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component gas adsorption landscapes in a MOF†

Krishnendu Mukherjee, Etinosa Osaro and Yamil J. Colón *

In recent decades, metal–organic frameworks (MOFs) have gained recognition for their potential in

multicomponent gas separations. Though molecular simulations have revealed structure–property

relationships of MOF–adsorbate systems, they can be computationally expensive and there is a need for

surrogate models that can predict the adsorption data faster. In this work, an active learning (AL)

protocol is introduced that can predict multicomponent gas adsorption in a MOF for a range of

thermodynamic conditions. This methodology is applied to build a model for the adsorption of three

different gas mixtures (CO2–CH4, Xe–Kr, and H2S–CO2) in the MOF Cu-BTC. A Gaussian process

regression (GPR) model is used to fit the data as well to leverage its predicted uncertainty to drive the

learning. The training data is generated using grand-canonical Monte Carlo (GCMC) simulations as points

are iteratively added to the model to minimize the predicted uncertainty. Also, a criteria which captures

the perceived performance of the GPs is introduced to terminate the AL process when the perceived

accuracy threshold is met. The three systems are tested for a pressure–mole fraction (P–X), and

a pressure–mole fraction–temperature (P–X–T) feature space. It is demonstrated that AL one only needs

a fraction of the data from simulations to build a reliable surrogate model for predicting mixture

adsorption. Further, the final GP fit from AL outperforms ideal adsorbed solution theory predictions.
1 Introduction

Metal–organic frameworks (MOFs), a class of crystalline nano-
porous materials, are known for their high surface area and
pore volume.1 These materials are self-assembled from two
components – organic linker molecules and inorganic metal
nodes or metal clusters – a property that provides innite
choices of structures that can be synthesized in a laboratory.
MOFs have demonstrated applicability for energy storage, gas
separations, and sensing.2–7 Despite the potential of these
materials and their increasing numbers reported in experi-
ments, there is a challenge to determine which are the best
MOFs and what are the conditions (e.g., temperature, pressure)
that maximize their performance. For these decisions, the
adsorption isotherms are very useful. This data helps to select
structures that might be a good t depending on either selec-
tivity, or adsorption (say at condition of pressure and temper-
ature of P and T, respectively) or just total gas uptake at a T but
for different pressures.8 Molecular simulations have played an
important role in the design and discovery of MOFs for a variety
of applications.9 However, the number of MOFs in existence has
kept increasing and new procedures have been introduced to
enhance computational capabilities.10–13 The use of large-scale,
USA. E-mail: ycolon@nd.edu

tion (ESI) available. See DOI:

6–1521
high-throughput computational screening techniques on data-
bases of MOF structures (experimental or computationally
generated) has revealed structure–property relationships and
identied top performing materials for many applications.14–19

In this work, we focus on multi-component adsorption in
MOFs. Gas mixtures are ubiquitous in nature and studying their
interactions with materials is essential for a number of
purposes. For example, MOFs can be used for separating
impurities in hydrogen gas which then can be fed to hydro-
cracker and hydro-processing units, to capture carbon dioxide
for tackling climate change, or for separating hydrogen
sulphide from renery waste streams to eventually extract solid
sulphur as well as enhance gasoline quality.20–22 In many of
these applications, nanoporous materials can be utilized for
adsorption and separation of different species in gas mixtures.
Since multicomponent gas adsorption can take place at a variety
of conditions, it is important to understand how they affect
MOF adsorption for the relevant set of adsorbates in the
mixture. Conventionally, grand-canonical Monte Carlo (GCMC)
simulations are employed for generating adsorption isotherm
for these mixtures in MOFs, and depending on the system size
they can take considerable time to nish.23,24 Further, each
GCMC simulation is done at specic operating conditions and
to get an isotherm one has to conduct many such simulations.
This can rapidly increase the total computational cost of
a project. Further, in many computing environments, the
resources might be very limited. For example, to calculate the
© 2023 The Author(s). Published by the Royal Society of Chemistry
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uptake for a n pressure × n temperature points, one has to
conduct n2 number of simulations. Adding more features can
very well prohibit the study and one has to either look for
theoretical models or drastically reduce the design space. Thus,
there is a need for a surrogate model which can provide us these
properties with only a fraction of these conventional
simulations/experiments from the input space.

1.1 Machine learning combined with molecular simulations
for gas adsorption in MOFs

The emergence of big data has also allowed researchers to
employ machine learning (ML) algorithms for a variety of
chemistry applications.25,26 Many of these ML models have been
applied for gas adsorption and separation problems.27–35 These
models have provided important physical insight through the
development of new descriptors capable of capturing important
factors for applications of interest.36–40 Further, alternate
training methods such as transfer learning have also shown
promise in terms of saving training cost while building these
models.41,42 However, therein lies a challenge and bottleneck for
workows that rely on ML for predictions—large dataset are
needed for the proper training and deployment of many ML
algorithms. In cases where obtaining high-delity data is diffi-
cult or prohibitive, the potential of ML algorithms and work-
ows is limited. Another concern with the way ML models are
built, is the static nature of the training dataset. Conventionally,
building the ML model using molecular simulation data is
a passive learning strategy, in which all the training points are
sampled at once by the user.9,26,43 Hence, not all data contribute
to the performance of the model equally. However, one can
potentially get the same performance with far less number of
training points if an intelligent and efficient way of choosing
them is adopted. This would result in savings of computational
power and efficient generation of training data. In the latter
case, each new point added in the training set will contribute to
a performance or betterment of the model. As pointed out
earlier for adsorption problems, each simulation can be very
expensive and particularly for multi-feature design space, it can
quickly become very difficult to generate the desired training
set. Hence, there is a need for surrogate model for multi-feature
adsorption problems that are data efficient and that can
generate the desired adsorption data with good performance.

1.2 Active learning as an alternate strategy for surrogate
models

To tackle the challenges highlighted in building a ML-based
model for mixture adsorption, an alternative strategy known
as an active learning (AL) can be adopted.44 In AL, the algorithm
learns the desired target distribution in a ‘Bayesian’ style
process, i.e. algorithm-directed new points are added to the
training set and tting is done iteratively until a certain criteria
for learning is satised.43,45 An AL methodology can balance the
performance of the predictive models while minimizing the
number of data points one is needed to acquire. This can be
particularly attractive in situations where the feature space is
“small” (such as composition of multicomponent adsorption
© 2023 The Author(s). Published by the Royal Society of Chemistry
while varying temperature and pressure conditions) and/or
time-consuming or resource-intensive experiments/
simulations are needed. In this regard, GPRs (Gaussian
process regression) stand out among other ML models. GPRs
are exible non-parametric models than can emulate any
distribution with fewer data points. Further they provide an
estimate of the standard deviation along with output, which is
very useful to perform AL. Currently, there are two approaches
in general adopted to model mixture adsorption. The rst,
which is also done in experiments, is to gather the pure
component isotherms (many pressures, one temperature) and
use them as inputs to ideal adsorbed solution theory (IAST) to
make the predictions of the mixture adsorption at the chosen
temperature.46 This has many drawbacks, including the inac-
curacies of IAST in many regions of the adsorption space and
the necessity of the pure component isotherms.47 The second,
which is only for simulations as experiments of mixture
adsorption are very rare, is to directly simulate the mixture
adsorption with GCMC. This can be extremely data intensive as
this is typically done by exhaustively simulating temperature,
pressure, and compositions of the mixture. Given the intelligent
selection of the simulations with the proposed AL approach, we
can generate accurate surrogate models for the mixture with
signicant data savings. Further, for predicting isotherms, ML
models have been used but very rarely have been employed in
an active learning-oriented approach.48–50 Furthermore, GPs
have shown better performance for small sized datasets
compared with models like Bayesian neural networks (BNNs) or
neural network ensembles, which can also provide uncertainty
estimates.51,52 This makes GPs well suited for predictions for
adsorption like problems where generating large dataset is
expensive. These approaches are already gaining popularity in
the molecular simulation space. For example, they have been
used to calculate inter-molecular potential energy surfaces,
force elds, and to connect different length and time scales.53–55

