somewhat more involved:56,57

f xð Þ ¼ m 2ð Þ
1 þ

Xn1
k1¼1

w
2ð Þ
1;k1

YJ
k0¼1

erf mð1Þk1k0
þ w

1ð Þ
k11k0

xk0

� �
(3.2.2)
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With GPR, a classic square exponential kernel being a product
of corresponding univariate kernels, the GPR representation is
a SOP. SOP NNs have been successfully used in MCTDH
calculations58–60 and the SOP nature of GPR deserves to be
explored more in quantum dynamics.

3.3. On hyperparameter tuning

We stressed above that, contrary to NNs, the Gaussian process
linear regression uses as many basis functions as there are
training data. This inhibits the ability to automatically tune
basis parameters. Hyperparameters such as the length para-
meter still need to be carefully selected. We have documented
failures of MLE when automatically optimizing hyperpara-
meters when data are sparse.49,61 Automatic hyperparameter
optimizers necessarily rely on information contained in avail-
able samples. What should be done, however, is the choice of
hyperparameters to maximise the completeness of the
basis bn(x) = k(x, x(n)) in relevant parts of the space of descrip-
tors. In our experience, this required setting the length para-
meters to larger values than those recommended by automatic
optimizers.

We proposed two ways to improve hyperparameter optimi-
zation. One is the rectangularization of GPR, using fewer basis
functions than training data.61 This is related so some of the
sparse GPR methods.62 Instead of the square matrix of
eqn (2.2.5), one can use a rectangular matrix of size M � N
with elements Bmn = k(x(n), x(m)), where N is the number of basis
functions and M the number of training data. When M 4 N, i.e.
with a rectangular version of eqn (2.2.5), it in general cannot be
solved exactly, and the residual of a least-squared solution can
be used to guide hyperparameter optimization to improve basis
completeness,63–65

min
k

f � Bcð ÞT f � Bcð Þ
� �1

2

( )
(3.3.1)

where c = B+f, B+ is a Moore–Penrose pseudoinverse66 of B, and
k subsumes all optimized hyperparameters. One can select (e.g.
randomly) N from the available M datapoints as basis centres.
As one solves a rectangular problem in the least-squares sense,
the parameter d (which could be introduced via a singular value
decomposition of B) is not needed. We found that the rectan-
gular approach gives as good a test set error without d as
traditional GPR with optimized d,49,61 and allows finding
optimal hyperparameters with eqn (3.3.1).

Another approach is using an additive model48,67,68 based
on high-dimensional model representation (HDMR).33 We will
introduce HDMR in more detail in Section 5; here it suffices to
introduce a simple additive model

f xð Þ � f add xð Þ ¼
XD
i¼1

fGPR
i ðxiÞ (3.3.2)

The component functions f GPR
i (xi) can be built with

high confidence from few data (if they are built with GPR,
eqn (2.2.6) they will return very low variance precisely because
the one-dimensional f GPR

i (xi) are well-defined and will generally

grossly understate the fitting error f (x) � f add(x) which is due to
the additive approximation). f add(x) can then be used to sample
from it a large pool of data that can be used to optimize the
hyperparameters of the high-dimensional GPR model of f (x).
We have shown, on the example of fitting a 15-dimensional PES
of UF6, that ‘‘good enough’’ (albeit not perfect, due to the
difference between f (x) and f add(x)) hyperparameters can be
identified in this way.49

4. When is ‘‘deep learning’’ needed?

We stressed above that a single hidden layer NN is a universal
approximator. The universal approximator theorems37 con-
cerned themselves with the power of representation and did
not take into account the data aspect of machine learning. In
other words, there is in them an implicit condition ‘‘provided
that as many samples of the target function are available as
needed, in all relevant parts of the space’’. When they are
available, in principle, one should never need a multi-layer
NN. In our experience with NNs fitting of potential energy
surfaces of small molecules,15,16 as well as in other settings,
we did not find it advantageous to use multilayer NNs. The data
distribution in the case of PES fitting is smooth. When a low
density of data in some parts of the configuration space led to
overfitting, tandem NNs, where first a smaller NN is fitted
without the danger of overfitting, and the error of that model is
refitted with a larger NN and capped by using e.g. a sigmoid
output neuron, was found to be useful.69

