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tools for automatic structure
phase map generation†

Kiran Vaddi, *a Karen Li b and Lilo D. Pozzo c

Extracting a phase map that provides a hierarchical summary of high-throughput experiments is a long-

standing bottleneck for the modern goal of achieving automation and acceleration in material discovery.

A phase map that underpins the inherent properties of materials is typically denoted using

a composition-structure map but can be extended to other relevant parameters such as synthesis. This

paper describes a computational statistical tool to efficiently obtain a phase map from multi-scale

experimental measurement profiles obtained from high-throughput measurements. We motivate the

construction of a phase map as the problem of learning the underlying metric geometry defined by a set

of templates in infinite-dimensional function spaces. We provide a statistical analysis tool to obtain

a phase map as an asymptotic of the diffusion of resulting distance functions on the composition. Using

examples from small-angle X-ray scattering experiments of polymer blend systems, we show that

learned metric geometry can efficiently differentiate ordered phase regions with shifted, missing, and

broad Bragg peaks along with features related to non-Bragg behavior of soft-matter systems. The metric

geometry allows us to define a shape distance between scattering profiles invariant to phase-

independent transformations thus valuable for obtaining a phase map. We also apply the methodology

to benchmark experimental diffraction data to showcase potential utility and broad applicability.
1. Introduction

Geometry always played a signicant role in the study of phase
rules such as the number of phases possible by a system and
their co-existence. It was the driving force for many of the earlier
formulations as described by J. W. Gibbs in his 1873 paper
titled, “A method of geometrical representation of the thermody-
namic properties of substances by the means of surfaces”.1 The
Gibbs rule of phase co-existence is oen posed as a set of
conditions on the second derivative of a free energy function for
continuous systems and its discrete geometric alternative in
a convex envelope.2–4 Both approaches can be unied by
dening a metric under an appropriate basis as described in
a series of papers by F. Weinhold.5–7 In all of the above cases, the
phase map is essentially a projection of a geometric surface to
its domain under the right metric that tessellates the domain in
a meaningful way. The geometric surface is typically generated
by considering a scalar response variable (such as the free
energy). However, the introduction of robotics and high-
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throughput equipment (HTE) to experiments posed a different
challenge where the response under which the system needs to
be ‘phase mapped’ is a multi-scale measurement such as X-ray
diffraction (XRD), small-angle X-ray scattering (SAXS), or UV-Vis
spectroscopic proles. One of the main roles of ‘phase
mapping’ in HTE is as a down selection tool to perform analysis
that requires manual expert intervention, mapping the struc-
tural subgroups to a performance measure of interest, or tting
known mathematical models for estimating structural infor-
mation. Earlier works for structure-based phase mapping
explored the application of statistical methods to multi-scale
measurement data by considering them as signals repre-
sented in a matrix form (rows as different samples and columns
as discrete evaluations of the corresponding measurement
domains). One such example is non-negative matrix factoriza-
tion (NMF) to learn parts-based basis representations8 to
encode each signal as a weighted linear combination of
a ‘basis’. The statistical similarity of the weights from NMF is
used to group together signals into a phase map.9–12 Another
approach involves directly learning the groups using clus-
tering13,14 or segmentation15 techniques which can be viewed as
dening the ‘base’ phases as belonging to the dataset itself and
using similarity between each spectrum and the learned ‘base’
spectra to obtain the phase map. A common aspect of all the
existing methods for phase mapping is that they consider
measured proles as signals from a stochastic measurement
and are limited in expressing invariant features important for
Digital Discovery, 2023, 2, 1471–1483 | 1471
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the analysis of material structure such as shied, missing, and
broad peaks.

The mathematical basis of this paper is the notion of ‘shape’
popularized by mathematician David Kendall in the 1980s16

who used triangles as an example to showcase that ‘shape’ is
what remains aer discounting invariant transformations.
Kendall also showed that aer discounting for the triangle's
position, scale and orientation, the remaining structure denes
an equivalence class of triangles into isosceles, equilateral,
scalene, etc., that result in a spherical manifold for the space of
triangles. In this work, we extend the statistical shape theory
ideas to experimentally measured one-dimensional proles by
considering them as points in an innite-dimensional function
space. In particular, we use the amplitude-phase distance
dened in (ref. 17) to construct a ‘shape’ distance between
proles by only considering the aligned amplitude distance that
effectively quotients the distance contribution from shape
independent features. The amplitude distance dened can be
used as an alternative to the Euclidean distance to learn shape-
based representations and thus identify a shape-invariant
metric structure of the data. A perennial issue of the existing
signal-based statistical methods in the construction of phase
maps is the lack of continuity in the composition domain.
Several approaches were proposed to overcome this such as
imposing continuity constraints18 when learning representative
‘basis’, and using smooth kernels in clustering and segmenta-
tion.19 In this work, we consider continuity as the result of the
local geometry where the correlation between structures of
compositionally varying materials is characterized by a contin-
uous function. We then model the continuity using a stochastic
model where variations in the local statistical similarities are
represented by the diffusion of the corresponding distance
function. A phase map is then obtained by considering the
asymptotic properties of the distance function thus attaining
a local smoothness or continuity.