Most of these works have used AL where the next simulation
points were chosen based on predicted model uncertainty
through a query-by-committee approach. In our previous work,
we showed that AL can be used to predict adsorption isotherms
for pure components in a MOF up to two features: temperature
and pressure.56 Recently, Osaro et al. also predicted pure-
component isotherms of four different molecules using an AL
approach and extended to multiple MOFs.57 A branches and
team also showed that phase diagram of deep-eutectics and
ternary mixtures can be constructed efficiently using a thermo-
dynamics-informed AL approach.58 All these works have shown
surrogate models built through AL require an order of magni-
tude less number of simulations. In this work, we apply the AL
protocol to model adsorption of three binary gas mixtures (CO2–

CH4, Xe–Kr, and H2S–CO2) in a MOF. These mixtures are
selected due to the diverse characteristics of the individual
components. CH4 is non-polar with no charge while CO2 is also
non-polar but is charged. Xe and Kr are both noble gases, while
H2S is charged as well as polar. The selection of these mixtures
allows to explore a wide range of target adsorption distribution.
For modeling the mixture adsorption, a dual-GPR (Gaussian
process regression) model is applied for the mixtures using the
Digital Discovery, 2023, 2, 1506–1521 | 1507
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Table 1 Boundary-informed initial training set grid points for gas
mixture adsorption in Cu-BTC MOF for two features (P–X) at a fixed
temperature of 300 K. Please note, all the data points are same for all
three gas mixtures

Pressure (in bar) Mole fraction Temperature (in K)

10−6 0.02 300
10−5 0.20
10−4 0.40
10−3 0.60
10−2 0.80
10−1 0.98
100

101

102
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View Article Online
predicted uncertainty to select the next point.59 A dual-GPR
model here describes the application of two GPs, where each
GP is a surrogate model tasked with learning the adsorption of
only one species in the mixture. Therefore, the input features to
both the GPs are same except for the mole-fraction (which is Xi

to the rst GP and 1− Xi to other GP), however both the GPs are
trained to predict the uptake of their respective species in the
mixture. Further, we introduce a new GP's perceived perfor-
mance based convergence criteria called perceived accuracy to
terminate the learning. We also test this protocol up to 3
features (pressure, mole fraction, and temperature). Finally, we
demonstrate how the method can emulate adsorption isotherm
for mixtures with only simulating a fraction of data points with
reliable performance across different performance indicators.
We compare the nal GP results with ideal adsorbed solution
theory (IAST)-predicted isotherms based on the Langmuir
model.46,60 Through this comparison we show that AL-generated
adsorption isotherm outperforms IAST and are very close to the
GCMC results for all three gas mixtures.

2 Methods
2.1 Ground truth generation

The Monte Carlo modeling suite, RASPA, was used to generate
the ground truth.61 Grand canonical Monte Carlo (GCMC)
simulations were performed, which has resulted in accurate
predictions when compared to experimental adsorption
isotherms.23,24 5000 and 50 000 cycles were used for initialization
and production respectively for generating the ground truth for
the mixtures in the P–X and P–X–T feature spaces. The ground
truth data was used for two purposes. First, a part of the ground
truth was used for providing the initial training set to the GP as
well as to provide the next samples to the GP. Second, it was used
as a benchmark to compare with the nal GP t (the state when
AL ends), calculate themean relative error (MRE), and correlation
coefficient (R2) of the GP predicted adsorption with the GCMC
simulations. The universal forceeld (UFF) was used for
modeling the non-bonded interactions for Cu-BTC MOF and the
Transferable Potentials for Phase Equilibria (TraPPE) for adsor-
bate molecules.62,63 Charges for Cu-BTC were taken from Castillo
et al., where the Cu-BTC partial charges were obtained via tting
different set of charges to reproduce water adsorption data.64,65

Furthermore, the combination of GCMC simulated isotherm
based on UFF forceeld and TraPPE for mixture adsorbates have
been previously utilized for mixtures simulation. Zhong and
team performed GCMC simulations for equimolar binary
mixtures of CO2, CH4, and H2 in Cu-BTC MOF and found very
close agreement with experiments.66 Wang and coworkers also
studied many hydrocarbon mixtures with carbon dioxide using
TraPPE models in Cu-BTC and found excellent matching with
experimental data.67 Also, the IAST adsorption data was produced
from tting pure-component isotherm of the relevant gases in
the mixtures using py-IAST developed by Simon and coau-
thors.46,68 The Langmuirmodel withmodel isotherm() function of
py-IAST was used to generate the IAST prediction from the pure
component isotherms of the respective species. The pure
component isotherm were based on the same pressure and
1508 | Digital Discovery, 2023, 2, 1506–1521
temperature conditions for which IAST prediction for themixture
condition were generated.

2.2 Initial training set selection criteria

The initial training set selection for this work was based on
‘boundary-informed’ scheme, as rst detailed in our previous
work.56 This scheme is based on adding the pressure grid points
in a geometric progression with a factor of 10. Thus, it covers
both the low- and high-pressure points within the boundaries of
the test dataset. The rest of the features in the scheme are
linearly distributed within the dened limits. The points for the
pressure feature were set at the boundaries of range (such as
10−6, 10−5, 10−4, and so on for pressure), but was linearly
spaced for mole fraction and temperature features.56 Also, for all
the 3 mixtures tested, the initial training set input points (for all
the features) had the same set of values for a fair comparison.
The initial training set for the P–X is given in the Table 1 as an
example. As AL progressed more data points were added to the
training set. During the AL, the GPs are t using the complete
training set. The test set distribution was not known and was
only used for prediction purposes. The test set limits for mole-
fraction, and temperature were: [0.02, 0.98] and [200 K, 400 K],
respectively. For pressure, the lower limit was 10−6 bar for all
cases but the upper limit was different for different mixtures.
For CO2–CH4 it was 300 bar, for Xe–Kr it was 200 bar, and for
H2S–CO2 it was 100 bar. Also a linear distribution of the features
was adopted for the test set.

2.3 Active learning workow

The AL workow that was applied can be divided in these steps:
� Data pre-processing—First the log base 10 transformation

of the pressure and temperature (both in P–X and P–X–T)
features is performed in the dataset. Then, they are standard-
ized against their mean and standard deviation of the test set.
Only the mole fraction feature is linearly scaled to−1 and 1. The
standardized version of mole fraction was tested but the linear
scaling model worked better, and hence it is adopted. Also the
target variable (adsorption y) is log (base 10) transformed.

� Model training—The engine of the AL workow is the GP
regression model. A dual GP model was chosen with two
© 2023 The Author(s). Published by the Royal Society of Chemistry
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independent GPs, one for each species in the binary gas
mixtures. Both GPs were independently trained with the same
input in pressure and temperature (for P–X–T), and corre-
sponding mole fraction of the species. Thus, each GP was
provided three features for P–X–T and two for P–X. GPs are
multivariate normal distribution models where each data entry
adds a new dimension to the model:59

f(x) ∼ N(m(x),k(xi,xj)), (1)

where m(x) and k(xi,xj) are the mean and covariance matrix of the
GP, and f(x) is the output. The covariance matrix is calculated
using kernel function for whichmany choices are available such
as rational quadratic (RQ), Matérn, and radial basis function
(RBF). The kernel functions parameters are obtained at the time
of tting the training data. The GP model used in this work is
from scikit learn package in Python where the tting is done by
maximizing the log-marginal likelihood function.69 The L-BGFS-
B optimization algorithm is used in this process.69 Also,
multiple kernel functions can be combined together for the GP
model, and in this work both double and triple kernel combi-
nations were tested. Out of them, the best performing model
was chosen for the nal t. Here is an example of the RBF kernel
function with only one parameter, l i.e. length-scale. The d(xi,xj)
here is the Euclidean distance (=‖xi − xj‖) between the two
points:

k
�
xi; xj

� ¼
 

� d
�
xi; xj

�2
2l2

!
: (2)

Also, an a regularization term was added to the covariance
matrix with a value of 10−4 for CO2–CH4 and H2S–CO2, while
10−5 for Xe–Kr. This is a constant which is added to the diagonal
of the covariance matrix to provide an uncertainty threshold so
that the data is not overtted. Please refer to Fig. S3 in the ESI†
for further details.

