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ughness of structure–property
relationships using pretrained molecular
representations†

David E. Graff, ab Edward O. Pyzer-Knapp,c Kirk E. Jordan,d Eugene I. Shakhnovicha

and Connor W. Coley *be

Quantitative structure–property relationships (QSPRs) aid in understanding molecular properties as

a function of molecular structure. When the correlation between structure and property weakens,

a dataset is described as “rough,” but this characteristic is partly a function of the chosen representation.

Among possible molecular representations are those from recently-developed “foundation models” for

chemistry which learn molecular representation from unlabeled samples via self-supervision. However,

the performance of these pretrained representations on property prediction benchmarks is mixed when

compared to baseline approaches. We sought to understand these trends in terms of the roughness of

the underlying QSPR surfaces. We introduce a reformulation of the roughness index (ROGI), ROGI-XD,

to enable comparison of ROGI values across representations and evaluate various pretrained

representations and those constructed by simple fingerprints and descriptors. We show that pretrained

representations do not produce smoother QSPR surfaces, in agreement with previous empirical results

of model accuracy. Our findings suggest that imposing stronger assumptions of smoothness with

respect to molecular structure during model pretraining could aid in the downstream generation of

smoother QSPR surfaces.
Introduction

The development of quantitative structure–property relation-
ships (QSPRs) is central to molecular discovery, as they help
rationalize trends in molecular properties and suggest to
chemists how they can or should modify certain structural
motifs to achieve a target property. A key challenge in building
QSPRs arises when similar molecules possess divergent prop-
erty labels. These scenarios, so-called “activity cliffs,”1–5 can
pose challenges in downstream modeling tasks depending on
the choice of molecular representation. As the assumption that
similar molecules have similar properties breaks down, a data-
set will contain both more and sharper activity cliffs, resulting
in a “rougher” structure–activity landscape. In turn, these
rougher QSPR landscapes make generalization harder due to
logy, Harvard University, Cambridge, MA

T, Cambridge, MA 02139, USA. E-mail:

, UK

ambridge, MA 02142, USA
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the increasingly complex relationship between molecular
structure and properties.

Dataset roughness is typically assessed qualitatively,
although there are metrics that attempt to quantify this, such as
the structure–activity relationship index (SARI)6 and the mod-
elability index (MODI).7 However, these metrics are primarily
intended for application to bioactivity datasets (SARI) or to
classication datasets (MODI), and extending these metrics to
arbitrary regression tasks remains a challenge. To address this,
we have recently proposed the ROuGhness Index (ROGI),8

a scalar metric that captures global surface roughness by
measuring the loss in the dispersion of molecular properties as
a dataset is progressively coarse-grained. Briey, we are given an
input representation for each molecule x ˛ R

d and a distance
metric d : Rd × R

d / R, then (1) the dataset is clustered using
complete linkage clustering at a given distance threshold t, (2)
the dataset is coarse-grained by replacing the property label yi of
each point with the mean of its respective cluster �yj, (3) the
standard deviation of the coarse-grained dataset st is calculated,
(4) steps (1)–(3) are repeated for t ˛ [0, ., max dx], (5) the area
under the curve of 2(s0 − st) vs. t is measured to yield the ROGI.
Datasets with larger ROGI values result in larger cross-validated
model errors, consistent with intuition. Across a variety of
datasets from GuacaMol,9 TDC,10 and ChEMBL11 and machine
learning (ML) model architectures, the ROGI correlates strongly
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 (A) Examples of increasingly rough datasets. (B, C, D, E) Schematics of pretrained chemical models evaluated in this study. Yellow, dotted
boxes indicate the source of the pretrained representation. (B) A SMILES variational autoencoder (VAE) uses the mean latent representation after
encoding. (C) A graph isomorphism network (GIN) uses the sum of the node hidden representations after graph convolutions. (D) ChemBERTa
uses the embedding of the hCLSi token after the final transformer encoder block. (E) ChemGPT uses the embedding of the last token in the input
sequence after the final transformer decoder block.
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with cross-validated model root-mean-square error (RMSE) and
generally outperforms alternative metrics.8

Given these strong correlations, we sought to broadly
examine recent claims about the superiority of molecular
representations learned by “foundation models” for
chemistry12–17 through the lens of QSPR surface roughness (Fig.
1). Foundation models are a class of MLmodels that are trained
on large, unlabeled datasets via self-supervised learning
(sometimes supervised learning) and are in principle capable of
adapting rapidly to downstream tasks with very few labeled data
points.18 Pretrained foundation models are now standard
practice in several domains, such as natural language
processing,19–21 computer vision,22,23 and protein modeling.24,25