The goal of this paper is not to provide an algorithm that
outperforms other methods used for the automatic generation
of structure phase maps but rather to provide a principled
approach to realize phase maps purely from analyzing them as
functionals (i.e. functions of functions) and exploring the
results from an empirical behavior point of view. We argue that
the presented approach performs much better at alleviating
problems in dening distance that is aligned with the physical
intuition of analysis applied (primarily) to diffraction or scat-
tering and demonstrate this with a few example case studies.
We focus mainly on the application to SAXS data as they are
much more challenging to phase map with the information
pertaining to the structure encoded in higher-order features of
the prole such as the curvature. The rest of the paper is
arranged as follows: we rst describe the overall workow of the
autophasemap algorithm in Section 3 and introduce concepts
of metric geometry (in Section 4) and diffusion (in Section 5) as
relevant to the computational tools presented in this study. We
then apply it to an experimental SAXS data set of self-assembled
block-copolymer blend materials synthesized and characterized
using SAXS by us and ternary alloys dataset from (ref. 20)
characterized using XRD. We analyze the results in Sections 6–8
1472 | Digital Discovery, 2023, 2, 1471–1483
and provide insights into the generation of a phase map and list
our conclusion and contributions in Section 9.

2. Small angle X-ray scattering (SAXS)

In its most popular form, Small Angle X-ray Scattering or SAXS
consists of a highly collimated X-ray beam directed at a sample
and a detector measuring the intensity of the interfered
secondary waves scattering out from the structure as a function
of the scattering angle q. SAXS allows indirect measurement of
nanostructures in their natural environment and is a rapid
high-throughput alternative to other direct time-consuming
microscopy methods. The physical principles behind SAXS are
very similar to diffraction measurements and it subsumes the
popularly known Bragg's law for periodic or crystalline struc-
tures. Scattering proles (or curves) are analyzed by plotting the
scattered radiation with respect to the scattering vector,

q ¼ 4p
l

sin
�
q

2

�
, which is related to the scattering angle q but is

independent of the incident X-ray wavelength l. All electrons in
the sample are potential sources of secondary waves with
spatially dependent phases. Thus an isolated nanostructure
within the sample will contribute to the intensity that is
detected as the square of the amplitude of the scattered
secondary waves – referred to as the form factor. The form factor
is a function of q as the interference pattern changes with the
length scale and the resulting phase of the secondary waves.
Real experimental samples consist of ensembles of nano-
structures distributed across space. Particles and molecules
interact via colloidal and molecular forces that, under concen-
trated conditions or strong interaction limits, result in the
emergence of spatial correlations. The contributions to the
scattering from these spatial correlations are generally referred
to as the structure factor. The term ‘factor’ comes from the fact
that for simple homogeneous systems, the average observed
intensity can be expressed as a multiplication of the form factor
and structure factor. The interplay between the form factor and
structure factor makes the analysis of SAXS proles complicated
as they are difficult to resolve from experimental curves with
little to no understanding of the nanoscale features of the
sample. For example, in the case of an ordered three-
dimensional nanostructure, some of the peaks may be
missing because either the structure factor or the form factor
has local minima in its q-dependent intensity. This phenom-
enon is not unique to periodic structures, as interactions and
particle aggregation can signicantly change the observed
intensity prole. Similar to powder X-ray diffraction data (XRD),
the nite size of the periodic structures and instrument limi-
tations (e.g. smearing) can result in shis and the broadening of
peaks. In the case of so-matter systems, such as the micelles
studied in this work, the shis and widening of peaks can occur
at much larger ranges of the q values in comparison to inorganic
crystals because of the wide range of lattice parameters that are
possible. For a detailed explanation of the techniques and
fundamentals of SAXS, readers are referred to ref. (21,22).
Frequently, practical SAXS analysis relies on solutions to
analytical form and structure factors, and general scaling
© 2023 The Author(s). Published by the Royal Society of Chemistry
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relations (i.e. Guinier or Kratky plots) to compare and analyze
SAXS curves, or uses heuristics such as expectations of power-
law scalings between intensity and q values for certain nano-
structures and shapes. In this work, we describe a mathematical
framework that provides a robust pipeline for performing
a comparative analysis of the shape of SAXS proles to auto-
matically generate phase maps, the foundations of which are
detailed next. Such phase-maps can then be used as a starting
point for the automated application of detailed analyses to
samples for which these are applicable, and also avoid the
incorrect application of model ts data when they would be
inappropriate to use.

3. Autophasemap: an algorithm for
determining (structure) phase map

A pictorial representation of the proposed algorithm (referred to
as autophasemap) is depicted in Fig. 1. The proposed algorithm
for phase map determination involves two steps: (a) identica-
tion: identifying a set of template functions that best represents
the observed ‘shapes’ of the spectra. This is performed by
measuring the similarity (using a distance function as
described next in Section 4) between sampled proles and
a template. This provides us with a ‘global’ view of the data i.e.
the distance functions dened using each template are true in
an average sense but not necessarily for each one of the
observed spectra; (b) assignment: assigning a label to each point
in the design space such that ‘locally’ the distance function is
smooth to model the expected smooth phase transitions. This is
achieved using geometric diffusion on the graph of composition
as described next in Section 5. This is equivalent to computing
Fig. 1 A pictorial representation of the autophasemap algorithm with the
curved arrows. Some of the steps are annotated with plots correspondin
procedure from (ref. 23) (Section 4). The plots are for the final converge
lower left corner which depicts three groups based on the number of p