� Model prediction and convergence criteria—Aer the
training is complete, the test set is passed through the trained
GP models for prediction. For the binary mixtures, we obtain
two GP outputs (y1 and y2), which are scaled back to adsorption
by taking the inverse-log of these outputs. Also, the GP gives us
the uncertainty distribution in the prediction for each test
point, sn which is obtained from the covariance matrix. The sn

is then used to nd the most uncertain region in the test set,
which shows which areas to actively sample in the next iteration
and add to the training set. However, before sampling, we
calculate a perceived accuracy (PAC) term which is the stopping
criterion for the AL protocol. We dene the PAC for adsorption
for species i in a mixture as:

PACi ¼ 100� Xþ
Xþ þ X�

(3)

If at Xni;

�����sni

y
0
ni

�����# bi; then; Xþ ¼ Xþ þ 1 else; X� ¼ X� þ 1

(4)
© 2023 The Author(s). Published by the Royal Society of Chemistry
This PAC value is the fraction of points in the test set whose
GP relative errors are above a desired relative error threshold.
Thus, PAC is a measure of the performance ‘perceived’ by the
GP model, which it calculates by counting the number of
predictions which fall under a desired relative error limit. In
eqn (3) and (4), sni and y

0
ni are the GP-predicted uncertainty and

adsorption value (log) associated with the test point Xni.
Therefore, the concept of PAC is rst introduced in this work
and has potential to be used for any AL based tasks. This
parameter was inspired from the use of the term accuracy in
regular classication tasks.70 Accuracy in a classication task is
dened as the ratio of correctly classied test cases to total
number of test cases. In classication tasks, the accuracy is
determined with respect to ground-truth data. Here a similar
concept is used but it is applied to a regression problem
(adsorption uptake prediction) while using the bi threshold as
a cut-off for determining PAC. This is a different use of the
accuracy measure which comes from GP models during the
prediction phase and is not produced from comparing the
model prediction with the ground-truth (as is done for a regular
classication task). The threshold value bi is user-dened and
can be set on the basis of the desired performance the user
needs. Also, the b values were kept same for the all the species
inmixture. We had b set to 2% for the P–X feature space, while it
was set to 5% for AL in the P–X–T space. This was done since the
test set in the P–X–T was much sparser than that of P–X one (21
× 11 × 11 points in the P–X–T feature space, compared to 51 ×

49 points for P–X). The test size reduction in the P–X–Twas done
to avoid a high computational cost. Including an extra feature
while keeping the same test size necessitates the increase in the
sparseness of the test set. In scenarios of sparse data, the GP
model tends to have large uncertainty while the true perfor-
mance does not deteriorate or scales down in proportion to the
size reduction of the test set. As observed, the nal model
performance for the same gas mixture for the two cases (P–X
and P–X–T) were comparable even though they had different
b values (refer Tables 2 and 4). We observed either the indi-
vidual MREs for the P–X–T case remained the same as P–X or
they were twice as high in the worst case. Lastly, the PAC was
compared to the threshold of convergence, which is set to 90%
for all the mixtures for the both the feature-space studies. If
90% of the test set predictions for both the species are less than
or equal to b, then the learning is nished and no new point is
further sampled. If the PAC policy is not satised then the next
step is followed.

� Training set update—In case any of the two PAC criteria are
not satised then this protocol is followed. The highest uncer-
tain point in the test set is chosen from both the species (based
on sni value) and then the point with maximum sni

of the two
species is sampled through GCMC. Aer sampling this point, it
is added to the training data set and then the AL restarts. The
protocol continues until the PAC condition is satised for both
the species. Fig. 1 depicts the full AL workow.

� Hyperparameters—Before building the adsorption model,
we had to decide on different hyperparameters for a GPR
including kernels and regularization parameters. Three
different kernel options and their combinations were tested:
Digital Discovery, 2023, 2, 1506–1521 | 1509
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Table 2 The performance summary of the best fit GPs using AL protocol for the 3 gas mixtures after 90% PAC criteria was met in the pressure–
mole fraction space (P–X feature space). Data requirement (in terms of % of ground truth), MRE and R2 are presented. Also, the species tag
number (1 or 2) corresponds to the sequence from left hand side in the mixture name. For e.g. species 1 in CO2–CH4 will be CO2. The iterations
shows the total number of additional points added to the initial training dataset to meet the PAC of 90%

Mixture Kernel Iterations
Data requirement
(in %)

MRE(species 1)

(in %)
MRE(species 2)

(in %) R(species 1)
2 R(species 2)

2

CO2–CH4 RBF 21 3.001 5.263 5.417 0.986 0.999
Xe–Kr RQ 11 2.601 6.526 6.394 0.985 0.998
H2S–CO2 RQ 10 2.561 7.149 7.154 0.982 0.995
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rational quadratic (RQ), Matérn, and radial basis function
(RBF). We note that the parameters inside all the kernels, such
as length-scale l or a in RQ are optimized in the GP tting
process to get to the maximum log-likelihood. The only
parameter that is not optimized is the n parameter in Matérn,

which was set to
1
2
since this value gave the best t as well as

consistency in subsequent iterations. Further, the bounds of l
and a chosen were 10−13 to 1013. The equation for RQ and
Matérn kernels are:

k
�
xi; xj

� ¼
 
1þ d

�
xi; xj

�2
2al2

!�a

; (5)

k
�
xi; xj

� ¼ 1

GðnÞ2n�1

 ffiffiffiffiffi
2n

p

l
d
�
xi; xj

�!n

Kn

 ffiffiffiffiffi
2n

p

l
d
�
xi; xj

�!
(6)
Fig. 1 Active learning workflow for predicting gas mixture adsorption u
processing the data: pressure and temperature are standardised, while the
it is passed through the dual-GPs, one for each species, for training. Please
(each GP gets three features for P–X–T and two for P–X). Then prediction
both the species are tested for convergence. If any of the PAC criteria is n
added to the initial training data (out of the two species). The active learn

1510 | Digital Discovery, 2023, 2, 1506–1521
The RQ kernel (eqn (5)) has an extra parameter a when
compared to RBF in eqn (2). In eqn (6), Kn($) is the modied
Bessel function, and G($) is the gamma function. Different
values of n correspond to different functions. n, as a parameter is
used to control the smoothness of the Matérn function. Kernel
optimization results for all the different combinations are
provided in the ESI.†

� Performance metrics—Aer selecting the best kernel
combination AL t performance is assessed by various metrics.
The GP predicted uncertainties (which are used to nd the next
point for sampling) are given here for each point.

GP relative error in % ðat xiÞ ¼ sðxiÞ
y0ðxiÞ � 100 (7)

s(xi) and y′(xi) are the GP-predicted uncertainty and adsorption
value (scaled) associated with the test point of xi. Also, a GP
mean relative error (MRE) is used to gauge how a current iter-
ation of GP is performing or to what extent the GP “feels” its
sing Gaussian process regression (GPR). The learning starts from pre-
mole-fraction is linearly scaled to−1 and 1 (x*= (x− 1/2)× (25/12)). Then
note here only the T, P and the relevant mole-fraction are fed to the GPs
are done, and the associated uncertainties are extracted. The PACs for

ot met, learning continues, and the point with the highest uncertainty is
ing continues until the PAC convergence condition is satisfied.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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performance is in aggregate. GP MRE is calculated by averaging
GP relative error over all testing points n, as shown below.

GP MRE in % ¼
 Xn

i¼1

����sðxiÞ
y0ðxiÞ

����
!

� 100

n
(8)

The next metric is the mean relative error (MRE) where the
GP-predicted adsorption (YGP-predict, scaled back from y′) is
compared with GCMC data (YGCMC) for all points in the test set
and their average is calculated.

