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Improving the performance of portable aerosol size
spectrometers for building dense monitoring
networksf

Yiran Li, © Jiming Hao and Jingkun Jiang@*

The ideal particle number size distribution measurement instruments for building dense networks would be
compact, easily maintained, and able to produce accurate results. This is challenging to achieve because
when reducing the size of size spectrometers, their accuracy is often reduced as well. For existing
portable size spectrometers, a large source of uncertainty is unipolar chargers due to their instability in
the achieved charge distributions. To address this issue, we modified a set of commercial portable size
spectrometer such that its unipolar charger is discarded and it measures charged particles of both
polarities, a method that has proven to be efficient in reducing charging-related uncertainty for size
spectrometers. We used indoor, outdoor, and NaCl aerosols as test aerosols and compared size
distributions obtained using the modified and the original spectrometers with those measured using
a set of reference size spectrometer. We demonstrate that size distributions obtained using the modified
spectrometer were in better agreement with those obtained using the reference size spectrometer than
the original one. By using the new charging method in portable size spectrometers, we improved their
performance and reduced their size at the same time, making them a more suitable choice for building
dense monitoring networks.

Building dense networks for aerosol size distributions requires spectrometers that are compact, easily maintained, and able to produce accurate results.
Portable SMPSs, a miniaturized version of the most state-of-the-art size spectrometers, have been developed. Unfortunately, these portable SMPSs often face
untraceable uncertainty due to unipolar charging. Here we present a new charging method that enables such instruments to discard the chargers and measure

size distributions of aerosols conditioned by natural air ions, with improved data accuracy. This method can be implemented in various portable SMPSs,

enabling better applications in building dense networks, occupational hygiene, mobile exposure monitoring, and aircraft measurement.

1. Introduction

Aerosols are ubiquitous in the environment and have great
impacts on air quality,* climate change,> and human health.?
When studying these effects, particle number size distribution
(PNSD) is key information as many properties of aerosols are
size dependent; for example, the potential of aerosols to act as
cloud condensation nuclei (CCN).* A commonly used instru-
ment to conduct PNSD measurements is an electrical mobility
size spectrometer (e.g., SMPS or DMPS).>® These state-of-the-art
instruments that are designed for scientific uses can provide
accurate size distributions, but are usually expensive, bulky,
heavy and require high maintenance.” These features have

State Key Joint Laboratory of Environment Simulation and Pollution Control, School of
Environment, Tsinghua University, Beijing, 100084, China. E-mail: jiangjk@tsinghua.
edu.cn

See  DOLI:

T Electronic  supplementary  information available.

https://doi.org/10.1039/d2ea00163b

(ES)

338 | Environ. Sci: Atmos., 2023, 3, 338-346

hindered them from being deployed in dense monitoring
networks to obtain monitoring data with high spatial and
temporal resolution, which is a future trend for aerosol size
distribution monitoring. Building such networks would help
collect consistent epidemiologic evidence to support the inde-
pendent health effects of ultrafine particles,® as well as improve
aerosol-related mechanisms in weather and climate models.’
Compact, easily maintained size spectrometers that can
produce accurate results would be ideal for building a dense
network, although at this stage the former two features are
achieved often by sacrificing accuracy to a certain extent.'® One
type of instrument is based on the working principle of SMPSs,
which consists of a charger that conditions the charge state of
particles to a known distribution, a differential mobility
analyzer (DMA) to classify positively or negatively charged
particles according to their electrical mobilities, and a conden-
sation particle counter (CPC) to count the selected particles in
each mobility bin.® These portable SMPSs have minimized the
size of their charger, DMA, and CPC (some chose to replace the
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CPC with an electrometer), including a TSI NanoScan 3910,"
Kanomax portable aerosol mobility spectrometer (PAMS),*
Grimm mini wide range aerosol spectrometer (mini WRAS), and
non-commercialized miniature electrical ultrafine particle sizer
(mini-eUPS).” Another type of instrument is based on the prin-
ciple that the average charge on particles is approximately
proportional to their diameters, and can be reduced to hand-
held size due to their simple constructions.” These instruments
can only obtain number concentrations and a number-weighted
mean diameter,"'* or measure size distribution in a limited
size range with low resolution.'® In principle, portable SMPSs
still measure particle concentrations for each known particle
size selected using a DMA, rather than using the average charge
to approximate the particle diameters which is performed using
the second type of instrument. This enables portable SMPSs to
provide size distributions with better accuracy, wider size range,
and higher resolution, making them a more suitable choice for
building a dense network.

For portable SMPS instruments, the sacrifice in accuracy is
mostly caused by unipolar chargers, which are widely used in
portable instruments because of their small size and high
charging efficiency (Table 1). However, unlike bipolar chargers
(also referred to as neutralizers) that can condition aerosols to
a relatively stable charge distribution, the charge distribution
achieved using unipolar chargers is rather unstable and
strongly affected by the variation in the flow residence time, ion
concentrations and properties, particle morphology, as well as
the pre-existing charge on the measured aerosols.'”** This could
lead to discrepancies between the actual charge fractions and
those used in size distribution data inversion, thus causing
uncertainty in the retrieved size distributions. This has been
observed in several intercomparison studies between portable
SMPS instruments and reference instruments.' Stabile et al.*’
compared a NanoScan SMPS with a reference SMPS with fresh
aggregated particles and found that the total particle concen-
trations are overestimated by one-fold, very likely caused by the
inability of unipolar chargers to properly charge the aggregated
particles. Fonseca et al”> reported similar results that

Table1 A summary of portable SMPSs
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a NanoScan SMPS overestimated the number concentrations by
over 20% of those measured using the reference CPC for
agglomerated particles such as ZnO, spark-generated soot, and
diesel soot particles. Uncertainty brought by unipolar chargers
is usually large and untraceable, so reducing it would make
portable SMPSs closer to the ideal pick for building dense
networks.