© 2023 The Author(s). Published by the Royal Society of Chemistry
the asymptotic diffusion of the similarity functions identied in
step (a) and assigning a label based on the posterior of diffused
functions. The template functions are learned iteratively from
the data by rst aligning each prole to the current templates
and grouping them based on the shape distance described in
eqn (4) next. In each iteration, the templates are updated to be
the average of the aligned data in each group. In this work, we
combine the identication and assignment steps and learn the
phase map iteratively along with the template functions. This
would ensure that the phase maps are compositionally contin-
uous up to an arbitrary diffusion length scale. The identication
step follows the elastic k-means algorithm from (ref. 23) to
compute the template functions. The template functions are
then used to compute the distance functions over the compo-
sition and are approximated via their (truncated) asymptotic
diffusion operator. Each approximated operator for the diffu-
sion estimates a posterior probability of a prole belonging to
the group characterized by the template via shape distance in
eqn (4). By iterating through the identication and assignment
steps, we obtain a phase map with convergence dened by
absolute improvement between the template functions in their
natural L2 space.

4. Metric geometry of function
spaces

The starting point of our analysis is the consideration of
measurement proles as points in an innite-dimensional
function space. Some of our recent work has used this
approach to analyze UV-Vis spectroscopic curves of nano-
structures in problems related to explorative study for design
iteration between the identification and assignment steps depicted as
g to a synthetic data set of Gaussian peak shapes generated using the
d results. The input data (a random sample for clarity) is shown in the
eaks but arbitrarily shifted over the design space.

Digital Discovery, 2023, 2, 1471–1483 | 1473
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rules24 andmaterial retrosynthesis.17 A function space is a vector
space analog for functions as points equipped with an appro-
priate inner product that can be used to measure lengths and
angles. The inner product can be used to dene a distance
measure to perform comparisons and statistical analysis of
functional data such as the scattering curves we are interested
in this work. A commonly used inner-product structure is an
L
2ð½0; 1�;ℝÞ space of one-dimensional functions with the

domain mapped to a unit interval [0,1]. The inner product for
two functions f1; f2˛L2ð½0; 1�;ℝÞ is given by eqn (1):

hf1; f2i ¼
ð1
0

f1ðxÞf2ðxÞdx (1)

that can be used to dene the norm of a point f using eqn (2):

kf k ¼
�ð1

0

jf ðxÞj2dx
�1=2

(2)

and a distance between any two functions f1, f2 using eqn (3):

d
L
2ðf1; f2Þ ¼ kf1 � f2kL2

2 (3)

The norm of a function in the L
2 space can be used to

normalize the data, for example, to have a unit norm giving rise
to interesting manifold structures to the data.

One of the most fundamental notions required to perform
statistical analysis on data belonging to a manifold is to
compute distances between points. Since we are interested in
measuring the ‘shape’ distance between two proles repre-
sented as functions, we need a distance that is invariant to
various warping actions. Warping functions are the translation
and rotation equivalents of functions to dene a shape
following the original denition by Kendall.16 Warping actions
are dened as a right composition of a function with a warping
function that maps the domain to itself. The warping functions
belong to a class of mathematical objects called diffeomorphisms
which are smooth functions with an inverse. Consider a space
of functions F with their domain mapped to a unit interval U =

[0,1] and the set of boundary-preserving diffeomorphism as the
set:

DiffþðUÞ ¼ �
g˛L2ð½0; 1�; ℝÞ�

gð0Þ ¼ 0; gð1Þ ¼ 1

g
� ðtÞ. 0 ct˛U

For any given function f˛F , we can formalize action of
a warping function g using the function composition as follows:

F �DiffþðUÞ/F
ðf ;gÞ1f+g

A shape space for the functions can now be dened as the
space of function F that is le behind aer quotienting out the
set Diff+(U). Once again, going back to the original ideas of
Kendall and applying the notion of a shape to a collection of
triangles, the rotations play the role of diffeomorphisms that
quotient out the orientation before comparing a pair of trian-
gular shapes. Using the shape-preserving diffeomorphisms, we
1474 | Digital Discovery, 2023, 2, 1471–1483
can dene a ‘shape space’ to be S ¼ F=DiffþðUÞ and obtain the
following denition for a shape distance:

dSð½f1�; ½f2�Þ ¼ inf
g˛DiffþðUÞ

dF ðf1; f2+gÞ (4)

where dX is a distance function on the space X and [.] denotes an
orbit i.e. all the shapes that can be obtained by warping. The
distance in eqn (4) is referred to as the “amplitude” distance in
(ref. 17) as it measures the variation corresponding to y-scale or
the amplitude. Dening the shape distance requires us to solve
an optimization problem of nding the inmum of the distance
dF that is dened using functions and the warping function.
One way to dene a warping invariant dS is to exploit certain
transformations between two spaces that allow a metric to be
pulled back from one of the spaces for which there exists
a known metric. One such transformation is the Square Root
Slope Framework (SRSF) in eqn (5) introduced in (ref. 25) that
results in a warping invariant metric via pullback from L

2.