MRE in % ¼
 Xn

i¼1

����YGP-predictðxiÞ � YGCMCðxiÞ
YGCMCðxiÞ þ 3

����
!
� 100

n
(9)

The 3 (=10−3) is added to the denominator to avoid numer-
ical issues since adsorption in some feature spaces can reach 0.
The same equation is used to nd MRE with respect to IAST
predictions in Table 5. Only YGCMC is replaced by uptake
predictions by the IAST-Langmuir model in the mixture space.

AL was performed for both the P–X and P–X–T feature spaces.
The major differences for these two cases and the three binary
gas mixtures are listed here:

� The points included in the initial training dataset for P–X
are 9P × 6X (=54 points) and 5P × 6X × 3T (=90 points) for P–
X–T. Details are shared in Tables 1 and 3. A detailed discussion
for this difference is provided in the P–X–T results section.

� n_restart_optimizer: This was set to 100 for P–X and 1000
for P–X–T. This parameter is number of restarts of the L-BGFS-B
algorithm while training a GP. The higher the number of
restarts, it increases the chances for the GP of nding the kernel
parameters which maximizes the log-maximum likelihood
function.

� a (the regularization parameter) = 10−4 for CO2–CH4 and
H2S–CO2, and 10−5 for Xe–Kr (same for both P–X and P–X–T).
The parameter was selected from testing on initial training
data. More information is shared in the ESI.†

� Kernel combination tested for P–X feature-space were
single (k1) and double additive kernels (k1 + k2). For P–X–T, all
the permutations of single, double, and triple additive kernels

(k1 + k2 + k3) were tested. This made a total of 9
�

¼P2
i¼1

3i
�

combinations for P–X and 39
�

¼P3
i¼1

3i
�

for P–X–T. The details

of kernel evaluation and results are provided in the ESI.†
� The b value, the relative error constraint which classies

the condent and under-condent regions of the GP for PAC
calculation, is 5% for P–X–T while kept 2% for P–X.

3 Results and discussion
3.1 P–X feature space

In the P–X feature space, the best kernel for CO2–CH4 mixture
was a single RBF. Themodel based on RBF kernel was chosen as
the nal surrogate for CO2–CH4. In Fig. 2, the GP-predicted
adsorption isotherms for three XCO2

values are compared with
GCMC data. The training points (shown in the star marker)
© 2023 The Author(s). Published by the Royal Society of Chemistry
indicate points GPs were trained on, and here in Fig. 2a we
observe that the GP predictions are far from the GCMC and very
high uncertainty (sCO2(GP)). In Fig. 2b, the AL adds a new
training point to the training set (based on the highest uncer-
tainty between CO2 and CH4 uptake) and we nd a signicant
improvement in the adsorption isotherms. This rst point
added to the training set is at the feature of [p = 300 bar, XCO2

=

0.86]. Thus the uncertainties and predictions of the isotherms
at the mole-fraction of 0.80 and 0.50 values show high
improvement compared to that of 0.20. Further, the region of
high uncertainty also shis to that of low mole-fraction
isotherms. Subsequent additions of data points to training set
continues this improvement, as shown by plots (c) and (d) with
reduced uncertainty sCO2(GP) and closer agreement of yCO2(GP)

with GCMC. Also, out of 49 isotherms (one each XCO2
), only 3

representative isotherms are shown here. We nd that out of
the 10 points that are added, only a single point belonging to
this sub-region was added to the training set (refer plot (d))
training point marked at 300 bar and XCO2

= 0.20). However,
since training points added to adjacent regions improves
performance, we nd a consistent improvement in performance
in the regions shown here. Lastly Fig. S2 of the ESI† compares
the error heat maps of GP-predicted relative error and absolute
relative error for these stages of AL. There we also observe that
adding a new point to the training set improves the error maps
and the GP-predicted error map starts to converge to the true
relative error. For the CO2–CH4 mixture case, only up to 10 plus
the initial training points are shown here. The AL continues
further, adding 21 more points to the training set to reach an
accuracy of 90% for both the GPs (see Table 2).

In Fig. 3, the progression of the AL protocol (up to 500 iter-
ations) for CO2–CH4 with the RBF kernel is shown. The GPs
meet the desired PAC limit quickly with only 21 additional
iterations (z3% of the ground truth data). However, the PAC in
subsequent iterations uctuates. This is because new samples
added to the training data oen leads to increase in GP
uncertainty. This happens because with addition of new data
the GP algorithm updates its predictions and learns about
regions where its earlier predictions were wrong. The algorithm
thus updates the uncertainties and that is why with more iter-
ations the gap between MRE and GP-MRE starts to reduce. Only
when few more samples are added, an improvement as well as
stability in the PAC trend is observed. Also, the uctuations in
the MRE parameter is about 1–2%, which indicates these vari-
ations are not as pronounced for MRE as it is for the PAC. This
also shows that the newly introduced PAC parameter is quite
sensitive to the GP-predicted uncertainty distribution. However,
a high PAC does result in low MREs and for all the cases tested
(three mixtures as well as the two different feature-spaces),
a high PAC provided very good ts. Thus, a high-enough PAC
ensures a low MRE, which allows to employ PAC as a policy to
stop the learning when the criteria is met for both species (refer
to Tables 2 and 4 for other gas mixtures and for P–X–T feature
space). Also, PAC carries additional advantages compared to
maximum relative error threshold criteria, which was used for
pure components in our earlier work.56 Some of the reasons of
using PAC are listed below:
Digital Discovery, 2023, 2, 1506–1521 | 1511
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Fig. 2 Comparison of GP predicted CO2 uptake in Cu-BTC with GCMC in the CO2–CH4 mixture for the CO2 mole-fractions of 0.80, 0.50, and
0.20 at P–X phase at 300 K. The progression are shown for (a) initial training data only (= 54 point training set), (b) 1-point + initial training data
(=55 point training set), (c) 5-points + initial training (=59 point training set), and (d) 10 points + initial training (=64 point training set). These plots
illustrate this: as the AL algorithm continues to add new training points, the gap between GP predictions and ground truth significantly reduces.
Further, the uncertainty of the GPs (shown as shaded regions above) also improves. The corresponding GP-predicted relative error maps and the
relative error maps are shown in Fig. S2 of ESI.†
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� PAC is a fractional quantity (reported in %) of the GP's
perceived prediction performance. Therefore, it does not
depend on the absolute value of the GP relative error (sn/y) or on
the absolute standard deviations sn. Depending on the system
one is investigating, the distribution of sn could be skewed for
some regions and hence taking a maximum relative error or
even a mean of relative errors or a mean of sn itself could pose
a problem in determining the cut-off values. Since PAC is
a fraction and works on aggregate performance, the same cut-
off could work for many diverse systems.

� Due to the fractional nature of the PAC, it can be applied to
multiple species (or multiple GPs) with the same cut-off limit.
Therefore, it could help to scale the algorithm to multi-output
problems.

� Formixture adsorption systems (three different mixtures in
Cu-BTC, up to 3 features), it was empirically observed that an
PAC cut-off of 90% ensures MREs nish within 11% and a R2

close to one. However, one may need to tune the b parameter.
Fig. 3 also shows that the GP for CO2 takes more iterations to

stabilize than CH4 (CO2 PAC stabilizes around 200 iterations
while CH4 at around 100). This happens because the CO2

adsorption in the mixture has an increasing and then
1512 | Digital Discovery, 2023, 2, 1506–1521
decreasing trend at low-concentration of CO2 and eventually
follows a type-I adsorption trend at medium to high-CO2

concentrations (refer Fig. 5). This behaviour was also reported
by Tan and coauthors, where they studiedmixture adsorption of
polar and non-polar gases in carbonaceous nanopores.71 This
feature space where CO2 adsorption is high at low pressure,
corresponds to the synergistic zone where electrostatic inter-
action of CO2 with the MOF is stronger. The adsorbates with
stronger inter-molecular interactions accumulate near the
adsorbent surface and continue to adsorb, out-competing the
other gas with weaker adsorbate–adsorbate interaction.
However, as pressure is increased CH4 begins to replace CO2.
Thus, these two effects results in very different isotherms for
different feature space regions. Hence in the CO2–CH4 mixture,
the CO2 uptake is a difficult target variable to learn (compared
to CH4), requiring more iterations for stabilization.