The data, however, may not be available on demand. The cost
of their computation may be high (examples are ab initio data
for systems beyond small molecules) and/or because of the
nature of the problem, the data may be very unevenly distrib-
uted. An example of this kind of application is machine learning
of Kohn-Sham kinetic energy density (KED) t or its positive-
definite version t+ from the electron density for the construction
of kinetic energy functionals (KEF) for orbital-free DFT:70

tðrÞ ¼
XN
i¼1

fiðrÞDfiðrÞ

tþ rð Þ ¼
XN
i¼1
rfiðrÞj j2

(4.1)

where fi
s are Kohn–Sham orbitals and the sum is over occu-

pied orbitals (spin and partial occupancies are ignored without
the loss of generality). The distributions of the KED and of the
density-dependent machine learning features (such as those
considered in Section 6) are extremely uneven. Examples of
the distribution of t+ for crystalline aluminum and magnesium
are shown in Fig. 1.

Distributions of some density-dependent features (such as
those in eqn (6.1) below) are even more extreme (see ref. 19).
We found that in this case, multi-layer NNs are useful. While we
were able to obtain good fits to Kohn–Sham KED of individual
materials with single hidden layer NNs, it was not possible
when machine learning KED from several materials
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simultaneously – which is needed to achieve the portability of
the KEF. A multilayer NN was able to achieve an accurate fitting
of the data from several materials simultaneously (Li, Mg, and
Al in the occurrence, see ref. 20 for details).

5. Interplay of (non)linearity and
dimensionality
5.1. Collapse of the Matern kernel-based regression in very
high dimensional feature spaces

While the SOP form of the square exponential kernel,

k x; x0ð Þ / exp � x� x0j j2

2l2

 !

¼
YD
d

exp �1
2

xd � x0d
l

� 	2
 !

(5.1.1)

is very useful for quantum dynamics or other applications
requiring integration, it may lead to a collapse of the GPR
approximation when the dimensionality is very high. The uni-
variate factors of eqn (5.1.1) are all smaller than 1, and the
product tends toward zero as D - N unless also l - N. This
effect is also expected with the other Matern kernels because of
their qualitatively similar shape even though they are not
formally in the product form. The optimal length parameter
tends to increase with dimensionality. For example, when fitting
the six-dimensional PES of formaldehyde (in normalized bond
coordinates), the optimal length parameter was on the order of
5, while for the 15-dimensional PES of UF6 it was on the order of
30 (also with normalized descriptors).49,61,67 As l increases, there
is a loss of resolution of the kernel in any one direction, and the
GPR approximation loses its advantage over a simple linear
regression. Moreover, when the distribution of the data on
which the model is used after it is trained is any different
(which it practically always is) from the distribution of the
training data, the GPR approximation necessarily collapses
when D - N. This was observed in the GPR of forecasted

electricity demand d(t) of a ‘‘smart building’’ from about 1000
features x(t) in ref. 71. Here, we show the same effect on an
example from quantitative finance. We forecast the value of
Nikkei 225 index one week into the future as a function of the
present-day (closing) values of major stock indices (Nikkei 225,
S&P500, DAX, S&P/TSX and other, for a total of 27 indices), their
components, major commodities (oil, gold, silver and other, for
a total of 31 commodities) and currencies (USD, JPY, EUR, CNY
and other, for a total of 23 currencies). The total dimensionality
of the dataset is D = 2346. The data from January 2002 to
December 2011 are used for training and later time periods
were used to check the predictive ability of the model. The
descriptors were scaled to [0, 1]. The problem of forecasting in
time is cast as a time-independent ML problem as

d(t + Dt) = f (x(t)) (5.1.2)

This way the problem of extrapolation in time is cast as an
interpolation problem in the space of descriptors. In Fig. 2, top
panel, we show the results of forecasting of the value of Nikkei 225
with GPR using squared exponential kernels with different length
parameters. The training period data (those to the left of the vertical
dashed line) were used to draw both train and test points (which
were in proportion 2 : 3). Both train and test data from that period
were reasonably well fitted using kernels with width parameters as
small as 10 (the features were scaled). Both train and test data were
randomly drawn from the same time period and are therefore
distributed in the same way. The predicted value in the prediction
period, however, collapses unless l is made much higher (the
optimum value was about 500). This is related to necessarily, albeit
slightly, different distributions of the data in the training and
prediction periods, which leads to k(x, x0) - 0 as D - N.

