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y in high-dimensional materials
representations†

Anthony Onwuli, a Ashish V. Hegde,a Kevin V. T. Nguyen,a Keith T. Butler *b

and Aron Walsh *ac

The traditional display of elements in the periodic table is convenient for the study of chemistry and physics.

However, the atomic number alone is insufficient for training statistical machine learning models to

describe and extract composition-structure–property relationships. Here, we assess the similarity and

correlations contained within high-dimensional local and distributed representations of the chemical

elements, as implemented in an open-source Python package ElementEmbeddings. These include

element vectors of up to 200 dimensions derived from known physical properties, crystal structure

analysis, natural language processing, and deep learning models. A range of distance measures are

compared and a clustering of elements into familiar groups is found using dimensionality reduction

techniques. The cosine similarity is used to assess the utility of these metrics for crystal structure

prediction, showing that they can outperform the traditional radius ratio rules for the structural

classification of AB binary solids.
Table 1 Summary of the element vector representations discussed in
this work
1. Introduction

The periodic table offers an effective description of the elements
in order of increasing atomic number. Its true power comes
from the latent information that it contains. Chemists are
educated to recall periodic trends in electronic conguration,
atomic radius, electronegativity, accessible oxidation states,
and related characteristics. This understanding gives the ability
to rapidly assess, with bias, whether a particular compound will
be stable or infer what properties a molecule or material may
possess without detailed computations.1–4

Signicant advances have been made in the statistical
description of chemical systems with the application of super-
vised, unsupervised and generative machine learning (ML)
techniques.5–7 A critical factor in the performance of such ML
models for chemical systems is the representation of the
constituent elements. The atomic number of an element can be
augmented or replaced by a vector that may be built directly
from standard data tables, trained from chemical datasets
using a machine learning model, or even generated from
random numbers. Such representations can be categorised as
local (vector components with specic meaning) or distributed
(vector components learned from training data). These have
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been used to build powerful ML models for property prediction
based on composition alone.8–11

Perhaps the simplest local representation is one-hot encod-
ing where a binary n-dimensional vector v is used to categorise
the atomic number of the element, e.g. H can be represented as
[1000.] and He as [0100.]. A single component is ‘hot’ for
each element, thus providing an orthogonal and sparse
description. A selection of other common representations from
the literature is given in Table 1.

In this study, we are interested in the latent chemical
information that can be distilled from such high-dimensional
element representations. We consider the fundamental
concept of element similarity, which can be dened here as the
distance or correlation between elemental vectors. We explore
various metrics and then apply them to data-driven structure
classication for the case of binary solids. The underlying tools
have been combined into an open-source and modular Python
package ElementEmbeddings to support future investigations.
Name Dimension Origin

Magpie12 22 Element properties
MatScholar13 200 Literature word embedding
Mat2Vec14 200 Literature word embedding
MEGnet15 16 Crystal graph neutral network
Oliynyk16 44 Element properties
Random_200 200 Random numbers
SkipAtom17 200 Structure graph pooling

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Map of the pairwise Euclidean distance between element
vectors for four representation schemes. The elements are ordered in
increasing atomic number along the axes from 1 (H) to 83 (Bi).
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2. Results and discussion
2.1 Element representations

We consider four vector representations of the chemical elements
in the main text, but cover all seven mentioned in Table 1 in the
nal section for applications to crystal structure prediction, with
additional analysis provided as ESI.† The aim here is not to be
exhaustive but to cover a set of distinct approaches that have been
developed for chemical models. The analysis is performed on
elements 1 (H)–83 (Bi) as higher atomic number elements are not
covered in all representation schemes. For SkipAtom, only 80
elements are considered as the noble gases Ar, He and Ne are not
contained within the representation. The source of the training
data for these vectors was the Materials Project, which is largely
focused on inorganic crystals.

The Magpie12 representation is a 22-dimensional vector. It is
a local representation where the vector components have
specic meaning as they are built from elemental properties
including atomic number, effective radii, and the row of the
periodic table. The Mat2Vec14 representation is a 200-dimen-
sional vector distributed representation built from unsuper-
vised word embeddings18 of over 3 million abstracts of
publications between 1922 and 2018. In contrast, the atomic
weights from a crystal graph convolutional neural network
trained to predict the formation energies of crystalline mate-
rials are used to generate the 16 dimensional MEGnet15 repre-
sentation. The Random200 representation is simply a 200-
dimensional vector generated randomly for each element,
employed here as a control measure. Each vector component is
generated from the standard normal distribution, N ð0; 1Þ.

