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We propose atomic-fragment approximation (AFA), which uses the

tensor network (TN) as a platform to estimate themolecular properties

through “adding up” fragment properties. The AFA framework employs

graph neural networks to predict the matrix product states (MPSs) for

atoms andmatrix product operators (MPOs) for bonds, which are then

contracted to obtain the full TN for the full molecule. Subsequent

neural network layers then predict molecular properties based on the

TN contraction outcome. AFA addresses the limitation of density

functional approximation (DFA) by reusing previously calculated

results and maintaining constant complexity in fragment contraction

regardless of the fragment size. We further show that AFA can over-

come error accumulation by optimizing the intermediate fragments.

AFA demonstrates the ability to predict the reaction intermediates by

calculating and comparing the bond-breaking energies. The experi-

ment also showcases excellent accuracy in reaction intermediate

prediction and reaction energy prediction.
Introduction

Determining the structure–property relationship is essential for
discovering drugs,1 proteins,2 and catalysts.3 The most
commonly used method is the parameter-free rst principles
approach, including solving Schrodinger's equation, the density
functional approximation (DFA),4 or density functional theory
(DFT). However, DFA lacks transferability from fragments to the
whole system, thus similar structures require a duplicate
calculation in an “ab initio” way, as shown in Fig. 1. Chemical
reaction discovery is the key to the design of new reactions,
typically necessitating DFA calculations and specialized exper-
tise.5 Notably, the calculation complexity of DFA scales
approximately cubically with molecule size,6,7 making non-
nese University of Hong Kong, Shenzhen,

.cn

tion (ESI) available. See DOI:

8–1696
reaction regions computationally expensive compared to the
reaction region, which is usually much smaller.

Many machine learning/deep learning approaches have been
developed to address the size and charge problems in DFA.8

Generally, machine learning/deep learning approaches predict
by learning patterns in training data, adjusting internal param-
eters during training, and then applying these learned patterns
to make predictions on new, unseen data. One class of these
approaches, known as DFA-NNs,9–11 employ deep learning
models that utilize the electron-density-related properties as
intermediates, primarily for tting purposes. However, a signi-
cant drawback of DFA-NNs is the unavoidable increase in error
with system size, typically exhibiting linear growth.7,9,11 This
problem is also known as error accumulation. As shown in ESI
S1,† even state-of-the-art models like torchANI7 and torchANI-
2x12 still encounter this problem of error accumulation. This
accumulation makes distinguishing between energy differences
caused by different chemical groups and those resulting from
calculation errors difficult. To address this issue, one possible
solution is to reuse and modify the calculated results for shared
fragments. The fragment molecular orbital method (FMO)13

implements this approach by using molecular orbital fragments.
However, the intermediate step of FMO includes self-consistent
approaches, which we expect to bypass via machine learning.

The tensor network (TN) framework is a geometry of low-order
contracted tensors,14,15 whose calculation process is fragment-by-
fragment, close to the “adding” of properties. Traditional TN
methods are mainly rst-principles-based, meaning they rely on
fundamental physical laws and principles to derive their results,
with few relying on the experiment data. In ref. 16, the authors use
TN methods to solve the Hubbard model starting from its
Hamiltonian. These ab initio density matrix renormalization
group (DMRG) methods are also included in benchmark systems
like p-electron systems, main-group and transition metal dimers,
and Mn-oxo-salen and Fe-porphine organometallic compounds.17

Meanwhile, the TN is a powerful tool in the area whose correlation
or entanglement entropy satises the area law,18,19 besides
quantum physics,20–22 thus, the TN is expected to be the solution
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 The calculation process for density-functional approximation (DFA) and atomic-fragment approximation (AFA). While DFA requires
separate calculations for each molecule, making it difficult to convey calculated information from left to right, AFA can reuse calculated results
for shared fragments, as shown in the shaded parts.
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View Article Online
for simulating the “adding” of properties. These traditional tensor
network methods greatly inspired us.

