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Data-driven synthesis planning has seen remarkable successes in recent years by virtue of modern

approaches of artificial intelligence that efficiently exploit vast databases with experimental data on

chemical reactions. However, this success story is intimately connected to the availability of existing

experimental data. It may well occur in retrosynthetic and synthesis design tasks that predictions in

individual steps of a reaction cascade are affected by large uncertainties. In such cases, it will, in general,

not be easily possible to provide missing data from autonomously conducted experiments on demand.

However, first-principles calculations can, in principle, provide missing data to enhance the confidence

of an individual prediction or for model retraining. Here, we demonstrate the feasibility of such an ansatz

and examine resource requirements for conducting autonomous first-principles calculations on demand.
1 Introduction

The accurate characterization and reasoning over a diverse
range of molecules and chemical reactions is one of the main
challenges of articial intelligence (AI) for chemical research. AI
models address a wide range of tasks such as property predic-
tion,1,2 de novo molecular design,3,4 and reaction and retrosyn-
thesis prediction.5–10 Many of these approaches surpass in
accuracy, speed, and scalability the more traditional computa-
tional and cheminformatics tools.

The typical strategies of AI-based reaction prediction may be
divided into two different groups, namely, template-based and
template-free classes. Template-based methods5,11,12 rely on
a database of reaction templates or rules which are applied to
reactant species (or products) to generate transformations.
Traditionally, these rules were hand-craed,13 but some AI
approaches attempt to automatically extract them from datasets
of reactions. By contrast, template-free methods rely solely on
the knowledge that can be extracted from raw data and differ in
terms of the way they represent the data points: as a graph or as
a text sequence.14,15 Sequence-based models, in particular, can
rely on the relationship between chemistry and linguistics16–21 to
ich, Vladimir-Prelog-Weg 2, 8093 Zurich,

em.ethz.ch

-Catalysis (NCCR Catalysis), ETH Zurich,

witzerland

itzerland. E-mail: TEO@zurich.ibm.com

earch-Catalysis (NCCR Catalysis), IBM

the Royal Society of Chemistry
draw from the large number of publications of AI for natural
language processing (NLP). Nam and Kim,22 Liu et al.,23 for
example, introduced sequence-to-sequence methods, whereas
Schwaller et al.8,9 proposed transformers for reaction prediction
and retrosynthesis. Subsequently, several models leveraging the
potential of NLP techniques such as augmentation24 and pre-
training25 have been developed for retrosynthesis or related
chemistry tasks.

Irrespective of the approach employed, AI methods suffer
from the intrinsic uncertainty of the dataset used for training.
The models are usually built with knowledge extracted from
publications and patents. Some of the resulting databases of
this extraction are the open source USPTO,26 the proprietary
Reaxys,27 and Pistachio.28 While these databases provide an
extremely valuable set of millions of reactions, they are usually
not hand-curated and oen imbalanced. This results in models
that struggle (or miss) to learn rare and under-represented
reactions.

One way to deal with the problem is to validate low-
condence AI predictions by producing reliable data for
missing or under-represented regions of the chemical space.
This can for instance be achieved with rst-principles calcula-
tions of the chemical processes in question. Unfortunately,
these calculations come at a high computational cost, which
even scales the more unfavorable with system size the higher
their accuracy shall be. Since, in cases of low-condence
predictions, AI-based models would require such data on
demand and with as little time delay as possible, the accelera-
tion and automation of quantum chemical results will be key.
Digital Discovery, 2023, 2, 663–673 | 663
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For highly uncertain reaction prediction of an AI model, the
automatic quantum chemical (QC) search of chemical reactions
with double-ended methods can deliver, rst, specic feedback
on specic reactions, and second, iteratively enrich the AI
training datasets with high-quality data. Within the past
decade, approaches have been developed for the automated
exploration of reactive chemical systems.29–35 A soware for this
purpose is SCINE Chemoton,36,37 which next to fully edged
exploration protocols provides a range of so-called double-sided
transition-state search algorithms, that is algorithms which
search for a reaction given both reactant and product
structures.

SCINE Chemoton is designed as a general-purpose explora-
tion soware. Hence, it is not restricted to a particular class of
reactions or compounds. The soware is under continuous
development and is therefore currently affected by some limi-
tations: for instance, the handling of bifurcations along reac-
tion paths is currently not available. The success rate, i.e., the
ratio of successfully recovered reactions, was measured at
a generic test set to be up to 80% (the missed 20% reactions can
be attributed to still lacking reaction types (bifurcations) and
deciencies in the electronic structure model applied in the
assessment).37 We refer the interested reader to ref. 37 for
a more detailed description of Chemoton.