The actual vectors were collected from various sources: the
Magpie, Olinyk and Mat2Vec representations were obtained as
csv les from the CBFV repository;19 the Matscholar and MEG-
net16 were obtained from the lrcfmd/ElMD repository;20 the
SkipAtom embeddings were obtained from the lantunes/
SkipAtom repository; NumPy21 was used to generate the
Random_200 vectors. We found that the original Oliynyk csv le
had 4 columns with missing values: Miracle_Radius_[pm];
crystal_radius; MB_electronegativty; Mulliken_EN. For Mir-
acle_Radius_[pm], we used the mode to impute the missing
values and for the other 3 columns, we used knn-imputing with
the default parameters in scikit-learn.22 The choice of imputa-
tion was such that the overall distribution was preserved. All
embedding vectors used in this work have been standardised
prior to analysis.

2.2 Similarity measures

The distance between two vectors depends on the choice of
measure in n dimensional space. We assess the pairwise
distances between elements representations A and B. The
Minkowski distance is a metric in the normed vector space,
which is a generalisation of the common distance metrics
Euclidean, Manhattan and Chebyshev:

dðA;BÞ ¼
 Xn

i¼1

jAi � Bijp
!1=p

(1)
© 2023 The Author(s). Published by the Royal Society of Chemistry
Those three distance metrics can be derived from the Min-
kowski distance by appropriately choosing the exponent p.

For p = 2, we obtain the Euclidean (or L2) distance which is
the length of a line segment connecting A and B:

dEðA;BÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA1 � B1Þ2 þ/þ ðAn � BnÞ2

q
(2)

For p = 1, the Manhattan (or L1) distance is obtained which can
be dened from a sum of the absolute differences in each
dimension:

dMðA;BÞ ¼
Xn
i¼1

jAi � Bij (3)

In contrast, the Chebyshev distance is obtained from the
limiting case of p / N and takes account of the greatest one-
dimensional separation across the n-dimensional space:

dCðA;BÞ ¼ max
i

ðjAi � BijÞ (4)

Taking the example of the separation between the elements Li
and K in the Magpie representation, dE= 4.09, dM = 7.87 and dC
= 3.39, which shows the typical variation in absolute values. A
larger difference between Li and Bi, expected due to their
placement in the periodic table, is found with dE = 9.85, dM =

37.74 and dC = 3.55. For completeness, the Wasserstein metric
(earth mover's distance), which has been adapted for materials
problems,23,24 is also included as a function in Ele-
mentEmbeddings and shown in Fig. S5.†

Element separations are plotted for Euclidean and
Manhattan distance in Fig. 1 and 2, with other measures shown
in the ESI.† The elements are ordered in increasing atomic
number along the x-axis and decreasing atomic number along
the y-axis. This cuts across the groups in the periodic table. The
leading diagonals in the distance plots are zero-valued as they
correspond to d(A,A). The lighter blues correspond to elements
Digital Discovery, 2023, 2, 1558–1564 | 1559

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00121k


Fig. 2 Map of the pairwise Manhattan distance between element
vectors for four representation schemes.

Fig. 3 Map of the cosine similarity between element vectors for four
representation schemes.

Fig. 4 Map of the Pearson correlation coefficient between element
vectors for four representation schemes.
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whose vector representations are close to each other within the
chosen metric space. These elements can be interpreted as
similar to each other. Stripes are seen for the nobel gas
elements, such as Kr and Xe, which are very different from the
neighbouring halogens and alkali metals. On a visual basis, the
global structure of the heatmaps appears similar for the
Euclidean and Manhattan distances, with the main difference
being the absolute scale of the distances. Less structure is seen
for the Random_200 vectors, as expected for this control
representation.

Alternatively, we can consider the angle between vectors
using the cosine similarity based on the dot product:

cosðqÞ ¼ A$B

kAkkBk (5)

For the case of Li and K, cos(q) = 0.738 for Magpie and −0.095
for Mat2Vec. These change to −0.603 and −0.001, respectively,
for the Li and Bi pair. The pairwise cosine similarities for the
four chosen representations are shown in Fig. 3.

The Pearson correlation coefficient provides a measure of
the linear correlation:

rA;B ¼ covðA;BÞ
sAsB

(6)

where the numerator and denominator refer to the covariance
and standard deviation, respectively. For the same case of Li
and K (Bi), rLi,K = 0.717 (−0.533) for Magpie and −0.094 (0.005)
for Mat2Vec. The Pearson correlation between each element is
plotted in Fig. 4.