In this work, we propose the atomic-fragment approximation
(AFA) to provide the structure–property relationship by “adding
up” fragments. We rst demonstrate the algorithm of AFA. The
AFA framework employs a graph neural network to predict the
matrix product states (MPSs) for atoms and matrix product
operators (MPOs) for bonds, which are then used in a contrac-
tion scheme to obtain the TN for the full molecule. A neural
network layer is then used to predict the molecular properties
based on the TN contraction results. Thanks to the step-by-step
contraction scheme of the TN, AFA can realize the “adding up”
of fragment properties. AFA is designed to capture the correla-
tion between radicals, which is also applicable to large mole-
cules. This ability makes AFA overcome the limitation of density
functional approximation (DFA) by reusing previously calculated
results, and we also show that the AFA algorithm can be used for
chemical reaction prediction. Through experiments, we show
that AFA can reduce the error accumulation in both momenta
and real space by optimizing the internal TN states. Error accu-
mulation is a problem that current DFA-simulating NN can never
overcome, due to the contaminated correlation of electron
density between radicals. We also demonstrate that the AFA
algorithm can predict the intermediate with high accuracy and
accurately predict the energy barrier for transforming reactants
into transient intermediates and then forming the product.
Theoretical background
The tensor network as a platform for estimating molecular
properties

AFA predicts the structure–property relationship through an
“adding” process for each fragment, which has three steps.
© 2023 The Author(s). Published by the Royal Society of Chemistry
First, we transform the input molecule into a geometry-
enhanced representation (GER),23 which focuses on the corre-
lation between bonds and the correlation between atoms. Aer
that, we map the wavefunction ansatz of these fragments into
their corresponding TN states, includingmatrix product states24

(MPSs) for atoms and matrix product operators (MPOs) for
bonds. Here atoms and bonds are entirely separated. Finally,
these TN states build the tensor network, whose contraction
results go through a decoding layer for the target properties.
Thanks to the algorithm, AFA can calculate the target properties
fragment-by-fragment, which enables the reuse of calculated
information.

We rst transformed the input molecule structure into the
geometry-enhanced representation (GER),23 which specically
focuses on two parts, the atom-bond graph G, representing the
correlation between atoms, and the bond-angle graph D repre-
senting the correlation between bonds. In this process, we
utilize the atom-bond graph for the atom'sMPS, while the bond-
angle graph is employed for the bond's MPO. Detailed infor-
mation about the GER is given in ESI S2.†

We begin the second step, mapping into TN states, by
dening the high-dimensional space of wave function. Here we
work in the Born–Oppenheimer approximation; the wave-
function of the entire molecule depends on the atom positions
(r1, r2,., rn), where n is the total number of atoms. The wave-
function ansatz J(molecule) is represented by local map
multiplications of MPSs A = {A1, A2,.,An}:

JðmoleculeÞ ¼ f1ðr1Þ5f2ðr2Þ5.5fnðrnÞ
X

fa1g;.;fang
A1A2.An

(1)

Here {an} is the connecting edge for MPS An,5 is the Kronecker
product, and fi(ri) is the orthonormal basis, which is eliminated
Digital Discovery, 2023, 2, 1688–1696 | 1689
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during further calculation. Each MPS represents a high-
dimensional tensor, whose number of edges represents its
dimension. Here fi(ri) includes information about orbital
shapes such as the s orbital, and it also includes orbital spins
like spin-up and spin-down. In Nesbet's theorem,25 the corre-
lation energy can be written exactly as a sum of contributions
from occupied pairs of spin orbitals, while in this step, all
necessary information for exchange energy calculation is
encoded in the tensors. Details on TN states' representation are
given in ESI S3.†

The MPS of atoms A1, A2,.,An (like the grey rounded rect-
angles for a carbon atom and the red rounded rectangles for an
oxygen atom, as shown in Fig. 2, step from correlation to TN
states) is estimated through a GNN.