Rðf Þ :¼ f
�

ffiffiffiffi���f�
r ���

(5)

The invariance of the resulting pullback metric can be
observed by considering the case where two functions are war-
ped by the same g function:

hRðf1ðgÞÞ; Rðf2ðgÞÞi ¼
ð1
0

Rf1ðgÞ
ffiffiffi
g
�

q
�Rf2ðgÞ

ffiffiffi
g
�

q
dt

¼
ð1
0

Rf1ðgÞRf2ðgÞg� dt

We can now use a change of variables to obtain:

¼
ð1
0

Rðf1ðsÞÞRðf2ðsÞÞds
¼ hRðf1Þ; Rðf2ÞiL2

Dening dF using the SRSF and the pullback metric, we
obtain a distance whose inmum over Diff+(U) is the distance
that is invariant to warping function. This is because xing f1
and solving for a g to warp f2 is equivalent to nding the
distance aer quotienting out any distance contributions from
domain warping alone. In practice, we solve for dS by mini-
mizing E(g) given in eqn (6) using techniques such as Dynamic
Programming25 or Riemannian gradient descent.26

EðgÞ ¼ kRðf1Þ �
ffiffiffi
g
�

q
ðtÞðRðf2Þ�gÞkL2

2 (6)

The shape distance in eqn (4) is invariant to various domain
warpings denoted by g. For scattering (or diffraction) proles,
the g function can be used to quotient out the distance
contribution from non-phase-specic changes (such as peak
shis and missing peaks) and also instrument-limited features
(such as peak widths). We illustrate the computation using
a simulated scattering prole of a face-centered cubic (FCC) and
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Comparision of phase assignment using a Euclidean distance
(A and B) and the proposed shape distance (C and D) between two
simulated FCC and BCC phases serving as templates. Solid lines
correspond to template scattering curves of BCC and FCC phases of
the same lattice parameter a = 10 nm. The dotted line corresponds to
a BCC phase with a lattice parameter 0.8a. The dotted lines in panels
(C and D) are aligned with the corresponding template.
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body-centered cubic (BCC) phase (using the simulator from (ref.
27)) in Fig. 2. The two simulated SAXS proles shown in the le-
most panel of Fig. 2 are for the BCC phase (top panel, with peak

ratios 1;
ffiffiffi
2

p
;

ffiffiffi
3

p
; 2; .) and for an FCC phase (bottom panel

with peak ratios 1;
ffiffiffiffiffiffiffiffi
4=3

p
;

ffiffiffiffiffiffiffiffi
8=3

p
; .). Fig. 2 depicts the

scenario when we are trying to compute a distance to quantify,
how dissimilar the FCC phase curve is from a BCC phase based
on the shape. As mentioned above, the rst task in computing
the distance is to (peak-)align the two functions which are
shown in the middle panel of Fig. 2. The amplitude distance –

dened as the L2 distance between the (peak-)aligned functions
– (roughly) measures the area between the functions. The key
component of this computation, the optimal warping function,
is shown in the rightmost panel of Fig. 2 as a map from the
domain (the q – values) to itself. The action of the warping
function can be understood by observing where it deviates from
its identity (solid blue line). We observe that there are two
regions where the orange curve deviates from the blue curve
each corresponding to the alignment of peaks numbered 1 and
3 in the lemost panel of Fig. 2. Furthermore, the alignment
distorted the second peak of the FCC phase because the peak
separation between 1 and 2 is not the same as the reference BCC
phase. The distortion contributes the most to the amplitude
distance, as seen from the shaded region between the curves in
the middle panel of Fig. 2. Similarly, we can show that the
warping function assigns almost no distortion when the peaks
are perfectly aligned but shied uniformly resulting in
a minimal distance (see ESI†).

In Fig. 3, we depict an example of using a distance measure
to make phase assignments using scattering curves given
a template as a reference. The top row (panels A, B) in Fig. 3
depicts a case where we are using the standard vector-based
distances (such as Euclidean) to compute the similarity to
a given reference prole (dotted line corresponding to a BCC
phase with the lattice parameter being 8 nm). The solid lines in
panels A, and B correspond to a BCC, and FCC phase respec-
tively both with the lattice parameter 20% greater than the
reference in the dotted line. Visually, we can observe that any
distance measure that simply measures the overlap (i.e. the
Fig. 2 Computation of amplitude distance between BCC and FCC phase
FCC on the bottom; (middle) resulting SAXS profiles after optimizing for
the amplitude distance; (right) optimal warping function g to align orang
the reference SAXS profile (BCC in this example).