The cosine similarity and Pearson correlation are convenient
metrics as both cos(q) and r ˛ [−1, 1]. The resulting heat maps
are visually similar, with comparable structure to the distance
metrics. Histograms of the values are shown in Fig. S3 and S4.†
A skewed distribution is found in each case with the exception
of Random_200, which follows a normal distribution by
1560 | Digital Discovery, 2023, 2, 1558–1564
construction. We note that the cosine similarity is scale-
invariant as it only depends on the angles between vectors.
Some elemental representation schemes may be sensitive to
bias in the training data, such as an abundance of certain metal
oxides, that produce outliers in vector components. Therefore,
we use cosine similarity in later sections.
2.3 Periodic trends

Beyond understanding the pairwise connection between
elements, we can go deeper to investigate how the elements are
distributed across the n dimensions in each representation. For
this, we use dimensionality reduction techniques based on
unsupervised machine learning analysis. These two-
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Two-dimensional projection of four element representations
using t-SNE.
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dimensional plots enable intuitive interpretations of the
elemental representations and aid in determining the connec-
tion to standard elemental groupings.

The rst method is principal component analysis (PCA).
Here two principal component axes are dened using a linear
transformation of the original features that give the greatest
variance in the vector components. The PCA, generated using
scikit-learn,22 is shown in Fig. 5 with each data point coloured
by the group in the periodic table.

The second approach is t-distributed stochastic neighbour
embedding (t-SNE). Unlike PCA, this algorithm is a nonlinear
dimensionality reduction technique that can better separate
data which is not linearly separable. Here a probability distri-
bution is generated to represent the similarities between
neighbouring points in the original high-dimensional space
and a similar distribution with the same number of points is
found in a lower-dimensional space. The t-SNE, also generated
using scikit-learn,22 is shown in Fig. 6 with each data point
coloured by their group in the periodic table.

We observe that the element representations, with the
exception of the random vectors, possess an insightful structure
in the reduced dimensions, Fig. 5 and 6. The lanthanoid
elements cluster together in the non-random representations
independent of the choice of dimension reduction technique.
In most of the representations Sr, Ba, Ca tend to group closely
together, which reects their common application in substitu-
tional mixtures, for example in tuning ferroelectric solid-
solutions. Interestingly the learned, distributed representa-
tions pick up some similarities, which are obvious to a trained
chemist, but are not captured in the local Magpie representa-
tion, such as the similarity between Bi and Sb. In the Magpie
Fig. 5 Two-dimensional projection of four element representations
using principal component analysis.

© 2023 The Author(s). Published by the Royal Society of Chemistry
representation, H tends to be considered more of an odd-one-
out element, at the periphery of the distributions, whereas in
the distributed representations it tends to be clustered with
other elements, reecting how it has been observed in training
data from crystals such as HF and LiH.

2.4 Application to crystal structure prediction

We have established that chemical correlations are found
within the various elemental representations. The next question
is if they can be useful beyond their original purpose. We
consider a simple classication case in crystal structure
prediction, a research topic of widespread importance in
computational chemistry.4,25,26

The radius ratio rules were developed to rationalise the local
coordination and crystal structure preferences of ionic solids.27

In this model, the coordination number of a cation is deter-
mined by the balance between the electrostatic attraction
(cation–anion interactions) and repulsion (anion–anion inter-
actions). A geometric analysis predicts that 8-fold (cubic) coor-
dination should be obtained when the radius ratio r = rcation/
ranion falls in the range 0.732–1.000. A 6-fold coordination
environment is predicted for 0.414 < r < 0.732, while 4-fold
coordination is predicted for 0.225 < r < 0.414. For binary AB
solids, these regimes are typied by the CsCl (8-fold), rocksalt
(6-fold), or zinc blende/wurtzite (4-fold) structures. While it is
accepted that there are many cases where these rules fail,
especially in the lower radius ratio regime,28 they are still
commonly taught in undergraduate programs due to their
instructive nature.

To assess the utility of the various element embeddings for
this problem, we follow the structure substitution procedure
Digital Discovery, 2023, 2, 1558–1564 | 1561
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Table 2 Classification accuracy for the crystal structure preference of
101 binary AB solids. For comparison, the radius ratio rules, based on
Shannon ionic radii, have an accuracy of 54%

Element embedding Accuracy

Random_200 58.0%
Hautier et al.29 54.0%
SkipAtom 68.0%
Oliynyk 75.0%
MEGNet16 73.0%
Magpie 78.0%
MatScholar 81.0%
Mat2Vec 80.0%

Fig. 7 Performance of element representations at classifying the
crystal structures of binary AB solids. The Materials Project bar refers to
the ground truth label (structure at the bottom of the thermodynamic
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proposed by Hautier et al.29 and as implemented in the Python
code SMACT>=2.3.30–32 In this approach, the likelihood that
a new chemical composition (X) will adopt the crystal structure
of a known chemical composition (X′) depends on the substi-
tution probability function p(X, X′). The original pairwise
substitution weights were learned from a training set of inor-
ganic materials from the Inorganic Crystal Structure Database.33

However, we instead use the cosine similarity between element
representations, i.e. we make an assumption that the preferred
crystal structure is the one that maximises cos(X, X′).