The relative error heat maps when the PAC conditions are
met are reported in Fig. 4, which shows relative error (with
respect to GCMC) for each point of the P–X grid for both species.
In this gure, the errors are higher when CO2 is at a lower
concentration (or CH4 concentration is high). This corresponds
to the range of XCO2

= 0.02 to 0.20. Following this, the
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Active learning progression plots for a single RQ kernel (a) CO2,
and (b) CH4. In the right hand side, mean relative error (MRE) and
Gaussian processmean relative error (GP-MRE) is shown, while the left
hand side shows the PAC criteria. This plot compares the perceived
performance by the GPs for each species with the true performance
along with iterations. As seen in subsequent iterations of the learning,
the MRE (true error with respect to the ground truth) converges with
the GP MRE. However, with an PAC threshold of 90%, the AL process
will finish much earlier for the desired performance. This plot shows if
the AL was to progress beyond the cut-off of PAC limit, how the
performance would be in the following iterations.
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adsorption plots in Fig. 5 are also shown, which compares GP-
predicted adsorption with GCMC (ground truth) and IAST
predictions, for three-different features of the CO2–CH4 mixture
(at the state when PAC constraints are met). First, in Fig. 5a, we
Fig. 4 Relative error heat maps at the 90% PAC cut-off for CO2–CH4

mixture, (a) CO2 and (b) CH4. The region of XCO2
= 0.02 to 0.30 (XCH4

=
0.70 to 0.98) have the highest errors. The model under-predicts
adsorption of CO2 at XCO2

= 0.02 to 0.14, and then over-predicts from
0.14 to 0.30.

© 2023 The Author(s). Published by the Royal Society of Chemistry
nd that GP-predicted CO2 uptake is under-predicted compared
to the GCMC data. For compositions beyond XCO2

= 0.10, the GP
starts to over-predict uptake. Then aer the value of XCO2

= 0.20,
the GP t for CO2 has good agreement with the GCMC data.
Comparing the GP predictions with IAST, we see it fails to
capture the trend completely at low to mid concentrations of
CO2. While comparing the performance of GP-predicted uptake
for both the species, it performs far better than IAST predic-
tions. Only at high values of XCO2

(>0.80), does IAST perform well
and closely follows the GCMC data. Also, at the low concen-
tration of XCO2

(0.02–0.20), IAST has high absolute deviation
from GCMC and fails to capture the increasing trend of the CO2

adsorption. In this range, IAST predicts a type-I isotherm for
CO2, while an increase and then decreasing trend for CH4, both
of which are far from the ground truth. In contrast, the GP
predicted isotherms are consistent with the GCMC data, despite
some absolute deviations, there is good agreement with the
adsorption trends from GCMC.

The error maps and adsorption plots (compared with GCMC
and IAST predictions at the PAC of 90% state) for H2S–CO2 and
Xe–Kr are provided in the ESI† and they show very similar
behavior to that of CO2–CH4 at the PAC cut-off of 90% (Fig. S5–
S8†). Though there are slight differences observed, the nal GP
ts of Xe–Kr at lower Xe concentration are relatively better than
CO2, while in the case of H2S–CO2, the GP-GCMC errors are
more distributed throughout the feature space. Also, the IAST
predictions for Xe–Kr as well for H2S–CO2 show large deviations
with respect to the GCMC data except at high Xe and H2S
compositions. Thus, like the CO2–CH4 mixture, GP predictions
outperform IAST and show similar trends to the GCMC data
even when there is a high relative error. IAST fails to capture the
trends and has high errors for the majority of the feature space.
From the adsorption plots for all the three mixtures, it can be
concluded that the species which is more attracted to the Cu-
BTC MOF shows high error at low concentration. Since these
species (CO2, Xe, and H2S) are more attracted to the Cu-BTC
structure they can replace the other one quickly as the
concentration is increased. This makes it harder for the GP to
capture this rapid change when it moves along the small mole-
fraction of the more dominant species. This is one of the pitfalls
of the PAC protocol that it may not ensure a perfect t with
GCMC at the 90% cut-off. Hence, one has to balance out the
need for a model which is accurate with respect to GCMC at all
features ranges but might have errors at certain sections/ranges
of the test set or one can let the AL continue to 95% or 99%, so
that the model is condent at all feature spaces.

In Table 2, different performance indicators for the GP
models are summarized when AL is terminated for the P–X
feature space. Since the initial training set (54 points) was kept
the same for all gas mixtures, the number of initial training
datapoints is also added to calculate the data requirement
parameter, which is given below.

Data requirement ¼ Ninitial training set þNIterations to 90% PAC

Nground truth

� 100

(10)
Digital Discovery, 2023, 2, 1506–1521 | 1513
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Fig. 5 Adsorption plots of both CO2 and CH4 using the RBF kernel in the CO2–CH4 gasmixture after 21 training points are added to initial training
set (when 90% PAC criteria is met). The ground truth data is the GCMC predictions which is compared with GP-predictions (at the PAC cut-off of
90%), along with IAST predictions. The plots follows these regions of the mixture: (a) low concentration of CO2 (XCO2

= 0.02, 0.06, and 0.10), (b)
medium-concentration of CO2 (XCO2

= 0.20, 0.40, and 0.60), and (c) high-concentration of CO2 (XCO2
= 0.90, 0.94, and 0.98).

Table 3 Boundary-informed initial training data grid points for gas
mixture adsorption in Cu-BTC MOF for three features (P–X–T)

Pressure (in bar) Mole fraction Temperature (in K)

10−6 0.02 200
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Thus, the data requirement is the fraction of total data
provided to the GPs to reach the cut-off of 90% PAC for both the
species. The other parameters are the MREs and correlation
coefficient for both the species. In Table 2, the data requirement
is found to be small (within 3% of ground truth) for the 3
mixtures. The MREs for all the species are also good, around 5–
7% for the three mixtures. The last quantity, R2, is close to one
(∼0.98–0.99) for all the species, showing that the GP captures
the adsorption trend quite well. Thus, in this section it is shown
how AL can be used to build reliable surrogate models which
work for different gas mixtures and can give a satisfactory
performance. With these results it is demonstrated that the cut-
off of 90% PAC gives low relative errors and provides good
agreement with the ground truth data. This AL termination
protocol can thus balance the number of iterations or simula-
tions one needs to conduct versus the performance of the
model.
10−4 0.20 300
10−2 0.40 400
100 0.60
10+2 0.80

0.98
3.2 P–X–T feature space

This section deals with AL in the P–X–T feature space. As stated
before, the initial training set size in this P–X–T study is
1514 | Digital Discovery, 2023, 2, 1506–1521
increased to 90 points. This is done because with three features
the initial training dataset has to include a new feature:
temperature. The distribution for initial training set P–X–T is 5P
× 6X × 3T (as shown in Table 3). This particular distribution is
arranged so that the most sensitive features gets a high share of
points in the initial dataset, hence only 3 points are for
temperature while 6 points are given for the mole fraction. Also,
the magnitude of initial training input points are kept equal for
all three gas mixtures for a fair comparison between mixtures
(just like the P–X case). The kernel selection plots for P–X–T case
© 2023 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00106g


Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

4 
A

ug
us

t 2
02

3.
 D

ow
nl

oa
de

d 
on

 7
/2

6/
20

25
 1

1:
39

:1
9 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
is provided in the ESI.† For CO2–CH4 mixture, the triple-RBF
kernel was selected for the AL (see Fig. S9† for details). The
desired PAC was met aer 64 iterations of active learning, which
Fig. 6 Active learning progression plots for a triple-RBF kernel for P–
X–T feature space (a) CO2, and (b) CH4. This plot compares the
perceived performance by the GPs for each species with the true
performance along with iterations. As seen with subsequent iterations
of the learning, the MRE (true error with respect to the ground truth)
converges with the GP MRE. However, as the PAC threshold is set to
90%, the AL process will finish much earlier for a desired performance.
This plot show if the AL was to progress how the performance would
be in the following iterations.