For the sake of completeness, we note that other approaches
for the exploration of chemical reaction networks have been
developed. Examples are graph-based approaches,38,39 relying
on chemical heuristics to extract reaction rules36,40,41 and
stochastic methods42,43 (see also ref. 30 and 31 for reviews).

Maeda and coworkers have long highlighted the value of
reaction exploration soware for retrosynthetic
applications.44–48 In particular, they presented an approach in
which an exploration is started from the desired end product,
i.e., the compound which is to be synthesized. Then, an explo-
ration soware is taking advantage of automatic identication
of possible reaction pathways leading to this compound. We
emphasize that the approach we introduce in this work differs
with respect to the retrosynthetic analysis that is carried out by
an AI prediction to which the quantum chemical validation in
the forward direction can be seamlessly coupled in an autono-
mous fashion.

Another example is autodE49 which requires only the SMILES
strings of all reactant and product structures. It features
a sophisticated approach for nding the transition state and
properly takes into account the conformational exibility of all
structures. However, transition state search algorithms are
generally only applicable to individual elementary steps, i.e.,
reactions with only a single transition state and no intermedi-
ates. Hence, when some intermediates of a multi-step reaction
are not known, such basic approaches cannot be applied. By
contrast, explorative approaches such as those implemented in
SCINE Chemoton can autonomously discover missing inter-
mediates and, hence, can also be applied to multi-step
reactions.

In this work, we explore the feasibility of quantum chemical
data production on demand, when requested by articial
intelligence approaches directed to questions of retrosynthesis
664 | Digital Discovery, 2023, 2, 663–673
and synthesis planning. The key goal is to make on-time QC
calculations a guide to support decision making of an articial
intelligence-driven model for chemical synthesis planning and
mechanism elucidation, not posing constraints on the type of
reactions and on their complexity.

The manuscript is structured as follows: Section 2 concep-
tually introduces our integrated AI-QC framework and discusses
the challenges for the implementation and for the interface of
the two technologies at play (IBM RXN platform9,50 for AI-based
retrosynthesis and SCINE Chemoton for double-ended reaction
network exploration). In Section 3, we investigate proof-of-
concept results for two organic reactions (a Williamson ether
synthesis which proves the general feasibility of our approach,
and a more complex Friedel–Cras reaction which is deliber-
ately chosen to push the QC validation to its current limit since
the implementation is expected to be very challenging for
enriching the AI model with the desired information, thereby
highlighting the technical challenges to be addressed by future
work on the QM side). We then present thorough resource
estimates and discuss the scalability of our framework in
a production environment.

2 Methodology
2.1 Conceptual analysis

Although computational tools for retrosynthesis planning
successfully demonstrated how to make arbitrary compounds,13

there is an inherent uncertainty regarding the synthetic feasi-
bility of each suggested step. On the other hand, this uncer-
tainty plays a signicant role when deciding on a particular
synthetic route, as the viability of each proposed reaction step is
crucial for overall success. It will especially be important to
know the uncertainty associated with the feasibility of reaction
steps that turn out to be pivotal or even affect important
resource requirements in earlier steps of a chemical synthesis.
Monitoring the feasibility of each step is therefore important
and requires automated uncertainty assignment.

One possible way to validate and prioritize reactions is to rely
on condence measures provided by AI-based retrosynthesis
models. This value is usually obtained by a complementary
forward reaction prediction model and is therefore indicative of
the probability that a suggested reaction will work.9 However,
the resulting condence largely depends on the data on which
such data-driven models were trained. Information linked to
under-represented and noisy data instances can be more diffi-
cult to learn,51 which results in models assigning a low con-
dence to the corresponding reactions. In such a case, one must
resort to additional data sources to gain more insight into these
under-represented data points. However, experimental data on
specic reactions will, in general, not be readily available.

To address this issue, we propose the following integrated
AI-QC framework, where we leverage rst-principles calcula-
tions. Through reaction explorations relying on the SCINE
Chemoton37,52 platform, we set out to ll the gap of missing data
and prediction uncertainty in AI-based retrosynthesis models,
using as an example, those based on language architectures.9,50

When a retrosynthetic route provided by the AI model is
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Workflow of QC-enhanced AI-based retrosynthesis planning:
(A) a prediction of possible disconnections is made for a target
molecule. (B) A confidence score is computed for these predictions.
Some of these suggestions are potentially correct but predicted with
low confidence by the AI model (in IBM RXN) due to a lack of training
data. (C) First-principles reactivity explorations (with SCINE Chemoton)
are initiated to validate or invalidate the predictions (or a subset of
them). (D) The original confidence score and the result of the first-
principles explorations are combined to decide which predictions
should be adopted for the synthesis planning. (E) The above procedure
is iterated for the next steps.
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deemed to be unsatisfactory in terms of condence, a new ret-
rosynthesis search is performed, where reaction network
searches are triggered in the background on each single-step
prediction. The results of the reaction network searches are
then inspected to validate or invalidate the suggested retro-
synthetic suggestions and update the corresponding con-
dences. These updated values are integrated into the multi-step
retrosynthesis algorithm and the details of the reactivity
exploration are provided to the users, who can then proceed to
the next steps in the synthesis. This AI-QC framework is
sketched in Fig. 1, where for the sake of convenience only
a single reaction step is reported.