Ai = f GNN(ri, bG(ri)) (2)

f GNN corresponds to the GNN calculation. bG(ri) is the graph
that represents the atom's nearest atoms, generated from the
atom-bond graph G of the GER of the molecule. The nodes of
bG(ri) are the nearest atoms of the atom with position ri, while
the edges of bG(ri) correspond to the bond length. One may treat
this step as a kernel trick, which maps these features into
a high-dimensional space.

The MPOs of bond Oi,j = {O (0)
i,j , O

(1)
i,j ,.,O (K)

i,j } for atom i and j
are estimated through a GNN, whose input is this bond's
nearest bond obtained from the bond-angle graph D of the GER:

O(k)
i,j = fGNN,(k)(ri,bD(i,j)) (3)

Here k is the index of the bondMPO, while K is a hyper-parameter
that determines the number of required MPOs. bD(i, j) is the
graph that represents the bond's nearest bonds, generated from
Fig. 2 Illustration of the AFA algorithm using a carbon–oxygen radical
converted into the geometry-enhanced representation (GER), which ca
quently, TN states are calculated based on these correlations, where bon
carbon/oxygen atoms go through a graph neural network (GNN) formatr
graph) of their wavefunction. The nearest bonds of the carbon–oxygen
(MPOs; blue blocks). The contraction of MPS and MPO results in the ten
necessary information for the final prediction of target properties P, whi

1690 | Digital Discovery, 2023, 2, 1688–1696
the bond-angle graph D. The nodes of bD(i,j) are the nearest
bonds, while the edges of bD(i,j) correspond to the bond angle.
Fig. 2 shows an example using the carbon–oxygen radical in
ethanol. The grey/red blocks represent the MPS of atom carbon/
oxygen, while the grey-red blocks refer to the MPO of the
carbon–oxygen bond. We dene the radical TN states of this
carbon-oxygen radical as the combination of two atom MPSs and
the bond MPO.

The target property is calculated from the decoding of the
obtained TN states. We assume that pairs of atoms have no
impact for the target properties unless a bond exists between
them. As shown in Fig. 2, step from TN states to target prop-
erties, the nal prediction P for the desired property comes from
the TN contraction results T ¼P

i;j
hAi

��Oi;j

��Aji:

P ¼ f decode
��
T ð1Þ;T ð2Þ; .; T ðnÞ�� ¼

f decode

 "X
i;j

D
Ai

���Oð1Þ
i;j

���Aj

E
; .;

X
i;j

�
Ai

��Oi;j
ðKÞ��Aj

�#!
(4)

Here the decoding neural network fdecode is the multi-layer
perceptron (MLP), whose input is the contraction results of
all-atom MPSs and bond MPOs. One may treat this step as
bypassing the self-consistent eld approach using necessary
parameters calculated by tensor network contraction. The
pseudocodes are given in ESI S4.†
“Add” the fragments

Thanks to the tensor contraction in eqn (4), AFA can “add” the
fragment properties to obtain the properties of their combina-
tion. These steps evaluate the correlation between various
fragment radicals. We use radicals instead of closed-shell
in ethanol as an example. The input molecular spatial structure is first
ptures the correlation between the nearest bonds and atoms. Subse-
ds and atoms are entirely separated. All the nearest atoms of the target
ix product states (MPSs; grey/red block for carbon/oxygen in themiddle
bond undergo a separate GNN to compute matrix product operators
sor network state of this carbon–oxygen bond. This TN state contains
ch can be decoded through additional neural network layers.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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molecules because many large molecules are formulated from
radicals, and the TN states of radicals encompass vital infor-
mation for forming bonds with other radicals. As shown in
Fig. 2, the contraction of MPSs (grey blocks for the carbon atom
and red blocks for the oxygen atom) andMPOs (the blue blocks)
gives a radical TN state with three dangling edges. These edges
refer to the bonds to be connected. This radical TN state can be
used for all molecules that share such fragments. Polarization
and charge transfer commonly exist between functional parts of
large molecules. When dealing with unknown molecules, we
leverage information from molecules with similar radicals to
account for these effects. During the fragment “adding”
process, the 3D structure can be modied by changing the bond
angle and bond length in bG(ri). Therefore, as shown in Fig. 3a,
AFA rst maps the structure summation into the TN state
summation. Mathematically, AFA is trying to add the interac-
tion terms between multiple dependent features:

P ¼ p0 þ
X
ij

p
�
fi; fj

�þX
ijk

p
�
fi; fj ; fk

�þ. (5)

Here fi corresponds to the features of fragments and p($)
calculates the contribution from interactions between multiple
fragments, respectively. The detailed interpretation of the atom
approach is attached in ESI S5.† Physically, AFA simulates the
perturbation theory. The information for performing pertur-
bation theory calculations is stored in the states of each radical
TN state. The “adding” process of AFA is conducting the
Fig. 3 Application of AFA. (a) Working scheme of “adding”. AFA first maps
which contains all necessary information for target properties. Conseque
the unconnected pink stick represents bonds to be connected. (b) When
alcohol and benzaldehyde, AFA can directly use the calculated TN states
for chemical reaction prediction, which involves identifying the most fea

© 2023 The Author(s). Published by the Royal Society of Chemistry
perturbation theory calculation. The detailed interpretation is
attached in ESI S6.† It is important to note that AFA does not
target any high-level density functional approximation (DFA)
theories. We used the PBE/6-31G level of theory to label our
training data and benchmark our method, and AFA is trained to
predict results without any information about the level of
theory. However, we believe that the AFA algorithm itself can
simulate the effects of perturbation theory and correlation
energy, which is why we mentioned them.

Our methodology draws inspiration from the fragment
molecular orbital (FMO) methods, where interactions between
multiple fragments are primarily captured by higher-order terms
in the FMO expansion.26 The tensor network framework we
employ has the capability to account for these fragment inter-
actions, effectively describing the higher-order terms in FMO.

One advantage of AFA is the constant complexity for the
contraction of pairs of radical TN states. The computation
complexity of AFA must not exceed a constant once all essential
molecule component information is provided. The total time
complexity of one radical contraction must not exceed the
constant Ctotal:

Ctotal = n × CM + CNN + Cb (6)

Here, the complexity of revising the connected atomMPS has an
upper limit CM and n is the number of atoms that lie near the
formulated bond, typically two. The complexity of this bond
the structure summation into the tensor network (TN) state summation,
ntly, the TN states summation leads to the property summation. Here
estimating the TN states of different but similar molecules, like benzyl
of benzene, eliminating the need for re-calculation. (c) AFA's workflow
sible intermediates and computing the transition energy.

Digital Discovery, 2023, 2, 1688–1696 | 1691
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must be a constant Cb. The complexity of the decoding layer is
always a constant CNN. More detailed descriptions of contrac-
tion complexity are given in ESI S7.†

The basic premise for chemical reaction prediction is the
prediction of the intermediate and the energy requirement for
transforming reactants into transient intermediates and then
forming the product. Here we show that AFA has the potential
for reaction pathway prediction using one-step reactions. The
one-step reactions are shown to achieve a balance of computa-
tional cost and reaction coverage in exploring reaction
networks. We developed a renedmethod for chemical reaction
prediction using AFA, as illustrated in Fig. 3c, drawing inspi-
ration from YARP's two-step process.27 This process involves
identifying the reaction centre by analyzing the structural
changes in reactants and subsequently predicting the reaction
outcome by considering the identied centre, reactants, and
reagents to generate the most probable products.27 Initially, we
computed the energies of reactants and products, retaining
intermediate fragment results. Subsequently, we identied all
bonds within reactants and products, calculating bond-
breaking energies while excluding those involved in ring
breaking or formation, for which we re-calculated the energy.
We proceeded to determine all viable combinations of bond-
breaking, approximating bond-breaking energy for each
combination and selecting alternatives. The selection criteria
encompass the exclusion of high-energy alternatives and the
preference for intermediates present in both the lists of reactant
and product intermediates. Once we established the resulting
molecules for both reactants and products, we compared
alternative intermediate lists, opting for intermediates present
in both reactant and product lists. Lastly, we assessed the
energy of all chosen intermediate molecules, including those
with ring breaking or formation, selecting the intermediate with
the lowest transition energy as the predicted intermediate. A
detailed description of the algorithm is given in ESI S8.†