Given the abundance of unlabeled chemical data and the
limited amount of data encountered in many property predic-
tion tasks, foundation models may benet chemistry by
learning meaningful molecular representations suitable for
property prediction tasks in the low data regime.
© 2023 The Author(s). Published by the Royal Society of Chemistry
Despite this interest, empirical evaluation of proposed
chemical foundation models has shown mixed results. Recent
work from Deng et al.26 assessed the performance both SMILES-
and graph-based pretrained chemical models (PCMs), Mol-
BERT14 and GROVER,15 respectively, on a variety of benchmark
tasks from MoleculeNet27 and opioid bioactivity datasets from
ChEMBL.11 For each task, they compared the performance of
these proposed chemical foundation models to a random forest
model trained on radius 2, 2048-bit Morgan ngerprints. The
authors found that this baseline was competitive for many
benchmark tasks and even superior in several of the opioid
tasks. This nding is consistent with results reported in the
PCM literature where learned representations offer inconsistent
improvement over baseline approaches.

In this work, we complement this analysis by characterizing
the roughness of the QSPR surfaces generated by PCMs on both
toy and experimental modeling tasks. To do so, we reformulate
ROGI as ROGI-XD to enable cross-representation comparison.
Digital Discovery, 2023, 2, 1452–1460 | 1453
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While the original ROGI correlates strongly with cross-validated
RMSE across datasets when holding the representation
constant, it does not necessarily provide a meaningful basis for
comparison among representations due to the relationship
between distances and the dimensionality of a given represen-
tation. We show that for a variety of PCMs (VAE,28 GIN,29,30

ChemBERTa,12 and ChemGPT31) and a variety of molecular
tasks, learned molecular representations do not provide
smoother structure–property relationships than simple
descriptor and ngerprint representations. The failure of PCMs
to learn a continuous embedding of molecular structures that
smoothly correlates with various properties of interest both (a)
explains their poor empirical performance in property predic-
tion tasks without ne-tuning and (b) motivates the use of
ROGI-XD to evaluate smoothness when new pretraining strate-
gies are proposed.
Results and discussion
Reformulation of the ROGI as ROGI-XD enables cross-
dimensional comparisons

In its original formulation, ROGI values are not comparable
across representations of different dimensionality. Distances
between randomly-sampled points generally increase with
Fig. 2 Reformulation of ROGI as ROGI-XD enables cross-representation
complete linkage clustering of eight points sampled uniformly from the d
become more compressed and happen closer to 1 (normalized distance
a step in the dendrogram. (B) The distribution of normalized distance f
increases, the distance distribution sharpens and centers closer to 1. (C
Redefining the coarse-graining domain to 1 − logNclusters/logN results i

1454 | Digital Discovery, 2023, 2, 1452–1460
representation size, so even when normalizing distances to the
same range (e.g., [0, 1]), higher-dimensional representations do
not coarse-grain until larger values of normalized distanced
threshold (Fig. 2A). Ultimately, this will result in articially low
ROGI values for QSPR datasets with high-dimensional repre-
sentations. To illustrate this, consider N points sampled
uniformly from the unit hypercube of dimension d with random
property labels y � Uð0; 1Þ. As d increases, the normalized
distance distribution of these points will become more tightly
peaked and centered closer to 1 (Fig. 2B), which results in the
delayed coarse-graining phenomenon mentioned earlier. This
delayed coarse-graining causes the curve of loss of dispersion
2(s0 − st) vs. normalized distance threshold t to be depressed at
lower values of t, producing lower ROGI values for higher
dimensional representations (Fig. 2C). It could be argued that
a higher-dimensional representation may result in
a “smoother” representation due to the larger distances
between points, but for large differences in d, the ROGI essen-
tially becomes a proxy for the inverse of representation size
rather than differences in the underlying SPR surface. The
datasets sampled from the unit hypercube abstractly represent
the “same” dataset in hyperspace as N / N, so they should
possess roughly equal roughness values when controlling for d.
and cross-dimension comparisons. (A) The dendrograms produced by
omain [0, 1]d. As the size of the domain increases, the clustering steps
). The minor ticks and vertical gridlines in each subplot correspond to
or 1000 points drawn from the domain [0, 1]d. As the dimensionality
) Higher dimensional representations produce lower ROGI values. (D)
n similar ROGI values regardless of representation size.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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To minimize the impact of dimensionality on the ROGI, we
change its integration variable to capture the degree of coarse-
graining independent of representation size. Procedurally,
“coarse-graining” entails taking a step up in the dendrogram
produced during the clustering routine. Whereas originally we
scan along the distance required to take such a step, we now opt
to use 1 − logNclusters/logN, where Nclusters is the number of
clusters at the given step in the dendrogram and N is the dataset
size. This new formulation, which we refer to as ROGI-XD,
produces similar values for each toy dataset regardless of its
dimensionality (Fig. 2D). We note that while there are other
formulations that reect a similar concept, they must possess
a constant integration domain. For example, using 1 − Nclusters/
N as the x-axis produces a similar trend as above (Fig. S1†), but it
is dened on the domain [0, 1 − 1/N], thus making the score
dependent on N and confounding comparisons across datasets
with large differences in size.