We emphasize that quantum chemical reaction network
explorations can be computationally very demanding, poten-
tially becoming a critical bottleneck of our approach. We
therefore discuss resource estimates for reaction network
searches and their feasibility for routine applications in
Section 3.3.
2.2 Implementation

For demonstrating the integration of data-driven retrosynthesis
and rst-principles network exploration, we rely on the IBM
RXN retrosynthesis algorithm9,50 and on SCINE Chemoton.37,52

Since both technologies have been presented in the original
publications cited above, we refer the interested reader to
Appendix A for a short description of both. Instead, in this
section, we will look at how these technologies can be combined
and the challenges that will be encountered. In particular, we
discuss what information should be provided for the rst-
principles validation of a reaction suggested by the data-
driven retrosynthesis tool and how this information can be
provided on demand.

To start a rst-principles network exploration, SCINE Che-
moton will require some minimal specication (minimal
input). However, the minimal input will spur many explorative
calculations that can be easily in conict with demands on
© 2023 The Author(s). Published by the Royal Society of Chemistry
speediness and hardware resources. Therefore, Chemoton also
accepts additional parameters that lead to a more directed
search and reduce the number of necessary calculations, hence
making the network exploration faster.

The minimum input needed by SCINE Chemoton to start an
exploration consists of the Cartesian coordinates of structures
for all compounds in the reaction, including solvent and cata-
lysts, as well as the total molecular charge and spin multiplicity
for all of these structures. This information is indirectly
provided by the retrosynthesis tool, which suggests the
precursors in the simplied molecular-input line-entry system
(SMILES) notation.53,54 The SMILES format species the
connectivity of the compounds, but not their three-dimensional
coordinates. The conversion to three-dimensional coordinates
can follow existing approaches.55–57 In some cases, special care
is needed to avoid individual atoms overlapping; such struc-
tures, if not properly sanitized, lead to failing quantum chem-
ical calculations. The total molecular charges are obtained
directly from the SMILES strings, while the spinmultiplicity can
be guessed automatically by some very fast (but crude) methods,
for example, one based on extended Hückel theory.58 In a more
sophisticated approach, all possible low-lying spin states need
to be tested as has already been proposed for molecular
propensity calculations.59

Moreover, one should be aware of the fact that a retrosyn-
thesis tool may fail to provide the stereochemical information
for a molecule. In some cases, this information is simply not
available (e.g., because it was already lacking in the input data).
In other cases, certain stereochemical information, such as the
axial chirality of a helicene molecule, cannot be encoded in
SMILES notation.60 A straightforward way to deal with missing
stereochemical information from the AI model is to account for
all options in the rst-principles exploration; i.e., to use all
possible stereoisomers in separate Chemoton explorations.

While the single-step retrosynthesis models were designed to
predict catalysts and reagents in addition to the reactants,9

there is no guarantee that the data used to train the model (or
that the model predictions) are complete. Then, help may be
provided by additional data-driven models, such as models
providing the missing compounds in incomplete chemical
equations.61

Since SCINE Chemoton cannot steer an exploration into
a desired direction based on the minimal input, the combina-
torial explosion resulting from attempts to react every atom and
atom pair in every molecule with every atom and atom pair in
every other molecule will be computationally demanding and
must be tamed. By providing Chemoton with additional infor-
mation on a reactive system under consideration, the explora-
tion can be made much more efficient.

First, the atom mapping between reactants and products,
i.e., the set of rules dening how atoms rearrange during
a chemical transformation, can reduce the number of atom
combinations that Chemoton needs to explore, in particular
when the reaction is composed of a single step (if the reaction
turns out to be composed of multiple intermediate steps, an
extensive network exploration should be performed). There
exist many computational tools for atom-to-atom mapping.62
Digital Discovery, 2023, 2, 663–673 | 665
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Fig. 2 Williamson ether synthesis of ethoxybenzene from iodoethane
and phenol. Both the non-mapped and the atom-mapped63 Lewis
structures are shown alongside the corresponding SMILES
representations.
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One of them, RXNMapper,63 relies on a similar architecture as
the single-step retrosynthesis model and can easily be queried
to enhance the suggested set of precursors with atom mapping
information. Here, “precursors” refer to the set of reactants and
reagents proposed for a single-step synthesis from the AI ret-
rosynthesis tool. Second, from the list of precursors, the roles of
the individual structures (e.g., reactant, solvent, catalyst) are not
known. Knowing this information can improve the rst-
principles network exploration because one would be able to
model solvent effects adequately or rely on the fact that a cata-
lytic species is to be recovered at the end of the reaction. We
foresee that data-driven models, for instance following an
approach similar to named-entity recognition,64 will be able to
determine the precursor roles in the future.