Fig. 7 Relative error heat maps at the 90% PAC cut-off for CO2 in the CO
(b) XCO2

= 0.308, 0.5, and 0.692, and (c) XCO2
= 0.788, 0.884, and 0.98. We

for CO2 uptake, withmost errors showing that GPmodel in under-predict
slight over-prediction by the GP, compared to GCMC.

© 2023 The Author(s). Published by the Royal Society of Chemistry
amounts to a data expenditure of 6.61% (Table 3). The MREs for
both species had a slight difference: CH4 has an MRE of 9.25%
whereas CO2 has 5.46%. These are good results considering
only 6.61% of data is used for training from the ground truth.

Fig. 6 shows the progression of AL for triple RBF kernel for
CO2–CH4 mixture in the P–X–T feature space (up to 500 itera-
tions). Here, the uctuations in the PAC value is less compared
to the P–X counterpart. Also, there are sharp drops in PAC for
CH4 which reects that with new data the GP model's uncer-
tainty is increased in the prediction, until its gets additional
data points to reduce the uncertainties. Like P–X, the PAC cut-
off was set to 90% and the model reaches this threshold rela-
tively slowly compared to P–X. Fig. 6 also shows if the learning
had continued beyond the cut-off of 90%, around 400 total
iterations are needed to meet the 95% PAC threshold. This
means that around 20% of the ground truth has to be included
in the training set and this would have resulted in an MRE of
2% and 3% for CO2 and CH4, respectively. This nding shows
the cost-performance ratio of the learning process and
demonstrates that adding more data leads to a slow improve-
ment in the model. Hence, an early cut-off of 90% can provide
a ‘good-enough’ model, instead of spending 20% of ground-
truth (400 more iterations) to get only a 5% gain in the PAC
or 2–4% drop in MREs.

The error heat maps for each mole fraction of CO2 and CH4

(at the AL state when PAC criteria is met) are provided in Fig. 7
and 8. For CO2, the highest error region corresponds to XCO2

=

0.116, followed by XCO2
= 0.308. The rest of the region has very

low relative errors, irrespective of the pressure or temperature
values. Also, the errors are marginally high in the low
2–CH4 mixture with triple-RBF kernel, (a) XCO2
= 0.02, 0.116, and 0.212,

find the region of XCO2
= 0.116 (XCH4

= 0.884) having the highest errors
ing. After this region, there are some error region for XCO2

= 0.308, with

Digital Discovery, 2023, 2, 1506–1521 | 1515
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Fig. 8 Relative error heat maps at the 90% PAC cut-off for CH4 in the CO2–CH4 mixture with triple-RBF kernel, (a) XCH4
= 0.02, 0.116, and 0.212,

(b) XCH4
= 0.308, 0.5, and 0.692, and (c) XCH4

= 0.788, 0.884, and 0.98.
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temperature range. At the highest temperature of 400 K, the
errors are very small. In Fig. 8, a similar trend in the error
distribution of CH4 is observed. However the errors are
distributed more than CO2 from the feature value of XCH4

= 0.02
to XCH4

= 0.50. In this range of CH4 mole-fraction, the CH4

uptake is small which can explain the rise in the relative error.
As the adsorption plots shows, the GP-predictions strongly
correlates with the GCMC data. Further in this plot, the errors
are slightly high as temperature is increased. This is in the
opposite direction of CO2 relative error trend. As temperature
increases, CH4 adsorption falls and the relative error spikes
because of the smaller y1 in the denominator. However with
CO2, with rise in temperature the synergistic effect weakens at
low CO2 mole-fraction and the increase and decrease trend of
the CO2 isotherm shis to higher concentration of CO2. Thus,
the GP is able to capture that trend well at high temperatures for
CO2. Fig. S18 and S19† show the adsorption data for these
highest relative error region for CO2 and CH4. Thus, through
this analysis it becomes clear that errors for each species are
very sensitive to the mole fraction and temperature in the P–X–T
phase space.

The corresponding adsorption plots for the region of XCO2
=

0.116 is provided in Fig. 9a, and through them it is observed
that the GP model, in many places, fails to capture the true
adsorption values for CO2. However, it succeeds in capturing
the overall trend of the GCMC, compared with IAST. The IAST
trends for both CO2 and CH4 across the temperature fails very
similarly to the P–X space. IAST deviates from the GCMC data
completely in this region while GP shows moderate relative
errors. In Fig. 8, the error heat map for CH4 is shown. Here the
errors are more distributed with mole-fraction compared to
CO2. Also, the errors are high only in the region when CH4 is less
1516 | Digital Discovery, 2023, 2, 1506–1521
than 0.50 mole-fraction. The adsorption plots for these high
error region had been added in Fig. S18 of ESI,† where the
adsorption isotherm at these high error region of XCH4

= 0.884
(XCO2

= 0.116) are shown. The CH4 GP t follows the GCMC data
very closely however has a moderate deviation in absolute value.
Also, the CH4 uptake is very small in these regions which
disproportionately increases the MRE values (y2 being the
denominator in MRE calculation). The overall MRE of 9.25%
can be thus attributed to region where CH4 uptake is small.
Further in Table 4, the R2 for CH4 very close to 1, which shows
a very strong correlation of nal GP t with GCMC data. In
Fig. S27,† we have also added a comparison plot for the GP-
predicted CO2 and CH4 uptakes with the experimental data
from Hamon et al. (obtained from the BISON dataset).72,73 There
also we nd a very close agreement of the GP predicted uptakes
with experiments for the three different ratios of CO2 and CH4 at
303 K.

In Fig. 9b and c, a comparison of the GP ts with highest
relative errors is shown along with IAST predictions for the
other two mixtures. The gures for these mixtures are included
with the same set of input features (Xspecies 1 = 0.116, and T =

200, 240, and 280 K) which had shown highest relative errors in
the error heat maps previously. The highest deviation
(compared to GCMC) of IAST predictions comes from the
species which has more affinity towards Cu-BTC. Comparing
them with the GP predictions, the GPs also have high errors but
it does follow the trend of GCMC isotherms (same as P–X space).
Thus, IAST predictions fail again in the mixture states for P–X–T
feature space for the three mixtures. However since GPs have
been trained on a fraction of the ground truth, it has the
necessary information to generate the adsorption proles close
to GCMC.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 Adsorption isotherms comparison of GCMC (ground truth), IAST-predicted isotherms, and GP predictions at the 90% PAC cut-off for
a few of regions with highest relative errors for all the three mixture, (a) XCO2

= 0.116 and T = 200, 240, and 280 K, (b) XXe = 0.116 and T = 200,
240, and 280 K, and (c) XH2S = 0.116 and T = 200, 240, and 280 K. Also, the IAST prediction fails for species which are more attracted to Cu-BTC
(CO2, Xe, and H2S) (compared to the second species).