© 2023 The Author(s). Published by the Royal Society of Chemistry
shaded region) would consider that a shied BCC is more
similar to an FCC phase than it is to the BCC phase. We can
observe that this is primarily because the distance emphasizes
the high-intensity peak disproportionately and fails to account
for the mismatched pattern of peaks that encode the periodicity
of the structure represented in scattering. The bottom row
(panels C, D) of Fig. 3 depicts a similar exercise using the shape
distance. Unlike traditional distance measures, an assignment
based on the overlaps (as shown using the blue-shaded regions)
would assign the pair of BCC phases to be more similar to each
other. This example clearly illustrates that using shape distance
results in template-based phase assignments that are more
aligned with an expert understanding of scattering curves.
SAXS profile. (left) two SAXS profiles to be compared – BCC on the top,
peak alignment, the shaded region corresponds to a rough measure of
e curve to blue. The gray vertical lines correspond to peak positions in
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In this work, we clearly distinguish between a metric and
a distance function. Although both are dened as maps that
take two points and produce a scalar output, a metric is only
dened innitesimally between tangent vectors and oen
changes from point to point. A distance function, however, is
dened between any two points in the space and thus can be far
less restricted in its structure such as not following the triangle
inequality. Because we are interested in building phase maps,
we need a distance function that measures the distance to any
scattering curve from a template that serves as the representa-
tive curve for a particular phase. This distance function iden-
ties each curve with a distance closer to zero with the same
phase as the template. Changes to the distance function over
the design space (such as the composition) are constrained by
continuity such that phase transitions occur gradually within
a transition width. For polymer materials that are of interest to
this work, the transition width is nite thus we also need to
encode the continuity into our denition of distance. One way
to ensure this is to obtain the distance as a solution to a diffu-
sion equation dened on the design space. In this work, we use
the idea of diffusion maps to obtain one such solution as
described next.

5. Diffusion maps and its asymptotics

Diffusion maps28 – originally introduced in the context of
dimensionality reduction –work with the idea that the geometry
of a set S can be studied through the analysis of the space of
functions dened on them and linear operators over those
spaces. In this work, however, we will use the idea of a diffusion
map primarily to solve for an asymptotic of the diffusion oper-
ator that can be used to approximate a continuous distance
function. The motivation to use diffusion maps as a solution
method comes from the observation that we only have access to
distance function values based on the scattering curves we have
obtained by discretely sampling the design space. Given a set S
(i.e. discretely sampled design space) equipped with a kernel k(.,
.) (encoding the diffusion length or phase transition width),
diffusion maps consider quadratic forms of the form shown in
eqn (7) with an objective to minimize some form of Dirichlet
energy such as the one dened in eqn (8).

Q1ðf Þ ¼
X
i;j

kði; jÞðf ðiÞ � f ðjÞÞ2 i; j˛S

Q2ðf Þ ¼
X
i

vðiÞf ðiÞ2 vðiÞ ¼
X
j

kði; jÞ (7)

Energy :¼ min
Q2ðf Þ¼1

Q1ðf Þ (8)

The minimization problem boils down to nding general-
ized eigenvalues of the form Af = lf, A = Q2

−1Q1 which denes
an innitesimal generator of the diffusion dened by e−At.
Following the terminology of diffusion maps in (ref. 28), we
consider the number of hops between graph nodes as the time
steps of diffusion. Thus, the diffusion of information on the set
S can now be expressed in a lower-dimensional form using the
eigenvalues of the innitesimal generator A effectively ltering
1476 | Digital Discovery, 2023, 2, 1471–1483
out the higher modes of the function f making it smooth over
the domain. In the special case of a weighted graph of the set S,
Q1 is the graph Laplacian, and Q2 is the normalization factor
giving rise to the normalized graph Laplacian as the generator
of the diffusion process on the graph. The resulting generator
has a discrete sequence of Eigenvalues upper bound by one. By
truncating higher eigenvalues of the generator, we obtain an
asymptotic solution to the diffusion problem resulting in
a lower-dimensional approximation of the diffusion operator Â.
In this work, we use the asymptotic diffusion operator Â and
apply it to various distance functions to obtain an asymptotic
distance dened using the shape distance (eqn (4)) from a set of
template functions learned from the data. We can interpret the
asymptotic distance as a (continuous) posterior probability of
a measured prole being closest to the corresponding template
function.28

We evaluate the proposed phase mapping algorithm quali-
tatively on two different data modalities (SAXS and XRD) to
showcase its versatility and generalizability. For the rst case
study, we synthesized and collected SAXS data of a self-
assembling block copolymer that has a previously reported
phasemap.29 We then applied the same methodology (with no
additional data processing or customization) to generate
a phase map from XRD data of ternary metal alloy systems to
showcase the versatility and generalizability of the presented
approach. Finally, we showcase the utility of the proposed
approach in generating and analyzing phase maps of a novel
system using SAXS data of self-assembling polymer blends.
6. Phase mapping temperature-
dependent micellization of pluronic
based on SAXS

In this case study, we apply the autophasemap algorithm to
reconstruct the underlying phase diagram of temperature-
dependent self-assembly and thermo-gelling behavior of Plur-
onic P123 (a symmetric triblock copolymer comprising of
polyethylene oxide (PEO) and polypropylene oxide (PPO) in an
alternating linear fashion, PEO–PPO–PEO). The design space
for our high-throughput experiment consisted of the weight
fraction of Pluronic P123, and the temperature uniformly
spaced at increments of 5 and 10 units respectively. Details on
experimental methodology, sample preparation, processing,
and characterization are provided in the ESI.† It has been
shown before that below a critical micelle temperature and
concentration, individual block copolymers are in solution as
unimers form micelles as the concentration/temperature is
increased.30,31 The micellar systems further assemble into semi-
or crystalline-mesophases beyond an order–disorder transition
point dened in terms of temperature and concentration.
Examples of mesophases include a cubic arrangement (Face-
Centered Cubic (FCC), Body-Centered Cubic (BCC)), hexagonal
arrays of micelles (cylindrical micelles in a hexagonal lattice
(HEX), hexagonally packed spherical micelles (HCP)), lamellar
arrays of 2D sheets (LAM), and/or composite phases that may
include more than one of these. As mentioned in Section 2,
© 2023 The Author(s). Published by the Royal Society of Chemistry
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these materials show a strong signal (both Bragg and non-
Bragg-like) when measured using SAXS. Our goal is to deter-
mine the phase transitions as boundaries of the resulting phase
map from autophasemap using the SAXS characterization of
samples.