Third, one can expand on the previous point to also specify
the stoichiometry of the precursors. This is especially relevant
in cases where multiple identical reagent molecules are
consumed by the reaction. If the stoichiometries are not avail-
able, one can allow for free exploration with different stoichi-
ometries of the different precursors. This could, however, lead
to an exceedingly large number of calculations. To our knowl-
edge, no computational tool currently exists to estimate the
stoichiometry of precursors. We expect this task to be
addressable by data-driven models, should adequate training
data be available.

Fourth, the knowledge of byproducts, such as condensation
water, can be very helpful. If all products of a reaction are
known, this can be used to limit the scope of the exploration
and, hence, will reduce the computational resources needed to
verify whether a given reaction is viable. With state-of-the-art AI
models, however, it is hard to determine byproducts automat-
ically. In principle, the aforementioned chemical equation
completion61 is able to provide missing byproducts. In practice,
however, data sets of chemical reactions do not provide this
information, which is either unknown or of no practical interest
to chemists.

Finally, work-up steps can be relevant when aiming to
recover the reaction product specied in the chemical equation.
In many reactions, this product will only be recovered aer
work-up. For instance, for a Grignard reaction, it will not be
possible to obtain the nal alcohol unless one considers the
presence of water aer the actual reaction. Since the reagents
used for work-up are not always specied in training data and
are therefore not available from the AI model, this can prevent
Chemoton to recover the reaction product. Strategies to account
for such a failure, for instance by relying on data-driven models
that are able to predict work-up steps,65 need to be studied in
future work.

3 Results

To assess the feasibility of our AI-QC framework and its inte-
gration of data-driven retrosynthetic suggestions and the rst-
principles validation of their reactions, we studied two exam-
ples of different complexity. We start with a single-step example
in the next section before we turn to the more complex multi-
step problem.
666 | Digital Discovery, 2023, 2, 663–673
3.1 Proof of concept demonstration

As a proof of concept, the rst example is deliberately chosen to
be a reaction which occurs in a single elementary step. Conse-
quently, one may expect the validation of the reaction by rst-
principles mechanism exploration to conrm the feasibility of
this reaction in comparatively little time. Hence, we also
measure the time and resources required for the exploration.

As a target compound, we selected ethoxybenzene (i.e., ethyl
phenyl ether). The preferred way to synthesize this compound is
a Williamson ether synthesis starting from iodoethane and
phenol (see Fig. 2). The mechanism of this reaction is known to
be a nucleophilic substitution (SN2), occurring in a single
elementary step.66

The single-step AI-based retrosynthesis model of IBM RXN
suggests multiple variants of this reaction with different bases
(potassium carbonate and sodium hydride) and solvents
(acetonitrile, acetone, and dimethyl formamide). It also
suggests a few alternative reactions starting from bromoethane
instead of iodoethane. To keep things as simple as possible, we
started from a simplied version of this reaction insofar as
neither a base nor a solvent is explicitly considered in the
exploration with Chemoton. Obviously, in some cases, it might
be crucial to incorporate explicitly solvent effects into the
exploration. We have recently presented an approach on how
this can be achieved,67 which can be directly exploited in our
context, although further work will be needed to avoid the
computational effort of solvating every structure in a network.
This simplied version is also suggested by the retrosynthesis
tool, although with slightly lower condence than the alterna-
tives including a solvent and a base.

Since this is a single-step reaction, Chemoton can take
advantage of the atom mapping provided by RXNMapper to set
up only the minimal number of calculations necessary to probe
whether the AI-predicted simplied solvent and base-free
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Friedel–Crafts acylation reaction.
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reaction is feasible. For instance, in this particular example, it is
immediately clear from the atom mapping that it is a bimolec-
ular reaction; hence, Chemoton will not attempt to nd any
unimolecular reactions. Also, the atom mapping clearly shows
that the phenyl moiety is not taking part in the reaction. Hence,
this can be excluded as well in the elementary reaction step
searches set up by Chemoton. Note that for this proof-of-
concept work, the atom mapping was implemented manually.
It will be le to future work to automate this.