The example above is not from physical chemistry and is
chosen to illustrate the effect of an extremely large D. As ML
makes further inroads into physical and computational chemistry,
it is important to keep these effects in mind. Examples of situa-
tions where extremely high-dimensional spaces that might arise
are optimizations directly of grid points or basis coefficients.25 A
way to deal with this issue is naturally to avoid using products of
too many rapidly decaying functions. This can be achieved by
using the high-dimensional model representation (HDMR).

5.2. High-dimensional model representation (HDMR) which
is a representation with low-dimensional terms

High-dimensional model representation (HDMR) is an expansion
over orders of coupling that has been formalized in a series of
papers by Rabitz and co-workers.32–35 It is constructed as a sum of
terms depending on subsets of original coordinates/features (xi1,
xi2,. . .,xid),d r D.

f xð Þ � f0 þ
XD
i¼1

fiðxiÞ þ
X

1�io j�D
fijðxi; xjÞ þ . . .

þ
X

i1i2 ...idf g2 12...Df g
fi1i2...id ðxi1 ; xi2 ; . . . ; xid Þ (5.2.1)

Taken to d = D, this expansion is exact; when d o D, it is an
approximation. Eqn (3.3.2) is a particular case of eqn (5.2.1) for

Fig. 1 Distributions of kinetic energy densities t+ of crystalline aluminium and
magnesium computed as described in ref. 19. The values are scaled to [0, 1].
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d = 1. In most real-life applications, the importance of orders of
coupling, i.e. of the magnitude of the component functions
fi1i2. . .id

(xi1
, xi2

,. . .,xid
), drops rapidly with d.32 We specifically

consider RS (random sampling) HDMR32,33 which allows con-
structing all fi1i2. . .id

(xi1
, xi2

,. . .,xid
) from one and the same set of

samples of f (x) however distributed in the D-dimensional space
(the term ‘‘random sampling’’ should be understood in the
sense of allowing any distribution rather than randomness, but
we will follow the terminology used in the original HDMR
literature32–35). This is not to be confused with the N-mode
representation72 which has the same form of eqn (5.2.1) and
where the component functions are sampled on sub-
dimensional hyperplanes passing through an expansion centre
and therefore requiring a separate dataset for each term (the N-
mode approach is a particular case of HDMR called cut-
HDMR33).

The advantage of an HDMR form with d o D is that lower-
dimensional terms are easier to construct and are easier to use
in applications (e.g. when integration is required). A major
advantage of HDMR is that lower-dimensional terms can be
reliably recovered from fewer data.32,47,49,68 As sampling in
multidimensional spaces is bound to be sparse, this is attrac-
tive for multi-dimensional problems. The original formulation
of RS-HDMR required computing fi1i2. . .id

(xi1
, xi2

,. . .,xid
) as (D–d)-

dimensional integrals, which may be very costly.32,33 Some of

us previously introduced combinations of HDMR with neural
networks (RS-HDMR-NN)73–75 and, recently, with Gaussian
process regressions (RS-HDMR-GPR)47,68 which allow dispen-
sing with integrals and also allow combining terms of any
dimensionality, e.g. one may lump terms with d0 o d into d-
dimensional terms, in which case the approximation becomes

f xð Þ �
X

i1 i2...idf g2 12...Df g
fi1i2 ...id

ðxi1 ; xi2 ; . . . ; xid Þ (5.2.2)