The ROGI-XD correlates strongly across representations

We next sought to evaluate how well the ROGI-XD correlates
with model error across chemical representations. First, we
measured ROGI-XD and cross-validated RMSE for all combi-
nations of task, model, and representation then calculated the
Pearson correlation coefficient r between ROGI-XD and cross-
validated RMSE across representations for the same task and
model. We analyze a variety of regression tasks using experi-
mental ADMET datasets from the TDC10 and datasets generated
using GuacaMol9 oracle functions, and we use the same ML
models as in our previous study.8 We look at two xed repre-
sentations: molecular descriptors and Morgan ngerprints;
four pretrained representations: SMILES variational autoen-
coder (VAE),28 graph isomorphism network (GIN)29 pretrained
with node attribute masking,30 ChemBERTa,12 and ChemGPT;31

and 128-dimensional random embeddings. For more details,
see the Materials and methods section below.
Fig. 3 Distribution of Pearson correlation coefficients r between ROGI-
a givenMLmodel and task. Left: Box plot of correlations grouped byMLm
is depicted via the solid, colored line, and the mean by the white triangl
MLP: multilayer perceptron; PLS: partial least squares; RF: random fores

© 2023 The Author(s). Published by the Royal Society of Chemistry
The ROGI-XD produces strong correlations with model error
across molecular representation for the majority of tasks and
ML models tested (Fig. 3). The median correlation across all
combinations of model and task ranges between 0.72 and 0.88,
with the best correlations observed for both the random forest
(RF) and k-nearest neighbors (KNN) models. This is in contrast
to the original ROGI, which generally produces weak correla-
tions (median r ˛ [−0.32, 0.28]) when subjected to the same
analysis (Fig. S2†). As shown in the toy example above, the
original ROGI is affected by representation size, so the range of
dimensionalities in the representations tested (14 to 2048,
Table S1†) negatively impacts correlation strength.

Of note are the generally strong correlations between ROGI-
XD and the RMSE from a KNN model. This is perhaps not
surprising due to the thematic similarities between these two
algorithms. However, the RMSE of a KNN model on the full
dataset provides worse correlations with the cross-validated
RMSE of other models than does ROGI-XD for all values of k
tested (Fig. S3†). For a more detailed discussion on the funda-
mental differences between the two, we refer a reader to the
Differences between ROGI-XD and k-nearest neighbors section
in the ESI† text.

When we measure the correlation between ROGI-XD and
RMSE across tasks for a given model using molecular descrip-
tors (as in our original study), we see similarly strong correla-
tions (Fig. S5†). These correlations remain strong when we
measure correlation over both representations and tasks,
whereas they decrease signicantly with the original ROGI
(Table 1). In turn, this allows for the direct comparison of ROGI
valuesmeasured for two datasets with differing representations.

It is also possible to measure the correlation between ROGI
or ROGI-XD and the minimum model error for a given task and
representation. In other words, rather than treating each ML
model separately as above, we now (1) measure the model error
and roughness metric for all combinations of task,
XD and cross-validated RMSE across all representations evaluated for
odel architecture with individual data points plotted above. Themedian
e (O). Right: Correlations grouped by task. KNN: k-nearest neighbors;
t; SVR: support vector regression.

Digital Discovery, 2023, 2, 1452–1460 | 1455
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Table 1 Pearson correlation coefficient r between roughness metric
and cross-validated RMSE across all tasks and representations for
a given model

Metric

Model

KNN MLP PLS RF SVR

ROGI 0.800 0.675 0.835 0.809 0.771
ROGI-XD 0.990 0.913 0.983 0.985 0.958
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representation, and ML model; (2) take the minimum model
error for each combination of task and representation; and (3)
measure the correlation between the roughness metric and this
“best-case” model error for each task. The ROGI-XD again
produces strong correlations across all datasets (median r =

0.82) compared to the original ROGI (median r = 0.16) (Fig. 4).
This discrepancy in correlation strength is expected because
this analysis still relies on comparisons across representations.