Methods

To test the accuracy of molecular property prediction, we
created the million molecule dataset obtained from QM9,28

bindingDB,29 Chembl,30 and BDE.31 We combine the molecular
topology of all these datasets as input molecules. We removed
some unstable structures and the number of samples is exactly
one million. Properties are calculated through Gaussian 09 (ref.
32) at the PBE level of theory with basis 6-31G, including
momentum (K) space properties and real (R) space properties.
The unit is converted fromHartree to eV. The properties contain
SMILES, the atomic position, the element type, the energy and
the orbital energies. Here the orbital energies range from the
h highest occupied molecular orbital-5 (HOMO-5) to the h
lowest occupied molecular orbital (LUMO+5). Details on the
dataset and unit conversion are given in ESI S9.†

The reaction graph depth (RGD1) dataset33 is implemented
to test the performance of chemical reaction prediction. It
contains 176 992 organic reactions with validated transition
states, activation energy, heat of reaction, reactant and product
geometries, frequencies, and atom mapping. The reactions
1692 | Digital Discovery, 2023, 2, 1688–1696
cover C, H, O, and N-containing molecules with up to 10 heavy
atoms. The data are supplied at the GFN2-xTB and B3LYP-D3/
TZVP levels of theory. We randomly selected 20% of the data-
sets for training and used the remaining 80% for testing. This is
because the dataset implements different basis and our model
requires ne-tuning.
Results
The reduction of error accumulation

AFA has two major advantages, the reduction of error accumu-
lation and the avoidance of redundant calculation. We will rst
discuss the advantage of accuracy, while the advantage of calcu-
lation will be discussed later. Fig. 4a–d show the R and K space
errors for AFA and DFA-simulating NN. In this case, the atom-
ization energy serves as an example of the R space property, while
the orbital energy represents the K space property. We select
quantum deep eld (QDF)9 as an example of DFA-simulating NN
due to its transferability and its underlying physics. QDF exhibits
excellent transferability from small to large molecules, indicating
its ability to reduce error accumulation. Meanwhile, QDF directly
uses the electron density as the intermediate. In contrast, most
other DFA-NNs typically use properties related to electron density,
such as orbitals. Other state-of-the-art models like torchANI7 and
ANI-2x12 also exhibit a similar tendency of error accumulation as
shown in ESI.† Here the R space error corresponds to the mean
absolute error (MAE) for the total energy,

R space error = jEpredict − EDFAj (7)

where Epredict refers to the model output from AFA or DFA-
simulating NN. The K space error corresponds to the MAE of
the HOMO and LUMO,

K space error ¼ 1

2

X
i˛fHOMO; LUMOg

��Ei;predict � Ei;DFA

�� (8)

AFA and DFT-NNs exhibit notably different tendencies: with
enlargedmolecule size, the error for DFA-NNs increases, while the
error for AFA stays relatively at. Here we use the DFT calculation
results as the benchmark. Theoretically, DFT-NNs show a similar
tendency to DFT since they share the same computation
processes. The circle with a plus symbol inside shows the results
for selected drugs, whose names are given in ESI S10.† One may
notice a peak around the number of atoms 10–20 due to the rst
appearance of ring molecules. This peak information on this
structure cannot be obtained through AFA method. The calcula-
tion details for QDF in Fig. 4 are given in ESI S11.† More detailed
experiment results and the experiment parameters for AFA are
given in ESI S12.†