Table 4 The performance summary of the best fit GPs using AL protocol for the 3 gas mixtures after 90% PAC criteria was met in the pressure–
mole fraction–temperature space (P–X–T feature space). Data requirement (in terms of % of ground truth), MRE and R2 are presented. Also, the
species tag number (1 or 2) corresponds to the sequence from left hand side in themixture name. For e.g. species 1 in CO2–CH4will be CO2. Also,
the iterations shows the total number of additional points added to the initial dataset to meet the PAC of 90%

Mixture Kernel Iterations
Data requirement
(in %)

MRE(species 1)

(in %)
MRE(species 2)

(in %) R(species 1)
2 R(species 2)

2

CO2–CH4 Triple-RBF 78 6.611 5.461 9.256 0.988 0.990
Xe–Kr Triple-RBF 79 6.650 4.850 7.025 0.990 0.990
H2S–CO2 RQ 51 5.549 8.276 11.682 0.976 0.986
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In Table 4, the AL performance for all three mixtures for P–X–
T feature space is shown. All the MREs are in acceptable range
of 4–11%, and R2's are close to 1. The data requirement is close
to 5–6% with the triple-RBF kernel providing best t for CO2–

CH4 and Xe–Kr, and a RQ for H2S–CO2. From these results, it is
apparent that the GP model does a good job in emulating the
adsorption isotherm at different conditions. The only section
with moderate errors is the range with small concentration of
species with high affinity towards the MOF structure (CO2, Xe,
© 2023 The Author(s). Published by the Royal Society of Chemistry
and H2S). Comparing this to IAST performance for the feature-
spaces and mixtures (shown in Table 5), we nd the errors are
very high (varying from 30% to 91.09%). Therefore, the aggre-
gate performance of AL-based isotherms are much better than
IAST-based predictions.

The error maps and adsorption plots (for region with highest
relative errors) for Xe–Kr and H2S–CO2 are provided in Fig. S14
to S23 in the ESI.† A similar trend in error and adsorption
isotherms (like CO2–CH4) was observed for Xe–Kr. In that
Digital Discovery, 2023, 2, 1506–1521 | 1517
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Table 5 IAST (based on Langmuir model) predicted isotherms
aggregate performance comparisonwith GCMC uptakes for all the gas
mixtures for the two features spaces

Mixture Features
MRE(species 1)

(in %)
MRE(species 2)

(in %)

CO2–CH4 P–X 53.97 91.09
Xe–Kr P–X 27.90 50.20
H2S–CO2 P–X 25.04 28.69
CO2–CH4 P–X–T 48.26 98.06
Xe–Kr P–X–T 35.76 46.15
H2S–CO2 P–X–T 27.93 63.96

Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

4 
A

ug
us

t 2
02

3.
 D

ow
nl

oa
de

d 
on

 7
/2

6/
20

25
 1

1:
39

:1
9 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
mixture, most of the error are in the low concentration of the
species with strong affinity to Cu-BTC (Xe for Xe–Kr). For H2S–
CO2 the scenario is different as the errors are more distributed
in the mole fraction feature space. This is due to the nature of
target adsorption distribution in the H2S–CO2 mixture where
both the species have a high affinity towards the MOF. There-
fore the changes in adsorption isotherm are more distributed
and the errors in GP t too gets extended or attened out with
respect to mole-fraction. This is an interesting aspect of the
protocol which demonstrates that the GP can learn diverse
target adsorption isotherms with very good performance. In this
direction, we have also added correlation plots for all the three
mixtures in the ESI, Fig. S23–S25.† These plots show the loca-
tion of points sampled by the algorithm beyond the initial
training set. These plots illustrate that pressure points are more
frequently sampled along the boundaries of the test set range.
For mole-fraction points we see a similar prole as pressure but
there are more points in the middle range than pressure. We see
the most uniform sampling along the temperature feature for
all the three mixtures.
Fig. 10 Comparison of differences in GP-model performance (shown a
difference in correlation coefficient (R2) against the number of AL iteratio
CO2–CH4 had the most difference in terms of GP-MRE as well as R2, fol
taken after an interval of 10 points and all the previous points were inc
mixtures, only because of the use of log10 scale, it seems that the diffe
farther than other two, while Xe–Kr has slightly higher difference in GP-

1518 | Digital Discovery, 2023, 2, 1506–1521
We also note an interesting observation when looking at the
difference in individual species GP performance are compared
for all mixtures. In Fig. 10 the mean difference between the
species GP-MRE and R2 are plotted against iterations (calcu-
lated cumulatively at interval of ten points). This plot both
covers the difference in GP's perceived performance (GP-MRE)
and the actual performance (shown by R2) among the species.
In this plot, a hierarchy in the GP-MRE and R2 difference is
observed among the three mixtures. CO2–CH4 have the highest
mean difference in GP-MRE and R2, followed by Xe–Kr, and
then H2S–CO2. In Fig. 10, the differences in GP-MRE and R2

among the mixtures shows that CO2–CH4 has high difference
in the model performance between the two species. This affects
both the nal performance at the AL termination as well as the
total number of iterations required to meet the cut-off PAC.
The difference in the individual species perceived performance
creates the demand for more ground-truth data to be provided
to the model. In Table 4, we observe that CO2–CH4 has higher
values of MRE compared with Xe–Kr, while both mixtures take
almost the same number of iterations to reach 90% PAC (78
iterations against 79). Again in Table 4, when CO2–CH4 is
compared with H2S–CO2, it has slightly lower MRE, but the
latter mixture took signicantly less number of iterations to
full the PAC criteria. Going back to Fig. 10, we emphasize that
CO2–CH4 inter-species model differences is followed by Xe–Kr
and H2S–CO2. Therefore, Xe–Kr and H2S–CO2 are more closer
in absolute values for the inter-species model difference than
Xe–Kr is to CO2–CH4. Because the y-axis is shown in the log10
scale, the relative difference among mixtures looks equal for
the three mixtures. Further, when AL results of the P–X feature
space is taken into account (Table 2), CO2–CH4 again takes
twice the number of iterations to reach 90% PAC compared to
other two mixtures, while there is only 1–2% reduction is
s the mean of GP-MRE difference between two species) and mean of
ns (up to 500). All the three mixtures are included here and the GPs of
lowed by Xe–Kr and then H2S–CO2. Also the mean of difference were
luded. It is to be noted that CO2–CH4 is quite farther than other two
rence in the three mixtures are same. Realistically, CO2–CH4 is much
MRE and R2 than H2S–CO2.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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observed in the MRE values, while R2 values are in the same
range as other mixtures.

All gases taken together, our results suggest AL performance
is affected by the similarities in the intermolecular interactions
of species in a given gas mixture. This difference in inter-species
model behaviour of the GPs can also be examined via the nature
of adsorbate species. Out of the ve molecules in three mixture
base, one is polar (H2S) while other four are non-polar (CO2,
CH4, Xe, and Kr). Also, the models of CO2 and H2S have charges
in their respective atoms while the models for CH4, Xe, and Kr
do not carry charges.63 Therefore in CO2–CH4 mixture, both the
species exhibit very different adsorbate–adsorbate interactions
as well as have differences in their affinity towards the MOF.
CO2 has much stronger adsorbate–adsorbate interaction as well
as strong electrostatic interaction with the Cu-BTC (along with
Lennard-Jones interaction). This can be demonstrated by
comparing the pure component adsorption of these species. For
the pure component adsorption, at 300 bar and 300 K, CO2

uptake is 777.084 mg g−1, while at those conditions the CH4

uptake in Cu-BTC is 240.84 mg g−1. This difference in adsor-
bate–adsorbate as well as adsorbate–MOF interaction translates
itself into very different individual adsorption isotherms among
these species. Therefore, the AL for individual species prog-
resses very differently in CO2–CH4. This is reected as
a disparity in the GP-MRE of individual species and thus affects
the choice of the next point to be sampled. In essence, CO2–CH4

needs more AL iterations to reach the same cut-off PAC. In case
of Xe–Kr, their pure component uptakes at 200 bar and 300 K
are 1494.33 and 1254.80 mg g−1, respectively. Lastly, in case of
H2S–CO2, CO2 and H2S at 100 bar and 300 K have an uptake of
751.93 and 631.22 mg g−1. In the case of Xe–Kr, Xe has a higher
uptake (1494.33 mg g−1) than Kr (1254.80 mg g−1) as pure
components. Since both species are non-polar and noble gases,
the difference can be mostly attributed to adsorbate–adsorbate
interactions. Therefore, Xe demonstrates a stronger adsorbate–
MOF interaction than Kr, and thus there is some disparity in the
isotherms, which translates to the difference in model perfor-
mance, though not in the same order as CO2–CH4. Finally, in
case of H2S–CO2, the difference in both type of interaction are
similar for both adsorbates and hence their respective GP
models performance are very close to one another (also refer to
Fig. S13†). Thus both these two mixtures have less difference in
their inter-species GPs performance as they have similar inter-
adsorbate and MOF–adsorbate interaction. Extending this
analysis, one can envisage that a mixture of CH4 and H2S would
have similar problems like that of CO2–CH4. This shows that gas
mixtures based on components with similar inter-adsorbate
and adsorbate–MOF interaction would have better AL results
(in terms of iterations to model performance) than mixtures
which have diverse adsorbate–adsorbate and adsorbate–MOF
interactions.