Performing a similar analysis using the RMSE of a KNN
model, as above, produces competitive correlations with ROGI-
XD (Fig. S4†). As one model decreases in RMSE, it is likely that
so too will the RMSEs of other models. Despite this, the distri-
bution of these correlations of KNN RMSE is much broader than
that of ROGI-XD with more frequent worst-case performance.

The ROGI-XD's strong correlation with best model error
across representations thus allows a user to quickly get an idea
Fig. 4 Distribution of Pearson correlation coefficients r between
roughness metric and minimum cross-validated RMSE for a given task
across all representations. Each point corresponds to an individual
task. The median is depicted via the solid, colored line, and the mean
by the white triangle (O).

1456 | Digital Discovery, 2023, 2, 1452–1460
of best-case model performance for a variety of representations
without resorting to empirical testing. This can further be
extended to comparing best-case modelability among datasets
given a set of possible representations by calculating the ROGI-
XD for each representation and then selecting the lowest one for
the task. For example, by selecting the representation with the
lowest ROGI-XD and then optimizing over model architecture in
each of our 17 tasks, the average relative increase in best-case
model error would be only 6.8%. In 8 out of 17 tasks, select-
ing the lowest ROGI-XD identies the optimal representation
with respect to best-case model error.
Pretrained molecular representations do not provide
smoother structure–activity landscapes than ngerprints and
descriptors

The ROGI-XD formulation's strong correlation with model error
across representations thus allows us to compare the smooth-
ness of learned representations to that of xed representations.
We use the same pretrained representations as before to
broadly survey different strategies of learning molecular repre-
sentations: a recurrent neural network-based encoder-decoder
framework (VAE), graph-based pretraining (GIN), encoder-only
large language model (LLM; ChemBERTa), and decoder-only
LLM (ChemGPT). For each task, we calculate the relative
difference between ROGI-XD values for each pair of pretrained
and xed representations (i.e., ROGI-XDp/ROGI-XDf − 1, where
ROGI-XDp and ROGI-XDf are the ROGI-XD values of a given
pretrained and xed representation, respectively, for the same
task). While there are other pretraining techniques and model
architectures available, we do not intend for this analysis to be
exhaustive. Rather, our goal is to provide a supplementary
technique by which to understand trends in model
performance.

We nd that across all tasks tested above, PCMs do not
generate quantitatively smoother QSPR surfaces when
compared to those generated via molecular descriptors or
ngerprints (Fig. 5). In more than 50% of the tasks evaluated,
both descriptors and ngerprints generated smoother QSPR
surfaces. The median relative ROGI-XD values for each pre-
trained representation compared to descriptors and nger-
prints range between 9.1–21.3% and 2.3–10.1%, respectively.
Indeed, these ROGI-XD values are consistent with the cross-
validation results of descriptors and ngerprints being gener-
ally lower in RMSE than the pretrained representations (Fig. S6
and S7†). An extreme case is the Scaffold Hop task, where the
GIN, ChemGPT, and ChemBERTa representations produce
ROGI-XDs of 0.150, 0.174, and 0.172, respectively, compared to
the 0.085 of descriptors. However, we emphasize that PCMs do
not generate bad representations, but rather that these learned
representations are not smoother than simple, xed
representations.

One potential benet of learned representations is their
ability to be netuned using task-specic data. Given the nature
of the learning task, we would naturally expect this to smooth
the corresponding QSPR surface. We tested this approach with
our VAE model through a contrastive loss between the latent
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Distribution of relative difference between ROGI-XD values of the given pretrained representation (y-axis) and fixed representation (top)
for each task. Positive values indicate that the pretrained representation produces a rougher QSPR surface, and negative values indicate the
opposite. Individual data are plotted above and box plot is plotted above. The median is depicted via the solid, colored line, and the mean by the
white triangle (O). FP: Morgan fingerprint; VAE: variational autoencoder; GIN: graph isomorphism network.
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representations and target properties on the Lip-
ophilicity_AstraZeneca task from the TDC.10 Finetuning the VAE
on 80% of the dataset (Ntot = 4200) improves the ROGI-XD from
0.254 to 0.107 (±0.02), considerably smoother than that of
descriptors at 0.227. Attempting the same strategy on the
CACO2_WANG task (Ntot = 910) yields a ROGI-XD of 0.143
(±0.05), no smoother than descriptors (0.132). The impact of
netuning on smoothness varies and is sensitive to both the
task and the number of labeled examples.