Specifically, when using GPR in multi-dimensional spaces,
HMDR allows using lower-dimensional kernels and avoiding
some of the problems associated with Matern-type kernels with
very high D. To achieve the approximation eqn (5.2.2) with GPR,
one can define a custom kernel which is itself in an HDMR
form:48,67

k x; x0ð Þ ¼
X

i1i2...idf g2 12...Df g
ki1 i2...id

xi1 i2...id ; x
0
i1i2...id

� �
(5.2.3)

where xi1i2. . .id
= (xi1

, xi2
,. . .,xid

) and ki1i2. . .id
can be chosen as one

of Matern kernels in d dimensions. Individual component
functions are then computable as

fk1k2...kd xk1 ; xk2 ; . . . ; xkd
� �

¼ K�i1i2...id
c (5.2.4)

where K�i1 i2...id
is a row vector with elements

ki1i2 ...id
xi1i2...id ; x

ðnÞ
i1i2 ...id

� �
. In particular, the values of the compo-

nent functions at the training set are fi1i2. . .id
= Ki1i2. . .id

c, where
c = K�1f, and can be used to evaluate the relative importance of
different component functions by computing the variance of
Ki1i2. . .id

c, where the (m,n) elements of the matrix Ki1i2. . .id
are

ki1i2 ...id
x
ðmÞ
i1i2...id

; x
ðnÞ
i1i2 ...id

� �
.

5.3. Recovering the expressive power of a nonlinear method
with HDMR

For the problems of electricity demand prediction in a very high
dimensional feature space in ref. 71 and financial data time
series prediction illustrated above, with the HDMR-GPR, we
were able to get good predictive power with much lower length
parameters. As can be seen in Fig. 2, bottom panel, with the
first order HDMR model, a good predictive power of the model
is preserved for more than a year with l values as low as 0.1, and
the model does not collapse even at much later times (even as
its predictive power progressively deteriorates when the model
is used further and further into the future without retraining).

Small values of l allow preserving the higher expressive
power of a nonlinear method, as can be seen in Fig. 3, where
we show an example of a component function fi(xi) of a 1st
order HDMR-GPR model (eqn (3.2.2)) achieved with different
values of the length parameter of the square exponential kernel.
When l is large, the component functions are practically linear,
and the model becomes equivalent to a plain linear regression
f (x) = cx. Smaller values of l, enabled by the HDMR structure’s
avoiding a product of many functions with values smaller than
1, allow the HDMR-GPR model to construct the most suitable,

Fig. 2 Top panel: Forecasting the value of Nikkei225 one week into the
future with GPR from 2346 descriptors (scaled to [0, 1]) with different
length parameters l of a square exponential kernel. Orange: l = 10, brown:
l = 30, yellow: l = 50, green: l = 100, purple: l = 500. The true value is
shown in blue. Bottom panel: the same when using a 1st order HDMR-
GPR. Orange: l = 0.1, brown: l = 0.5, yellow: l = 1, green: l = 5, purple:
l = 10. The data to the left of the vertical dashed line were used for training,
and the data to the right of it are the prediction period.
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non-linear, basis functions that are the component functions
fi(xi).

6. Elements of insight with a general
method

Already the bare GPR allows obtaining some insight, specifi-
cally that into relative importance of descriptors. In the auto-
mated relevance determination (ARD) approach,27 one uses an
anisotropic squared exponential kernel with optimized
(e.g. using MLE41) length parameters li for each feature xi. A
large li would correspond to less important and small li to more
important variables.

The combination of HDMR with GPR allows assessing the
relative importance of different combinations of variables by
comparing the length parameters of the kernels of different
component functions. For example, in ref. 67 and 68 kinetic
energy densities t of Al, Mg, and Si were fitted with HDMR-GPR
as a function(al) of the terms of the 4th order gradient
expansion76 and the product of electron density r(r) and the
Kohn–Sham effective potential Veff(r):

t r½ � ¼ t tTF; tTFp; tTFq; tTFp2; tTFpq; tTFq2; rVeff


 �
¼ t x1; x2; x3; x4; x5; x6; x7½ � (6.1)

where tTF ¼
3 3p2
� �2

3

10
r
5
3 rð Þ is the Thomas-Fermi KED, and p and

q are the scaled77 gradient and Laplacian of the electron
density, respectively,

p ¼ rrj j2

4 3p2ð Þ2=3r8=3
; q ¼ Dr

4 3p2ð Þ2=3r5=3
(6.2)

Table 1 lists the results, for example, for component function
length parameters and variances when fitting a 2nd order
HDMR-GPR to 5000 training data.68