Self-assembly of the P123 pluronic system has been previ-
ously studied using computational and one-at-a-time experi-
mental approaches29 thus we had access to a set of expected
phases to recreate a manual annotation of the phase diagram.
We used this knowledge to create a phase diagram shown in
Fig. 4.

Lower concentrations of P123 (#25 wt%) at low tempera-
tures exist as unimers (simple polymer strands) with no peaks
in the SAXS spectra. SAXS of dilute P123 with increasing
temperatures shows spherical micelles. At high temperatures,
an unknown micellar structure appears with insufficient infor-
mation at the measured range of q to identify the structure. As
P123 concentration increases, diffraction peaks appear, indi-
cating the micelles have self-assembled into crystalline meso-
phases. The structures formed by P123 micelles were identied
by matching the diffraction peaks to a sequence of peak posi-
tion ratios. The scattering vector of the primary peak, q1, was
chosen such that the scattering vector of subsequent peaks
matches those calculated with the position ratios. Based on
this, we identied that the P123 forms FCC

ðq1; q1
ffiffiffiffiffiffiffiffi
4=3

p
; q1

ffiffiffiffiffiffiffiffi
8=3

p
; q1

ffiffiffiffiffiffiffiffiffiffi
11=3

p
; q1

ffiffiffiffiffiffiffiffiffiffi
12=3

p
; .Þ, HCP (q1,

q11.06, q11.13, q11.46, q11.73, q11.87, q12.03, .), and HEX

ðq1; q1
ffiffiffi
3

p
; q1

ffiffiffi
4

p
; q1

ffiffiffi
7

p
; q1

ffiffiffi
9

p
; q1

ffiffiffiffiffi
12

p
; .Þ phases. The

diffraction peaks of some of the SAXS proles could not be
matched to a distinct phase and thus were tted to multiple
phases, to account for all possible phases. P123 spectra that
show peaks at low temperatures indicate the micelles are
Fig. 4 Manually annotated phase diagrams based on the SAXS pattern
diagram: disordered phase – no self-assembly as evidenced by a lack of
oscillate towards higher q values; ordered structures (FCC, HCP, HEX) are
(B) Observed phase transitions with an increase of temperature: SAXS pat
of correlated micelles at lower temperatures which self-assembled into a
the temperature beyond 40 °C only the features corresponding to the h
temperatures beyond 50 °C signifying a disordered phase of hexagonally
sets similar to the one proposed in ref. 29.

© 2023 The Author(s). Published by the Royal Society of Chemistry
assembling but have not fully organized to FCC, HCP, or HEX
and thus were characterized as being ‘correlated micelles’ with
strong interactions. Concentrated P123 at high temperatures
exhibits peaks but no denitive organized structure.

A set of reference phases may not be available for novel
systems thus we should treat this as a variable in our algorithm.
For example, if we had access to only four reference phases –

micellar solutions, self-assembled mesoscopic order of a cubic
and hexagonal lattice, and disordered particles of different
lattices – we would have ended up with the phase diagram
shown in Fig. 4C. In fact, this phase diagram resembles one of
the earlier demonstrations of experimental phase mapping of
P123 pluronic systems shown in (ref. 29).

One strategy then would be to start with a phase map that
‘broadly’ classies the samples such as Fig. 4C and then further
rene each observed region into specic subclasses to obtain
a phase map that looks like Fig. 4A. This is akin to having
a hierarchy in the phase map that is controlled by a number of
reference sets available based on prior knowledge. In our
autophasemap algorithm, this hierarchy is controlled by the
number of template functions. As shown in Fig. 5 and 6, we
indeed obtain this hierarchy where the phase map shown in
panel (E) of Fig. 5 roughly corresponding to the phase diagram
with four reference phases (Fig. 4C), while that in panel (H) of
Fig. 6 roughly corresponds to Fig. 4A. This can be veried by
observing that the shaded region of each learned template
corresponds to a particular phase in the phase diagram ob-
tained using the same number of reference sets thus the hier-
archy observed in manual annotation was recovered by
increasing the number of template functions. In Fig. 6, we show
the set of templates (in a solid color) and the assigned experi-
mental SAXS curves (overlayed in grey color) along with their
s of P123 pluronic with varying temperature. (A) Expert labeled phase
sharp peaks in their SAXS curve; spherical micelles – broad peaks that
adjudged bymatching peak spacing ratios obtained from the literature.
terns of pluronic P123 in a 35% weight fraction of water resembled that
mixed phase of cubic and hexagonal lattices. Upon further increase of
exagonal phase were observed that turned into a single broad peak at
self-assembled structures. (C) Phase diagram with only four reference