Studies that introduce new pretraining techniques or model
architectures rarely, if ever, analyze the smoothness of the
underlying QSPR surfaces. Rather, they benchmark their
method on a variety of property prediction tasks and frequently
report mixed results; on some tasks, the new technique
outperforms the current state-of-the-art, but on others, it fails to
compete with simple baselines. In our evaluations, we nd that
baseline representations outperform learned representations in
10 of the 17 tasks tested. The relative roughness observed for the
QSPR surfaces generated by these learned representations is
consistent with their generally mixed performance in property
prediction tasks. Thus, we believe that this lack of smoothness
at least partially explains their inability to consistently outper-
form established molecular representations on supervised
learning benchmarks.

While it is intuitive that worse model performance could be
due to a rougher QSPR surface, such analysis has not previously
been conducted. We attribute this to the former lack of metrics
that can (i) quantify QSPR surface roughness and (ii) directly
compare these quantities across representations. Our analysis
using the ROGI-XD allows us to quantitatively show that this is
typically not the case.
Conclusion

We have described ROGI-XD, a reformulation of the ROGI that
enables comparison of structure–activity roughness values
across representations via changing the integration variable.
The ROGI-XD correlates strongly with cross-validated model
error both across representations for a given task (median r =
0.72–0.88) and over both representations and tasks (median r =
© 2023 The Author(s). Published by the Royal Society of Chemistry
0.91–0.99). We then use ROGI-XD to evaluate several recently-
reported pretrained chemical representations from SMILES
VAE, GIN, ChemGPT, and ChemBERTa. Across all of the tasks
evaluated, the ROGI-XD values of these representations were no
smoother than those of ngerprints and descriptors. These
results are consistent with the empirical results of various
benchmark studies which show that pretrained models are not
universally superior to ngerprints or descriptors.

Taken together, these observations suggest that more work
remains in developing chemical foundation models. Though it
is unreasonable to expect that any single pretrained represen-
tation will produce a smoother QSPR surface in every task,
a reasonable desideratum is that such a representation is of
comparable smoothness to simple baseline representations for
a majority of useful properties. The ROGI-XD is thematically
similar to a contrastive loss, as both will scale proportionally
with the frequency and severity of activity cliffs in a given
dataset. Imposing stronger assumptions of smoothness with
respect to molecular structure during model pretraining by
weak supervision on simple, calculable properties could aid in
producing smoother QSPR surfaces.

A limitation of our analysis is that we have treated the pre-
trained representations as static for downstream modeling; an
alternative is to ne-tune them by training the model on addi-
tional, labeled data, in turn helping to smooth the corre-
sponding QSPR surface. In a sense, the evaluations here have
demonstrated the need for ne-tuning in the absence of
a universally smooth representation. This introduces many
additional design choices, so we leave this evaluation for future
work.

Materials and methods

All code and data used in this work is available at: https://
github.com/coleygroup/rogi-xd.

Representations

Descriptors. As in our previous study,8 we calculate the
following 14 molecular descriptors for each molecule using
RDKit32 and concatenate them to form a vector: MolWt,
Digital Discovery, 2023, 2, 1452–1460 | 1457
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FractionCSP3, NumHAcceptors, NumHDonors, NOCount,
NHOHCount, NumAliphaticRings, NumAliphaticHeterocycles,
NumAromaticHeterocycles, NumAromaticRings, NumRotata-
bleBonds, TPSA, QED, and MolLogP. Aer the representation
was calculated for each molecule in a dataset, each feature axis
was scaled to the range [0, 1].

Fingerprints. Morgan ngerprints of radius 2 and 512 bits
were calculated via RDKit.32 We note that this differs from our
prior study, which used 2048-bit Morgan ngerprints, because
most datasets evaluated contained on the order of 1000 data-
points. We did not observe a signicant difference in perfor-
mance as a function of ngerprint length.

VAE. We implement a character-based variational autoen-
coder of SMILES strings based on the architecture of Gómez-
Bombarelli et al.28 using the tokenization scheme of Schwaller
et al.33 The model was trained on the ZINC 250k dataset using
an 80/20 training/validation split for 100 epochs and early
stopping tracking the validation loss with a patience of ve
epochs. The 128-dimensional mean latent codes produced by
the encoder were used as the molecular representations.