Unary substitutions are considered here, i.e. where two
compositions differ by one element. This allows us to approxi-

mate the probability function to pðX;X0Þ ¼ el

Z
, where Z is the

partition function, and l is the metric for chemical similarity.
These are the pairwise substitution weights in the original
model.29 In the SMACT implementation, these can be a user-
dened, pairwise metric for similarity which here is dened
as cos(X, X′). A related procedure has been employed by Wang
et al. to predict new stable compounds,34,35 and an extension
based on metric learning has been reported by Kusaba et al.36

To obtain a set of binary AB solids that adopt one of the four
structure types as their ground-state structure, we queried the
Materials Project (version: 2022.10.28)37 using pymatgen.38 The
query was carried out using the parameters: formula= *1*1;
theoretical=False; is_metal=False. This query returned 494
binary AB solids. We chose to exclude metallic materials to
focus on compositions where the bonding should be hetero-
polar. Some of the materials in this dataset contained poly-
morphs of the same composition. For example, 83 ZnS entries
were returned. The data was ltered by only keeping the poly-
morph of a composition with the lowest energy above the
convex hull as an approximation for relative stability. This lter
reduced the dataset from 494 materials to 233. The query data
was further ltered bymatching the structures to one of the four
aforementioned structure types using the structure_matcher
module in pymatgen38 with the default parameters.

Our process led to a dataset of 101 unique compounds. The
nal lter was to check that the species in the remaining
compounds could be assigned oxidation states, which led to
a nal dataset of 100 compounds. Taking the empirical Shan-
non radii39 for each ion, averaged over coordination environ-
ments, the radius ratio rules are found to correctly predict the
ground-state crystal structures in 54% of cases. This assess-
ment was performed on 81 of the 100 compounds as Shannon
radii are not available for all ions. For instance, oxygen is
assigned a −1 oxidation state in AgO (mp-1079720), which has
no available radius. The performance is lower than the 66%
reported in a recent study of the predictive power of Pauling's
rules, and using Pauling's univalent radii, to assign the coor-
dination preferences of metals in a dataset of around 5000
metal oxides.40 The differences likely arise from the use of
averaged Shannon radii and sensitivity to the chosen dataset
(Table 2).

The measure of performance dened here is classication
accuracy. It is determined by the number of compositions with
1562 | Digital Discovery, 2023, 2, 1558–1564
correctly predicted ground state structure, via the most probable
substitution, over the total number of compositions in the dataset:

Accuracy ¼ Number of correct structure types

Total number of compositions
(7)

The performance of the elemental representations ranges from
68 to 81%. Each representation performed better at this task
than the previous data-mined weights of Hautier et al.,29 with
Random_200 performing the worst. The classication between
structure types is compared in Fig. 7, with confusion matrices
shown in Fig. 8 to further illustrate the breakdown in class
predictions.

We nd that representations derived from literature word
embeddings (MatScholar and Mat2Vec) have comparable
performance with their confusion matrices being almost iden-
tical. Both capture similar correlations from the dataset of
abstracts on which they were trained. The poorer performance
of the original weights from Hautier et al.29 can be attributed to
the absence of particular oxidation states, which led to some
compositions not being assigned to a structure. This is
convex hull) for the 100 compositions in the dataset.

© 2023 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00121k


Fig. 8 Confusion matrices for the classification of binary AB crystal
structures for 8 element substitution (similarity) measures.
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a limitation of species-based measures as compared to those
based on the element identity alone. As materials databases
have grown compared to a decade ago, there should be a greater
diversity of compounds not included in the original training of
these weights, which could extend their functionality.

Finally, we note that while we can not exclude data leakage
due to structure environments being present in the training
data for some of the chosen element vectors, this particular use
case has not been explicitly targeted in the training of the
distributed representations.
3. Conclusion

In summary, by exploring high-dimensional representations of
chemical elements derived from diverse sources, we have
demonstrated the potential for enhanced similarity and corre-
lation assessments. These descriptions can complement and
even outperform traditional measures, as shown in the case of
crystal structure prediction and classication for binary solids.
Effective chemical representations can enhance our under-
standing and prediction of material properties and we hope that
© 2023 The Author(s). Published by the Royal Society of Chemistry
the associated Python toolkit provided will support these
developments.

Data availability

A repository containing the element embeddings and associ-
ated analysis code have been made available on Github (https://
github.com/WMD-group/ElementEmbeddings) with a snapshot
on Zenodo (DOI: https://doi.org/10.5281/zenodo.827741). The
package is readily extendable to other elemental and material
representations and similarity measures.
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