Digital Discovery, 2023, 2, 1471–1483 | 1477
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Fig. 5 Comparison of phasemap obtained usingmanual annotation and the autophasemap algorithm presented in this work: (A–D) SAXS curves
(in the grey color) assigned to each learned template (in a solid color) with the corresponding region in the composition space identified in the
inset; (F–I) learned distance functions with 4 templates; (E) a phase map obtained by considering regions of distance from the template up to
a threshold of 0.35 units. The color of the templates in (A–D) matches the corresponding phase region in (E).
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location in the design space. The partition of design space into
phase regions is highlighted in the inset plot in each panel with
the concentration of P123 on the x-axis (ranging from 0–40
weight percentage) and temperature on the y-axis (ranging from
0–85 degree Celsius). Once again, observing for peak spacing
ratios, we obtain that the template functions in (A) to be
a mixture of HCP and HEX; (B) HEX; (C, D) to be disorganized
correlated micelles; and (G) to be FCC. The above analysis also
suggests that the phase map can be used to assign phase labels
by performing complex and laborious phase labeling tech-
niques only on a small number of template functions, thus
Fig. 6 Phase map learned with 7 template functions shows a hierarchic
each learned template (in a solid color) with the corresponding region in
by considering regions of distance from the template up to a threshold
sponding phase region in (H).

1478 | Digital Discovery, 2023, 2, 1471–1483
potentially accelerating the learning while performing the high-
throughout measurements.

Although we represented the phase diagram in Fig. 4 using
sharp boundaries representing a phase region, this is purely for
visualization. In fact, as shown in the middle panel of Fig. 4,
there is a smooth transition between different phases with an
increase in temperature. Once again, we observe that the
continuous nature of distance functions as shown in Fig. 7
allows us to extract this phase transition behavior along with
the labels obtained from phase ‘templates’ shown in Fig. 6. For
example, we observe that the 35% weight fraction of P123
al partition of Fig. 5: (A–G) SAXS curves (in the grey color) assigned to
the composition space identified in the inset; (H) a phase map obtained
of 0.35 units. The color of the templates in (A–G) matches the corre-

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Learned distance functions of the phase map in Fig. 6 with 7 templates. Panels are arranged in the same sequence as that of Fig. 6.

Fig. 8 Fe–Ga–Pd phase map learned with 5 templates to compare with expert labeled phase diagrams from (ref. 33). (A–E) Shows learned
template functions in solid color with smoothened XRD spectrum (Savitsky–Golay filtering with a 1.0) radians of window length and a third-order
polynomial as implemented in (ref. 34). The inset plot shows the distance distribution from the template to all the XRD curves along with points
identified to be closer to the template in clustering. (F) A phase map is obtained by selecting a distance threshold of 0.5 units. All the ternary plots
represent the weight fraction of elements on the axis.
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(highlighted using a solid white line in Fig. 6) passes through
zero distance along panels B, C, D, E, and G each corresponding
to different template function. SAXS curves at lower tempera-
tures are the closest to the template of panel (E) corresponding
to unimers and they slowly diverge from it with an increase in
temperature and become closer in shape to the template of
panel (G) (as evidenced by the color gradient of the distance)
that correspond to an FCC structure. Upon further increase
beyond 25 °C, the SAXS curves slowly converge towards the
shape of the template in (B) (i.e. a hexagonal self-assembly of
cylindrical micelles) as measured by distance approaching zero.
An increase in temperature beyond 50 °C results in a smooth
divergence from the shape of the template in panel (B) towards
that of panel (D) – a disordered phase – signifying a smooth
© 2023 The Author(s). Published by the Royal Society of Chemistry
phase transition. This showcases the advantages of using the
autophasemap algorithm for high-throughput experimental
systems to extract phase mapping and transition information
purely based on SAXS patterns.
7. Application to benchmark X-ray
diffraction data

The algorithm presented in this paper broadly applies to classes
of characterization data that can be represented as functions.
Much of the initial development of an algorithm for phase
mapping focused on using XRD9–13,15 with a few exceptions.14,19

While there have been several attempts to overcome two key
issues related to the continuity and invariance of the desired
Digital Discovery, 2023, 2, 1471–1483 | 1479
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Fig. 9 A phase map learned with 4 templates for novel polymer blends for OMIECs. (A–D) SAXS curves (in the grey color) assigned to each
learned template (in a solid color) with the corresponding region in the composition space identified in the inset; (F–I) learned distance functions
with 4 templates; (E) a phase map obtained by considering regions of distance from the template up to a threshold of 0.5 units. The color of the
templates in (A–D) matches the corresponding phase region in (E).
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phase maps, none of the methods propose a unifying frame-
work to solve them. The currently available solutions require
extensive prior information such as the extent of expected peak
shis.13,32 In this case study, we show that the metric geometry
tools presented so far provide a reasonable solution without the
need for expert intervention. We apply our methodology to
a widely used high-throughout combinatorial XRD data from
(ref. 20) and depict the resulting phase map similar to the SAXS
case study in Fig. 8 with 5 templates. We analyze the phase map
in Fig. 8 with a focus on the continuity of the phase map, and
the region of a phase with a signicant peak shi (region E). In
(ref. 33), the authors have deduced that region (E) in Fig. 8 is
a BCC phase of iron with peak shi using manual expert
labeling (see Fig. 4b in (ref. 33)) that was difficult to correctly
identify using the existing methods for phase mapping.13,15,19