Fig. 4 shows the reduction of error accumulation in R space.
This difference in tendency between AFA and DFT-NNs is due to
the transferability difference, poor transferability accumulates
error, especially with molecular size. DFA focuses on the
pseudo-potential of atoms, but AFA focuses on the correlation.
The error accumulation is addressed through the modication
of intermediate TN states in AFA, as shown in Fig. 4b. For an
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Performance of AFA in predicting the molecular properties and chemical reaction. (a, c) Blue and red dots show the AFA and DFT-NN
performance, respectively, with results in real (R) and momentum (K) space. Circles with plus symbols indicate results for selected drugs. (b) AFA
accumulates error for few bonds compared to DFA-NNs, with progressive error reduction in different calculation stages. The di(2-ethylhexyl)
phthalate (DEHP) molecule is used here as an example. (d) AFA accumulates error for a few orbitals compared to DFA-NNs. Here we use the
HOMO of ethyl benzene as an example. The yellow, blue, and green lines represent the energy level of benzene, ethyl, and benzene ethyl,
respectively. The third column is the direct merging of the first two columns. AFA merges and modifies orbitals to predict the HOMO of ethyl
benzene. (e) Themean absolute error of the energy barrier for forward activation energy and backward activation energy. The color bar indicates
the number of samples, while the dashed line represents the y = x line, serving as a reference for comparison.
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unknown large molecule like the di(2-ethylhexyl)phthalate
(DEHP) molecule, AFA rst decomposes this molecule into
atomic TN states (the blue circle with edges), like atomic TN
states of carbon with four unconnected bonds. Then their
combination gives the radical TN states, which refer to stage 2
as mentioned in Fig. 4b. Then AFA further modies them using
their properties. The given TN states go through the neural
network layer for the target properties, while the intermediate
TN states can also be optimized through backpropagation.
Then the intermediate TN states are modied using their
properties iteratively until these intermediate radicals cannot
merge into a known radical. The merging of radicals refers to
the stage in Fig. 4b. This modication process greatly reduces
error accumulation.
© 2023 The Author(s). Published by the Royal Society of Chemistry
The reduction of error accumulation also holds in K space.
The K space propertymainly focuses on the orbital energies. Here
we use ethyl benzene as an example, which is made by the
contraction of a radical phenyl and the ethyl group. From the
training set, AFA obtained the necessary information about these
radicals from benzene and ethane. AFA rst directly adds the
energy level of these two radicals together and then modies
their orbitals. The yellow, blue, and green lines represent the
energy levels of benzene, ethyl, and benzene ethyl, respectively.
For the HOMO calculation of ethyl benzene, AFA rst directly
merges the HOMO of benzene with ethyl. Here ethyl contributes
no orbital. Bymodifying the merged orbitals, AFA can predict the
HOMO of ethylbenzene. Fig. 4d shows the example of the
HOMO. Such a calculation of orbital energy is similar to that of R
Digital Discovery, 2023, 2, 1688–1696 | 1693
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Fig. 5 Chemical reaction calculation. (a) During the reaction process, DFA calculates all structures for the reactant, intermediates, and product.
(b) However, AFA reuses the calculated results, progressively reducing the portion of structures to be calculated. (c) The computation
consumption. A 40G device quickly reaches capacity as the number of atoms increases. (d) The calculated relative energy for methane
combustion, with the energy of the reactant set as zero. AFA demonstrates a MAE of less than 0.01 eV compared with DFA.
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space property calculation. Therefore, it is not surprising that the
reduction of error accumulation still holds in momentum space.