Chemoton then carried out a total of 729 calculations
requiring between 0.03 s and 49.61 s with an average runtime of
9.80 s. The total runtime required for a serial execution (i.e.,
using a single processor core only) was 7146.13 s or slightly less
than two hours. A massive speedup could be obtained by
employing several processors in parallel. Upon completion of all
calculations, the exploration yielded a total of 43 compounds
and 38 reactions (according to the notation in ref. 32, where
structures with the same connectivity represent a compound
and a reaction will, in general, consist of several alternative
elementary steps). The set-up and running of these calculations
was done in a fully automated fashion by SCINE Chemoton with
no manual intervention.

The rst reaction found by Chemoton is the desired target
reaction, i.e., the nucleophilic substitution yielding the ester.
With the GFN2-xTB method,68,69 the reaction energy (as calcu-
lated from total electronic energies, hence not taking into
account any nuclear motion and entropic effects) is
−34 kJ mol−1, and the barrier to overcome by the reactants is
predicted to be 218 kJ mol−1. Note that this barrier is arguably
rather large; it results from the fact that no base was present
and, hence, the nucleophile was phenol instead of phenolate.
This was conrmed by additional calculations carried out with
TURBOMOLE 7.4.1 (ref. 70 and 71) in its shared-memory par-
allelized version in the framework of DFT with the PBE
exchange–correlation functional72,73 and Ahlrichs' def2-SVP
basis set74 for all atoms (in addition, semi-classical D3 disper-
sion corrections75 with the Becke–Johnson damping function76

were employed). When calculating the same reaction with
phenolate instead of phenol, the barrier is lowered to
158 kJ mol−1. By contrast, relying on a more sophisticated
electronic structure method (density functional theory with the
PBE functional and Grimme's D3BJ dispersion corrections with
the def2-SVP basis set) while keeping the phenol reactant, the
barrier is only slightly reduced (namely, to 203 kJ mol; for
phenolate, the barrier remains at 158 kJ mol−1 even with DFT as
for GFN2-xTB).

Most other reactions are endothermic. These are 34 out of 38
reactions and they can already be ruled out as promising
candidate reactions, assuming that the reaction outcome is
thermodynamically controlled. The two remaining reactions are
more exothermic than the target reaction, namely −48 kJ mol−1

and −52 kJ mol−1. These reactions are also substitution reac-
tions, but with the difference that the ethyl moiety attaches to
the phenyl ring in ortho and para positions to the hydroxy
group. However, these two reactions have barriers which are
signicantly larger than the 218 kJ mol−1 of the target reaction,
namely 250 kJ mol−1 and 253 kJ mol−1. Using a Maxwell–
© 2023 The Author(s). Published by the Royal Society of Chemistry
Boltzmann distribution to model the kinetic energy distribution
of the reactants at 100 °C, we nd that the number of molecules
having a kinetic energy between 218 kJ mol−1 and 250 kJ mol−1,
i.e., enough to surpass the barrier of the target reaction, but not
enough to overcome the ones from the other reactions, is four
orders of magnitude larger than the number of molecules
having a kinetic energy of more than 250 kJ mol−1. Therefore,
we conclude that the target reaction is indeed the dominating
one, as suggested by the AI-based model in IBM RXN.
3.2 A challenging example put to the test

The rst example reaction demonstrates the feasibility of our
approach. However, for more complex scenarios, there are
many technical challenges which need to be solved. We high-
light these challenges in the second example below, which is
deliberately chosen to push the current implementation of our
approach to its limits in order to draw conclusions for future
research directions.

As a second, more challenging example, we selected a case
that is more difficult both for the AI-based retrosynthesis model
and for the rst-principles network exploration. It has been
shown that the family of Friedel–Cras acylation reactions is
challenging for text-based models for chemical reactivity.77

The specic reaction we studied is shown in Fig. 3. This is
one of the examples considered by Kovács et al.,77 who observed
that the Molecular Transformer,8 a forward reaction prediction
model, struggled to predict the correct regioisomer depending
on the directing group attached to the aromatic ring. Since the
Molecular Transformer shares the architecture of the single-
step retrosynthesis model and is trained on the same data,
this example is expected to be challenging for retrosynthesis as
well.

Moreover, while feasible in principle, the above reaction
presents other obstacles than those linked to regioselectivity.
According to standard organic chemistry textbook knowledge,66

one might argue that this reaction is not expected to occur,
given that neither the electrophile nor the aromatic moiety
(deactivated by the electron-withdrawing nitro group) is
particularly reactive. Still, strong heating/microwave may allow
for at least some conversion. These considerations make the
presented reaction a perfect case study for our analysis.