We can see from Fig. 8 that along with the continuous nature of
similar phase regions, the proposed algorithm was able to
correctly identify the phase with a shi. However, as mentioned
before, the goal of this paper is not to present another method
to solve the peak shiing issue for automatically classifying
high-throughput XRD data but rather to provide that it is
possible to account for physics in analysis by carefully consid-
ering the mathematical representations of the data under
consideration. As shown using this case study, a generic
mathematically grounded data representation can alleviate the
need for expert intervention in using a data-driven model.

8. Phase mapping novel polymer
blends for OMIECs

A novel material system of interest for this work is the struc-
tured self-assembly of organic mixed ionic–electronic conduc-
tors (OMIECs) based on blends of block-copolymer and
1480 | Digital Discovery, 2023, 2, 1471–1483
conjugated homopolymers. Specically, the sampled design
space consists of materials where an electronic conjugated
polymer is blended with an ion-conducting block copolymer in
a common solvent at a particular temperature. The interactions
between the block-copolymer and the conjugated polymer can
also form composite micellar systems into semi- or crystalline-
mesophases. Our goal in this work is to generate a phase map
when we have synthesized the materials in a high-throughput
manner. Specically, we have collected a total of 93 SAXS
measurements from a combinatorial sampling of Pluronic 123
and poly(3-[potassium-4-butanoate]thiophene) (PPBT) co-
dissolved in aqueous solutions. The resulting phase map from
autophasemap algorithm is shown in Fig. 9 with 4 template
functions that roughly correspond to a (A) FCC-like structure
with peak spacing ratios 1.0, 1.145, 1.581, 1.854, 2.545, 2.818.;
(B) HEX-like structure with some HCP inuence with peak
spacing ratios 1.0, 1.328, 1.611, 1.865, 2.582.; (C) micelles in
solution; and (D) disorganized hexagonal cylinders with peak
spacing ratios 1.0, 1.746, 2.015..

The phase diagram in Fig. 9 can be used for further planning
targeted synthesis and measurements in an iterative fashion.
For example, to achieve long-range order that facilitates elec-
tron transport, we can use the phase map in Fig. 9 as a starting
point and down select regions of design space that form crys-
talline phases (i.e. regions (A), (B), and (D)).
9. Conclusions

In this paper, we have introduced an automatic structure phase
mapping algorithm for characterization data representable
using the mathematical structure of function spaces. Speci-
cally, we have shown the applicability of innite-dimensional
function space representations and shape distances to
© 2023 The Author(s). Published by the Royal Society of Chemistry
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scattering and diffraction data. Furthermore, we have demon-
strated the application of graph-based diffusion to deduce the
phase map as a solution to a stochastic model to analyze local
dynamics of the phase transitions in the design space. The
function space data representations are combined with diffu-
sion map tools to derive an iterative algorithm for phase map
generation.

In the case of scattering data from small-angle X-ray scat-
tering of pluronic systems, we constructed a phase diagram
from high-throughput data for two systems (one with temper-
ature variance and the other with polymer blends). We have
shown that the resulting phase diagram is (topologically)
continuous with each phase corresponding to a set of scattering
proles similar in shape. For regions of the phase map with
potentially ordered crystal phases, the phase map is also
invariant to peak shis and experimentally limited features to
phase assignment. Furthermore, the phase map is shown to be
a hierarchical partition function of the design space that shows
higher-order hierarchical relations with an increase in the
number of template functions used in the algorithm. Finally,
the broad applicability of the algorithm is shown using a known
benchmark data set of X-ray diffraction studies. We have also
shown the ability of the current approach in augmenting the
traditional techniques to rapidly map out interesting phase
regions and down-select a small set of template curves. Using
the case studies we have shown the utility of learned templates
in performing time-consuming traditional labeling approaches
on only select curves rather than the entire dataset.

As a part of future work, the present phasemapping framework
can be extended to run in a closed-loop manner for example using
active learning. The diffusion of similarity functions can be used to
determine an acquisition function that encourages sampling near
the boundaries of the phase map (for example, by maximizing the
gradient of the diffused similarity function). The learned template
functions also serve as the low-throughput summary of the phases
formed in a synthesis study thus allowing users to obtain a rapid
analysis of the experiments. Furthermore, learned phase maps
(either via online or offline mode) can be further used in property
optimization (measured by various performance measures of
interest) for rapid development and understanding of its relations
to the underlying structure.

Data availability

All the data and code to reproduce the case studies presented in
this paper are available at https://github.com/pozzo-research-
group/papers/tree/main/autophasemap. Warping functions are
computed by reproducing the part of the code from fdasrsf.35

Parallel computations are performed using ray36 and
computation of label functions using.37 All the code is
implemented in Python with reliance on numpy,38 scipy34 for
numerical computing, and matplotlib39 for plotting routines.
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