AFA can be used for suggesting potential reaction pathways,
which include two aspects: the prediction of intermediates and
the energy requirement for transforming reactants into tran-
sient intermediates before forming the product. The interme-
diate prediction accuracy of AFA is 94.34%, while a recent
model has an accuracy of 93.8%.34 Here the accuracy is
measured as top-2 accuracy, where AFA provides the top two
most likely intermediate candidates; if the correct intermediate
has the same structure as one of them, we consider the
prediction to be accurate. Generally speaking, small effects may
affect the possible reaction pathways, so further validation and
renement are required to clearly identify the reaction pathway.
Fig. 4e shows the accuracy of forward activation energy and
backward activation energy, with the colour bar representing
the number of samples. AFA demonstrates strong performance
in the chemical reaction prediction for both intermediate
candidate prediction and the energy difference calculation.
The avoidance of redundant
calculation

AFA's advantage of avoidance of redundant calculation makes it
useful in chemical reaction prediction as shown in Fig. 5. Such
an advantage also reduces the memory requirement for prop-
erty prediction as shown in ESI S13.† During the molecular
dynamics process, each step is similar to the previous step, with
simply one bond breaking or formation. However, if each step is
fully calculated, the computation device will be quickly fullled,
1694 | Digital Discovery, 2023, 2, 1688–1696
as shown in Fig. 5c. Therefore, the adaption of previously
calculated results greatly avoids redundant calculations.
However, DFA can hardly re-use the calculated results. Fig. 6d
shows the prediction result for methane combustion, AFA has
an excellent agreement with DFA results, with an MAE less than
0.01 eV.
Discussion
Correlation contamination

AFA captures essential information about radicals from known
molecules and transfers this knowledge to unknown large
molecules. Here wemade a comparison between AFA and DFA to
show that current DFA-NN models face challenges when incor-
porating fragments due to their intermediate, density and related
properties. This radical information includes both the radical
itself and the correlation between this radical and other radicals.
As depicted in Fig. 6a, although di(2-ethylhexyl)phthalate (DEHP)
is an unknown large molecule, all its fragments appear in known
molecules. We adopted the idea of tight binding, where the
nearest radicals contribute most to the target properties. In the
training set, besides the radical itself, AFA is trained with the
correlation between pairs of radicals. For example, in benzyl
alcohol, AFA is trained with radicals like o-phenylene and the
correlation between radicals, like the correlation between o-
phenylene and the carbinol group as shown in Fig. 6a.

However, correlation contamination occurs in the electron
density calculations. DFA-NN (like QDF,9OrbNet,11 and others35)
utilizes the electron densities or their related properties for the
intermediate step, which impedes the reuse of calculated
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Correlation contamination. (a) Radical TN states from small molecules can be directly applied to large molecules. Although DEHP is an
unknown large molecule, all its radicals have been trained with known small molecules in the database, such as the butyl in pentane, the ester
group in methyl acetate, and the o-phenylene in benzyl alcohol. (b) However, the electron densities in different molecules, even those sharing
the same radical, can vary. Consequently, DFA and DFA-NN cannot reuse the calculated information due to correlation contamination in
electron density estimations.
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information. For example, as illustrated in Fig. 6, in the
connection area of phenyl and carbinol groups of benzene
alcohol, it is challenging to tell which radical contributes the
electron density. The iteration of the Kohn–Sham equation
simply gives the electron density functional, but it has nothing
to say about the correlation between radicals.
Conclusion

In this work, we developed atomic-fragment approximation
(AFA), a novel approach for estimating the molecular structure–
property relationship by mapping each fragment into its tensor
network (TN) states and then contracting them. We show that
AFA possesses two key advantages: avoiding redundant calcu-
lation and reducing error accumulation. The calculated result
for radicals can be re-used for all molecules. The complexity of
obtaining a molecule's properties is always constant, indepen-
dent of the fragment’s size, due to sufficient information on the
fragments' TN state. Additionally, we have demonstrated that
AFA can overcome error accumulation by optimizing interme-
diate radical TN states. AFA greatly avoids redundant calcula-
tion, and exhibits excellent accuracy in chemical reaction
prediction. The MPS-based tensor network can be estimated
through quantum computing,20 indicating that a quantum
computer can greatly enhance AFA. The AFA framework,
© 2023 The Author(s). Published by the Royal Society of Chemistry
combined with articial intelligence techniques, holds great
potential for advancing the eld of physics.
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