The difficulties linked to this example can be rationalized by
the poor characterization of these reactions in the patent
dataset. There, for training, only 0.21% belong to the class of
Friedel–Cras acylation reactions. In Fig. 4, we show the
distribution of Tanimoto scores78 of all the product molecules
present in the dataset and derived from Friedel–Cras reactions
against the target molecule, including some examples and
associated scores. For reactions like this one, new data points
Digital Discovery, 2023, 2, 663–673 | 667
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Fig. 4 Left: Similarity of all products present in the training dataset and
linked to a Friedel–Crafts acylation reaction, plotted against the
product of the considered Friedel–Crafts reaction of Fig. 3. Right: The
5 molecules with the highest similarity score against the target
compound (top left of the grid). Note that the product with the highest
similarity is the onemost confusing (F-group in para position vs.meta).

Fig. 5 Elementary steps of the Friedel–Crafts reaction shown in Fig. 3.
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generated by on-demand quantum chemical explorations have
the potential to provide key information lacking in the dataset.

This example highlights the challenges of an automated
verication with Chemoton and several of the challenges
mentioned in Section 2.2 apply here. For instance, no solvent is
specied, and also no stoichiometries are available. Also, the
atom mapping information is of little relevance in this case,
because the overall reaction as depicted in Fig. 3 is not a single
elementary step.

If one were to rely on the atom mapping to steer the explo-
ration with Chemoton, no reactions would be found, and Che-
moton would erroneously report that this chemical
transformation was not possible. This result can be prevented if
it is known that the overall reaction is composed of several
elementary steps. However, as long as the intermediate struc-
tures are not precisely known, it is difficult to steer the explo-
ration and limit the computational resources needed. For
example, with the default settings of Chemoton 2.1.0, a brute-
force exploration starting from the three reactants shown in
Fig. 3 quickly results in more than 10 000 calculations. When
the scope of the exploration is further broadened by allowing up
to two bond modications, three rotamers, and multiple attack
points for every reactive elementary-step trial, the exploration
quickly exceeds 1 000 000 calculations.

For such multistep reactions, new methods to identify the
individual elementary steps will have to be developed to main-
tain the exploration within tight bounds and, hence, within
reasonable computing time. The development of such ways,
however, is beyond the scope of this article and le for future
work.

We explored this reaction manually, breaking it up into the
well-known elementary steps of Friedel–Cras acylation as
shown in Fig. 5. Having these elementary steps dened,
deducing a corresponding atom mapping, and taking advan-
tage of this in exploration is trivial. However, while the rst
elementary step was successfully found with Chemoton,
repeated attempts to nd the second step failed. The failed
attempts can be traced back to the scarce reactivity of the
668 | Digital Discovery, 2023, 2, 663–673
species involved, as explained before. However, there is a not
small possibility that this reaction could not be found for
technical reasons because the fast, but approximate semi-
empirical electronic structure method employed may fail for
this particular example. While more sophisticated methods are
readily available in many cases, these require longer computa-
tional times.

As a side note, for this specic reaction, the catalyst (AlCl3) is
typically found in dimeric form (Al2Cl6), but this is usually not
specied explicitly in databases and then cannot be given by the
AI-based model to the Chemoton exploration in an automated
fashion. If the dimeric form is important for the reaction to
proceed, it will be impossible to nd in a rst-principles
exploration unless this dimeric form is given as input, or
allowed to create it. The latter option is easy to implement, but
will again increase the time needed for the exploration.
3.3 Resource estimates and feasibility in routine
applications

Aer having studied a straightforward and complex reaction, we
now take a bird's eye position to discuss the general require-
ments for our AI-QC framework.

For a routine integration of data-driven retrosynthetic
models with rst-principles network exploration, it is key that
the results from the rst-principles exploration are provided in
a timely fashion to be useful for further decision making with
respect to the target molecule. In this respect, it is crucial to
understand what results can be expected to be provided by the
rst-principles exploration in a practical amount of time.

As an example, one can consider a duration of two weeks to
be reasonable to obtain a thorough analysis of potential
synthesis paths for a molecule of interest. Given that a multi-
step data-driven retrosynthetic analysis takes a few minutes on
average, this will not be a bottleneck, and one can concentrate
on the time required for the rst-principles exploration.
Assuming that two iterations of Chemoton explorations will be
necessary, one can assume that the results of each iteration
must be provided within one week. On the basis of the obser-
vations made in Sections 3.1 and 3.2, this leads to the following
considerations.