GIN. We pretrain a graph isomorphism network29 on
molecular graphs via node attribute masking30 using the
TorchDrug34 implementation. The model is trained on the ZINC
250k dataset using a mask rate of 15%, batch normalization, 80/
20 training/validation split for 100 epochs, and early stopping
tracking the validation loss with a patience of ve epochs. The
300-dimensional molecular representation is calculated via the
mean of all node-level representations from the nal iteration of
message-passing.

ChemBERTa. We used the ChemBERTa-77M-MLM model
available from the Hugging Face hub.35 ChemBERTa is a RoB-
ERTa-style model pretrained on SMILES strings using 77M
molecules from PubChem using masked-language modeling
originally reported in Ahmad et al.12 The molecule-level repre-
sentations are taken as the 384-dimensional embeddings of the
[CLS] token in a sequence from the nal transformer layer.
Batches of sequences were padded right-wise.

ChemGPT. We used the ChemGPT-1.2B model available
from the Hugging Face hub.36 ChemGPT is a GPT-style model
pretrained on SELFIES37 strings from the PubChem 10M data-
set38 using causal language modeling originally reported in Frey
et al.31 GPT-style models are decoder-only transformers, so
molecule-level representations are taken as the 2048-dimen-
sional embedding of the right-most token in a sequence from
the nal transformer layer. Given this right-wise embedding
scheme, batches of sequences were padded le-wise.

Random. Embeddings were uniformly sampled from the
domain [0, 1]128.
Tasks

As in our previous work,8 we used two groups of tasks, (1) ADME
and toxicity datasets from the TDC10 and (2) toy datasets
generated by sampling 10 000 molecules from the ZINC250k
dataset and then calculating the following GuacaMol9 oracle
function values for these molecules: Scaffold Hop, Median 1,
Aripiprazole_Similarity, Zaleplon_MPO, Celecoxib_Rediscovery.
1458 | Digital Discovery, 2023, 2, 1452–1460
We exclude many of the original GuacaMol tasks, as their oracle
functions use descriptor values in the scoring function that
overlap with our descriptor representation. For the hERG_a-
t_1uM and hERG_at_10uM tasks from the TDC, datasets were
downsampled to 10 000 molecules; in these instances, reported
ROGI values are the mean of ve random subsamples.
Cross-validation

As in previous work,8we performed 5-fold cross-validation using
the following ve regression models from Scikit-learn:39 k-
nearest neighbors (KNN), multilayer perceptron (MLP), partial
least squares (PLS), random forest (RF), and support vector
regression (SVR). All models utilized default settings except for
the RF model, which used an n_estimators value of 50. We scale
the property labels to the range [0, 1] before cross-validation and
report the mean root-mean-squared error (RMSE) of all ve
folds.
Finetuning

We netune the VAE model by adding a contrastive loss term to
the loss function:

L ¼ L CE þ b$L KL þ g$L cont;

where L CE, L KL, and L cont are the cross-entropy, KL divergence,
and contrastive terms, respectively, and b and g are loss
weights. We set these weights to 0.1 and 50, respectively. For two
points i and j, the contrastive term is dened as the squared
difference between their distance in the latent space and their
distance in the target space:

L cont

�
zi; zj ; yi; yj

�
:¼ �

dz
�
zi; zj

�� dy
�
yi; yj

��2
;

where z and y are the latent representation and target value,
respectively, of a given point and d : R

D × R
D / R$0 is

a (pseudo)metric. For latent space distances dz, we use the
cosine distance, and for target space distances dy, we use the
absolute value. We minimize the mean of all pairwise differ-
ences across an entire batch.
Soware

This work was performed using Python 3.9, fastcluster 1.2.6,
NumPy 1.2.4, PyTorch Lightning 1.9.0, RDKit 2022.9.4, Pandas
1.5.3, PyTDC 0.3.9, PyTorch 1.13.0, Scikit Learn 1.2.1, SciPy
1.8.1, SELFIES 2.1.1, TorchDrug 0.2.0, and Transformers 4.26.0.
Hardware

This work was performed on a workstation with two AMD Ryzen
Threadripper PRO 3995WX CPUs, four Nvidia A5000 GPUs, and
512 GB of RAM running Ubuntu 20.04 LTS.
Data availability

All code, data, and scripts used in this work is available at:
https://github.com/coleygroup/rogi-xd. All results can be
regenerated automatically using make all.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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