Some component functions have a very high l and a very low
variance – these can effectively be excluded as a result of this
analysis, alleviating thereby the issue of the combinatorial
scaling of the number of HDMR terms. It was also shown that

the importance of terms depends on the amount of available
training data, highlighting the issue that the density of sam-
pling determines the number of coupling terms that can be
recovered.73 In that work, isotropic kernels were used for each
component function; using anisotropic kernels would provide
even more detail about the relative importance of variables within
different subsets. The information obtained about the relative
importance of subsets of features with HDMR-GPR can be used
independently for building approximations relying on the most
important subsets with any method (not necessarily ML-based).

7. ML-based expansion over orders of
coupling can facilitate VSCF and VCI
calculations

Another connection we would like to make is the use of ML in
accurate (i.e., anharmonic) computational vibrational spectro-
scopy. Calculations of vibrational spectra including anharmo-
nicity and coupling are still problematic for a range of
practically important systems, including big molecules, mole-
cules on surfaces, and solid state.78 In these systems, even
though the effects of anharmonicity can be more significant
than in free small molecules, accurate calculations of spectra
are inhibited by the absence of potential energy surfaces (PES)
as well as by the computational complexity of solving the
vibrational Schrödinger equation. The latter is alleviated using
VSCF (vibrational self-consistent field)79,80 and VCI (vibrational
configuration interaction)81–83 methods, which use the PES in
the form of an expansion over orders of coupling which has the
same form as HDMR. Often, this expansion is built with the
N-mode approach72 (corresponding to cut-HDMR33) whereby

Fig. 3 Examples of a component function of a 1st order HDMR-GPR
model for forecasting the value of Nikkei 225 from 2346 descriptors
(scaled to [0, 1]) with different length parameters l of a square exponential
kernel. Left to right: l = 0.1, 0.5, 1.

Table 1 The length parameter l and the variance var of the 2nd order
HDMR-GPR component functions fi,j(xi,xj) when fitting kinetic energy
densities of Al, Mg, and Si to 5000 data. The maximum allowed value of
l was 105. The target and features were scaled to [0, 1] before fitting. See
eqn (6.1) for the definition of the features

Features Var{ fi1,i2
} l

x1, x2 3.36 � 10�2 4.94 � 10�1

x1, x3 4.51 � 10�4 3.33 � 102

x1, x4 3.69 � 10�9 105

x1, x5 3.70 � 10�9 105

x1, x6 3.68 � 10�9 105

x1, x7 3.94 � 10�9 105

x2, x3 5.09 � 10�3 2.16 � 101

x2, x4 3.11 � 10�10 105

x2, x5 2.81 � 10�10 105

x2, x6 1.65 � 10�10 105

x2, x7 6.03 � 10�3 3.12 � 101

x3, x4 9.87 � 10�10 105

x3, x5 9.95 � 10�10 105

x3, x6 1.03 � 10�9 105

x3, x7 3.53 � 10�2 9.51 � 10-2

x4, x5 6.70 � 10�10 105

x4, x6 4.76 � 10�10 105

x4, x7 5.08 � 10�10 105

x5, x6 1.38 � 10�10 105

x7, x7 1.78 � 10�10 105

x6, x7 1.52 � 10�2 2.48 � 10-1

PCCP Perspective

Pu
bl

is
he

d 
on

 0
7 

D
ec

em
be

r 
20

22
. D

ow
nl

oa
de

d 
on

 7
/1

3/
20

25
 1

1:
58

:3
1 

PM
. 