4 Conclusions

From the analysis of gas mixture adsorption in Cu-BTC, we found
that the GCMC isotherms are highly sensitive to mole fraction
followed by the changes in pressure and temperature. Depending
© 2023 The Author(s). Published by the Royal Society of Chemistry
on the input feature spaces the isotherm can change from a type-I
to a very different trend (rst rise and then sharp decline). Thus,
non-parametric surrogate models which are exible and can
emulate any target distribution are well suited to capture such
trends. As shown in this work by the proposed AL protocol,
a model based on GPs can be built to predict mixture adsorption
inMOFs. Further, each GCMC simulation point for a gas mixture
can take from a few hours to more than a day (based on RASPA
calculations). On the other side, GPs only takes a few minutes to
train and do the prediction, thus the method could save huge in
terms of computational costs. Also, AL-based adsorption
predictions are better than IAST predictions, which currently are
used for multi-component adsorption prediction. The proposed
algorithm has been shown to work for two different feature
spaces with three different binary gasmixtures which had varying
degree of adsorbate–adsorbate as well as adsorbate–adsorbent
interactions. Further, AL doesn't need many training points and
only with a fraction of ground truth (3–6%), it provides a very
good approximation of the target adsorption. The savings in data,
however can vary depending on the mixture system, and also on
type and number of features. Though on most occasions, more
than 90% savings in data sampling requirement were observed.
While in this work only up to three features were tested, it would
be interesting to nd how the model will perform with more
features. From the increase in the data requirement from P–X to
P–X–T (almost double in % term for each mixture), one can
hypothesize that addition of adsorption sensitive features to the
test set may increase the requirement of training data if the
desired perceived accuracy threshold performance is kept the
same as that of low feature space.

In this work, an perceived accuracy parameter was also intro-
duced as a condition for the AL convergence. The parameter was
inspired from the accuracy metric used for the classication tasks
but here it was slightly modied to capture GP's perceived
performance. It was observed that the gain in performance does
not necessarily increase proportionally as more data was provided
to the model. Therefore it is important to have a condition for
convergence which can act as a proxy for the desired performance.
One disadvantage of this approach could be that the PAC criteria
only ensures an aggregate performance, i.e.majority of predictions
will be in acceptable rangewhile a small fraction, depending on the
PAC limit, may underperform. While in this work singularly large
deviations were not observed, given the large option of feature
spaces there can be cases where deviations could become signi-
cantly large. Further, depending on the application, evenmoderate
deviations cannot be accepted. In this direction, more research is
needed to ensure a high performance expectation throughout each
domains in the test set, and not just as an aggregate.

A further look could be given on the algorithm recommended
sampling process too. In this work, sequential sampling of
a single data point was used (only one point per iteration), but
there could be methods to sample multiple points in a single
iteration. Only concern is to nd the policy of batching or the
criteria of selecting the collection of points in the next batch. If
one considers only the collection of points with highest uncer-
tainty then many of them may fall under the same sub-space of
the design space, and addition of multiple points may not bring
Digital Discovery, 2023, 2, 1506–1521 | 1519
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the desired benet one might expect. A recent work by Zavala and
team successfully showed two parallel sampling schemes for
Bayesian optimization, which shows promising results.74 One was
based on informed partitioning of the input space using the target
function. Another was the level-set partition criteria, which used
a low-delity reference model for approximating the target func-
tion and perform the partitioning. Though AL is not an optimi-
zation problem, one might test and design novel strategies that
could be transferred from these works to an adsorption problem.
In another direction, calculating the next set of simulations for
multiple pressure points (with other features constant) can also
be explored since many MC engines or sometime even laboratory
experiments could be more efficient in generating adsorption at
a xed temperature rather sampling at different temperatures.
Ultimately, there can bemore efficient ways to add training points
and build a model with high reliability and performance. Further,
the methods can be tuned based on the constraints and leverages
of the ground truth evaluation procedure. In essence, there are
many frontiers of the AL paradigm that could be explored to
reduce computational cost and further better the performance of
the surrogate models. Adsorption is an unique physical process
and as more MOFs and target applications continue to emerge, it
would become difficult to perform experiments to identify a MOF
for a certain application. The efficiency and scale-ability of
computational methods can prove valuable for these situations.

Data availability

The code written during this work is available at Github: https://
github.com/mukherjee07/Active-Learning-for-
multicomponent-adsorption-in-a-MOF.
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30 Y. G. Chung, D. A. Gómez-Gualdrón, P. Li, K. T. Leperi,
P. Deria, H. Zhang, N. A. Vermeulen, J. F. Stoddart, F. You,
J. T. Hupp, O. K. Farha and R. Q. Snurr, Sci. Adv., 2016, 2,
e1600909.

31 A. W. Thornton, C. M. Simon, J. Kim, O. Kwon, K. S. Deeg,
K. Konstas, S. J. Pas, M. R. Hill, D. A. Winkler,
M. Haranczyk and B. Smit, Chem. Mater., 2017, 29, 2844–
2854.

32 N. S. Bobbitt and R. Q. Snurr, Mol. Simul., 2019, 45, 1069–
1081.

33 M. Pardakhti, E. Moharreri, D. Wanik, S. L. Suib and
R. Srivastava, ACS Comb. Sci., 2017, 19, 640–645.

34 G. S. Fanourgakis, K. Gkagkas, E. Tylianakis, E. Klontzas and
G. Froudakis, J. Phys. Chem. A, 2019, 123, 6080–6087.

35 C. M. Simon, R. Mercado, S. K. Schnell, B. Smit and
M. Haranczyk, Chem. Mater., 2015, 27, 4459–4475.

36 M. Fernandez and A. S. Barnard, ACS Comb. Sci., 2016, 18,
243–252.

37 M. Fernandez, P. G. Boyd, T. D. Daff, M. Z. Aghaji and
T. K. Woo, J. Phys. Chem. Lett., 2014, 5, 3056–3060.

38 B. J. Bucior, N. S. Bobbitt, T. Islamoglu, S. Goswami,
A. Gopalan, T. Yildirim, O. K. Farha, N. Bagheri and
R. Q. Snurr, Mol. Syst. Des. Eng., 2019, 4, 162–174.

39 A. Sturluson, M. T. Huynh, A. H. P. York and C. M. Simon,
ACS Cent. Sci., 2018, 4, 1663–1676.

40 B. J. Befort, R. S. DeFever, G. M. Tow, A. W. Dowling and
E. J. Maginn, Machine Learning Directed Optimization of
Classical Molecular Modeling Force Fields, 2021.

41 R. Ma, Y. J. Colón and T. Luo, ACS Appl. Mater. Interfaces,
2020, 12, 34041–34048.

42 G. M. Cooper and Y. J. Colón,Mol. Syst. Des. Eng., 2023, 8(8),
1049–1059.

43 F. Ricci, L. Rokach and B. Shapira, in Recommender Systems
Handbook, 2010, vol. 1–35, pp. 1–35.

44 D. Cohn, Z. Ghahramani and M. Jordan, Advances in Neural
Information Processing Systems, 1994.

45 B. Shahriari, K. Swersky, Z. Wang, R. P. Adams and N. de
Freitas, Proc. IEEE, 2016, 104, 148–175.

46 K. S. Walton and D. S. Sholl, AIChE J., 2015, 61, 2757–2762.
47 R. Krishna and J. M. van Baten, ACS Omega, 2021, 6, 15499–

15513.
48 G. Sivaraman, N. E. Jackson, B. Sanchez-Lengeling,
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