There are two major factors that will determine the overall
computational effort for these explorations. The rst is the
electronic structure method chosen to evaluate energies and
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Multistep retrosynthesis algorithm logic, taken from Schwaller
et al.9

Fig. 7 Graphical user interface view for the result of the retrosynthetic
analysis of the product molecule of Section 3.2. Left: selection of the
first reaction step, which is characterized by a low confidence. Right:
global view for the full retrosynthetic route. The low confidence score
is caused by the first reaction step.
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gradients in the explorations. The second is the number of
elementary-step search trials that are performed. While the
choice of the electronic structure method determines the cost of
each energy evaluation in relation to the size of the given
molecules, it is nonetheless the number of trials that are ulti-
mately the bottleneck for larger explorations. The number of
trials can grow exponentially with the size and number of
relevant systems to probe unless these trials are ltered.

Expanding on the runtimes reported in Section 3.1, we can
divide the runtimes per calculation into those calculations that
are elementary-step search trials and those that are not, the
latter usually featuring a much lower runtime than the
elementary-step trials. As mentioned above, the cost of each
elementary step trial is of key interest for the calculation of the
overall cost. The average runtime per elementary step trial in the
example case presented in the previous sections is 20.1 seconds.
As these timings are obtained on a single core, we can therefore
round the cost per reaction trial to 20 CPU seconds or 1/180 CPU
hours. This runtime average is calculated from all trials, those
that lead to the discovery of a new elementary step and those
that did not. The latter are usually of a signicantly shorter
runtime, as they end the procedure prematurely upon detection
of an error or determination of a dead end.We observed that the
ratio of successful and unsuccessful trials is almost constant for
a chosen set of exploration algorithms,37 so we can leverage this
average value to extrapolate costs for cases with more trials and
similar system sizes.

Coming back to the intended constraint of nishing an
exploration within a week, it would therefore be possible to
probe 30 240 elementary step trials on a single core in this time
frame. If more computational power is invested within the same
time, this number may of course be increased. Assuming this
task should be a rather routine job, we may set the limit that no
more than 100 cores should be invested, hence generating an
upper limit at about 3 million reaction trials within one week.
Compared with the examples given above, these calculated trial
numbers would make it appear that it is possible to tackle many
problems, but this estimate was generated for the given system
size and method used in those examples.

Should the exploration rely on pure DFT calculations for
these examples, we would encounter clear limitations.
Depending on the system size a slowdown of a factor of 100 to
1000 can be expected, hence allowing only very limited cases to
be tackled within the one-week limit. This is, of course,
a problem for chemical processes that are not well described
with current semi-empirical methods.

Furthermore, with increasing system sizes, the computa-
tional cost of each trial also rises. Assuming a quadratic scaling
of the energy and gradient evaluations for the semi-empirical
methods with respect to system size shows that doubling the
system size may yet be feasible from the point of view of elec-
tronic structure methods. However, increasing system sizes also
increases the number of trials required to cover all possible
reactions for the given systems. Even if we only assume the
possibility of forming a single bond in each bimolecular trial,
this scaling will be at least quadratic in the size of the systems
involved, as every atom of one reactant could potentially form
© 2023 The Author(s). Published by the Royal Society of Chemistry
a bond with every atom of the other reactant. Overall, the
doubling of the system sizes will therefore cut the coverage of
reactions within a single week by a factor of 16.

A need for further steps is obvious to tame the combinatorial
explosion of search trials. Some of this may be based on addi-
tional information generated by the initial AI-based step. Other
parts may be based on rst-principles heuristics.41,79,80

Combined with the ongoing developments in faster and/or
more accurate electronic structure methods, in recent years
also including machine learning approaches for energies and
gradients, we expect that these computational cost-based
problems will be alleviated in the future.
4 Conclusions

Deep learning approaches to retrosynthesis prediction have
long been travelling on separate routes with respect to more
traditional quantum chemistry approaches like reaction
Digital Discovery, 2023, 2, 663–673 | 669
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network searches. In our work, we aimed at nally merging the
two technologies, highlighting how both worlds can benet
from one another. We have presented a new framework where
rst-principles calculations provide missing data to enhance
the condence of an individual prediction or for model
retraining. We have examined the bottlenecks at interfacing
a SMILES-based output to a more complex (minimal) input like
the one required by rst-principles calculations, underlying the
importance of the generation of three-dimensional conformer
structures, the presence and identication of certain species in
the reactions (e.g., solvent, catalyst, by-products) and the
knowledge of eventual intermediate steps. Through two proto-
typical examples (Williamson ether synthesis and Friedel–
Cras acylation), we demonstrated the feasibility of such
symbiotic technology and estimated truthfully resource
requirements for a routine integration of data-driven retro-
synthetic models with rst-principles network exploration. We
envision a hybrid platform where the user can dene her/his
degree of granularity in the synthesis of a target molecule,
leveraging the broad knowledge and speed of AI models as well
as the accurate and thorough analysis of rst principles
calculations.