View Article Online

https://doi.org/10.1039/d2cp04155c


This journal is © the Owner Societies 2023 Phys. Chem. Chem. Phys., 2023, 25, 1546–1555 |  1553

each component function fi1 ;i2;...;id ðxi1xi2 ::xid Þ is sampled sepa-
rately while keeping other coordinates at the equilibrium
values. This leads to a combinatorically scaling number of
datasets with both D and d. By using RS-HDMR,33 one can
compute all terms of the HDMR representation from one and
the same set of full-dimensional (i.e. not confined to sub-
dimensional hyperplanes passing through the equilibrium
geometry) samples. As mentioned above, in the original RS-
HDMR formulation, d-dimensional terms were computed as
(D–d)-dimensional integrals which can be debilitating,32,33,35

but the use of ML trivially dispenses with this issue – all terms are
fitted simultaneously or in self-consistency cycles.47,67,68,74,75 We
have demonstrated RS-HDMR with NN73,74 and GPR component
functions (HDMR-NN, HDMR-GPR),47,67,68 and we have shown that
RS-HDMR PESs built from one full-dimensional dataset result in
accurate vibrational spectra.47 The potential of HDMR-ML combi-
nation to facilitate VSCF and VCI calculations is therefore significant
and should be explored. This includes the capability of HDMR-GPR
to prune the number of coupling terms as described above. HDMR-
ML combination is useful not only for PESs suited for VSCF and VCI
calculations but also for other applications in cases where the low-
density of data does not allow recovering higher orders of
coupling.47,73

8. Conclusions

Machine learning has already been widely used in different
areas of chemical physics, physical chemistry, including com-
putational and theoretical chemistry, and beyond. The areas of
penetration continue to increase. ML-based interatomic poten-
tials are already routine, including spectroscopically accurate
potentials.84 ML-based exchange correlation and kinetic energy
functionals are expected to enter publicly accessible codes for
use in applications in the near future. ML-predicted or
designed with ML assistance catalysts, chromophores, metallic
alloys, and ionic conductors are beginning to practically impact
the field of functional materials. Off-the-shelf machine learning
methods are often used, precisely for their off-the-shelf, black-
box nature allowing their easy application to diverse problems
and operation by non-experts.

In this Perspective, we tried to bring attention to some
interconnections as well as tricky parts of commonly used
methods, specifically focusing on neural networks and kernel-
based regression methods which found the widest use to date
in the above-mentioned applications. Despite the popularity of
multilayer NNs (‘‘deep learning’’), in our experience with ML of
interatomic potentials, kinetic energy densities, as well as in
other applications, single hidden NNs are sufficient and more
efficient unless the data distribution is very uneven. Both NNs
and kernel-type regressions (considered here on the example of
GPR) can be viewed as expansions over parameterized, non-
direct product bases. Both allow achieving a sum-of-product
representation which is very useful when computing integrals
(in quantum dynamics applications and elsewhere). The basis
set of GPR is much less flexible than that formed by NN

neurons, and typically many more basis functions (as many
as there are training data) are needed compared with the
number of NN neurons for the same quality of regression.
The perceived ability of GPR to achieve a similar test set error
(as a NN) with fewer data reported before has to do with the
robustness of a linear regression that is GPR. GPR is not
necessarily advantageous with respect to the total number of
parameters (linear and nonlinear) although it is advantageous
over NNs in terms of an only small number of nonlinear
(hyper)parameters typically used. The square nature of the
linear problem in the standard GPR is not well-suited for
hyperparameter optimization; rectangularization of GPR equa-
tions facilitates hyperparameter optimization.

When the dimensionality of the feature space is very large,
GPR with common Matern kernels may fail when the distribu-
tion of the test data is any different from that of the training
data. In this case, using representations with lower-
dimensional terms, based in particular on HDMR, is useful.
It is also useful because with a low density of training data
(which is always the case in high-dimensional spaces and
cannot be fixed by simply adding however many more data,
because of the curse of dimensionality), only lower-order cou-
pling terms can be recovered. Representations with lower-
dimensional terms built with ML methods are relatively easy
to construct (e.g. by defining a GPR kernel in an HDMR form).
They can also facilitate hyperparameter optimization. They also
allow obtaining elements of insight (the sore point of black-box
methods) while preserving the generality of the method, in
particular, informing on the relative importance of difference
combinations of features. Random sampling HDMR, which
allows constructing all coupling terms from one and the same
dataset, should be explored for applications with VSCF and VCI
as it has the potential to significantly simplify PES construction
in the form needed by those methods. Overall, there is an
advantage in going beyond off-the-shelf methods; one can
achieve more powerful approaches when using these methods
as a base for more involved approaches such as HDMR-NN or
HDMR-GPR combinations.
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