Appendix
A Methods

A.1 Data-driven retrosynthetic route prediction. Modern
AI-based approaches to multistep retrosynthesis typically rely
on a Deep Learning single-step retrosynthesis model, coupled
with a search algorithm. In this work, we followed the approach
by Schwaller et al.,9 as implemented on the IBM RXN platform.

The single-step retrosynthesis model is a language model
constructed with the popular Transformer architecture by Vas-
wani et al.81. Molecules and reactions are represented as SMILES
strings and fed to the model token-by-token (tokenization is
performed by splitting the SMILES characters, see Schwaller
et al.9 for more information). The model was trained on
a proprietary patent dataset, Pistachio,28 and it learned to
generalize to unseen molecules and reactions.

The single-step model is embedded in a Beam Search algo-
rithm to perform the path exploration. The algorithm is briey
sketched in Fig. 6. The single-step retrosynthesis model suggests
a series of possible disconnections for a target molecule. The
proposed sets of reactants are scored in terms of a scoring
function based on the properties of the chemical species
(SCScore82) and on the condence of the model on that predic-
tion (‘Forward’ in Fig. 6). The Beam Search algorithm iterates the
procedure for multiple subsequent steps (until available
precursors are found or a maximum number of steps is reached).

The retrosynthetic tool is available for public use through the
IBM RXN GUI.50 To run the examples in this paper, we used the
model categorized as ‘2020-07-01’ and run the multistep
synthesis in interactive mode. We report in Fig. 7 the graphical-
user interface output for the challenging example of Section 3.2.

The low condence of the rst step (Friedel–Cras acylation)
is highlighted in the user interface. The prompt intervention
and validation by rst-principles calculation can prioritize this
670 | Digital Discovery, 2023, 2, 663–673
reaction and allow it to proceed smoothly with the carboxylic
acid to acid chloride reaction, proposed by AI and leading to
commercial precursors.

A.2 Automated rst-principles reaction mechanism explo-
ration. All quantum chemical explorations were carried out with
Chemoton 2.1.0 (ref. 37 and 52) in conjunction with Puffin
1.1.0.83 Reactive trials were generated with the NT2 algorithm.37

Only bimolecular trials were created, allowing one intermolec-
ular bond formation, and excluding any intramolecular bond
formations and any dissociations. All atoms except hydrogen
were considered reactive. For every reactive trial, two rotamer
structures and multiple attack points were employed.

The quantum chemical raw data (e.g., electronic energies
and nuclear gradients) were obtained from GFN2-xTB.68,69 All
calculations were done in the restricted open-shell formalism
and the C1 point group symmetry.

Data availability statement

The data underlying the results presented in this article is
available on Zenodo.84

This exploration has been carried out with Chemoton 2.1.0 in
conjunction with Puffin 1.1.0. Note that this implies the following
versions of the entire SCINE Chemoton exploration stack:

– Chemoton 2.1.0 85

– Puffin 1.1.0 86

– Database 1.1.0 87

– ReaDuct 4.1.0 88

– Molassembler 1.2.1 89

– Utilities 6.0.0 90

– Core 4.0.2 91

– development-utils 5.0.1 92

– xtb_wrapper 1.0.2 93

All quantum chemical raw data needed for this exploration
(such as electronic energies and nuclear gradients) have been
obtained with the xtb program.94

The additional verication calculations for the transition
state in Sec. 3.1 have been carried out with ReaDuct 4.1.0 ref. 88
in conjunction with xtb94 for the GFN2-xTB95 calculations and
with Turbomole 7.4.1 96,97 for the DFT calculations (in
a def2-SVP basis set98 at all atoms and with the PBE0 exchange–
correlation density functional99). Dispersion effects were
considered by Grimme's semiclassical D3 correction100 with
Becke–Johnson damping function.101

The retrosynthesis predictions were obtained from the freely
available IBM RXN for Chemistry platform.102 The underlying AI
models were presented elsewhere103 and rely on the transformer
model implementation available in the OpenNMT-py
package.104 A reference implementation for the application to
chemical reactions is provided by the Molecular Transformer.105

The retrosynthesis model was trained on patent data ob-
tained from Pistachio, a proprietary database by NextMove
Soware.106
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Chem. Phys. Lett., 1989, 162, 165–169.

72 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett.,
1996, 77, 3865–3868.

73 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett.,
1997, 78, 1396.

74 F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005,
7, 3297–3305.

75 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem.
Phys., 2010, 132, 154104.

76 S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem.,
2011, 32, 1456–1465.

77 D. P. Kovács, W. McCorkindale and A. A. Lee,Nat. Commun.,
2021, 12, 1695.
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