A solution to solving charging-related uncertainty is by
measuring charged particles of both polarities. The key is that
during bipolar diffusion charging, the measured raw size
distributions of both polarities can reflect the charging process
and reveal the actual charge fractions.”” By using the actual
charge fractions in data inversion, it can greatly reduce the
uncertainty in retrieved PNSDs. It is further demonstrated that
since natural air ions constantly condition the charge state of
atmospheric aerosols,* it is feasible to retrieve charge fractions
of aerosols that are naturally charged and utilize this process to
measure size distributions of outdoor aerosols.* This new
method has been supported by two years of atmospheric
measurements, and natural air ions have shown rather stable
properties and the capability of replacing conventional
neutralizers. These findings lead to a possible solution to the
uncertainty brought about by unipolar chargers for portable
SMPSs. By measuring charged particles of both polarities,
charge states of aerosols conditioned with natural air ions can
be obtained and unipolar chargers will no longer be needed.

In this study, we demonstrate that by discarding the unipolar
charger and using the new charging method, the performance
of portable SMPS instruments can be improved. A TSI NanoScan
SMPS was modified so that its unipolar charger is discarded and
it measures charged particles of both polarities. A NanoScan
SMPS was chosen as our object of modification because it has
been more often studied in intercomparisons and more often
used in various environments. Indoor, outdoor, and generated
NaCl aerosols were used as test aerosols. Size distributions
measured using the NanoScan SMPS before and after modifi-
cation were compared with those measured using a bipolar
SMPSs equipped with a neutralizer as the reference. It is shown

TSI nanoscan 3910 Kanomax PAMS?

Grimm mini WRAS  mini-eUPS

Charger Unipolar corona
charger

Isopropanol CPC

Bipolar corona charger

Particle detector Isopropanol CPC

Unipolar charger Unipolar mini-plate particle charger

Faraday cup Mini-particle faraday cage with an

electrometer electrometer
Size range 10-420 nm 14.5-862.3 nm (wide), 10-433.7 nm 10-193 nm 5-200 nm (sheath at 1.5 lpm)
(high)
Size bins 13 14 (wide), 27 (high) 10 20
Time resolution 60 s 56 s (wide), 108 s (high) 60 s 60 s

Dimensions (W x H 45 X 23 x 39 cm 23 x 23 x 15 cm

x D)
Weight 8 kg 5 kg
Reference Tritscher et al.'* Kulkarni et al.*?

31 x 12 X 34 cm 16.5 x 12.7 x 10 cm

7.6 kg
Product datasheet

1 kg
Liu et al.”

“ PAMS provides two modes for measuring size distributions (denoted as ‘wide’ and ‘high’ here). In wide mode, the sheath flow rate of the DMA is
set at 0.2 Ipm and a wider size range can be measured, whereas the high mode provides users with higher size resolution and the sheath flow rate of

the DMA is set at 0.4 lpm.**

© 2023 The Author(s). Published by the Royal Society of Chemistry
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that with the modified NanoScan SMPS we can obtain size
distributions that are in better agreement with those obtained
using the reference SMPS.

2. Methods

2.1 Modification of the NanoScan SMPS

The NanoScan SMPS (Model 3910, TSI corp.) is composed of an
opposed flow unipolar diffusion charger,” a radial DMA***”
and an isopropanol CPC (Fig. 1a). The sampled aerosol flow of
0.75 Ipm is preconditioned with a cyclone (Dps5o = 550 nm) to
remove larger particles. Then it enters the unipolar charger
where it joins an opposed charger flow of 0.45 lpm that is
filtered with both an active carbon filter and a HEPA filter. The
aerosols are charged with positive ions in the unipolar charger,
and 0.25 Ipm of the sample flow then enters the radial DMA to
be classified. The sheath flow of the radial DMA is 0.75 Ipm. The
size-classified particles then enter the CPC to be counted and
exhausted. The NanoScan SMPS could measure particles of
a certain size (single mode) or in the size range of 11.5-365.2 nm
(geometric midpoints of the first and last bins) which are

(a) Original NanoScan SMPS

Charger Activated
flow: 0.4 Ipm Carbon

F—

HEPA

0.4 Ipm
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divided into 13 channels (scanning mode). In scanning mode,
the voltage of the radial DMA was scanned upwards in 45
seconds (measurement) and downward in 15 seconds (retrace),
enabling a time resolution of 60 seconds. The voltage was
negative so that positively charged particles are measured, and
a data inversion routine is used to retrieve the size distribution
of sampled aerosols.

To enable the NanoScan SMPS to measure charged particles
of both polarities conditioned by natural air ions, we discarded
the unipolar charger and replaced the unipolar high voltage
supply with a bipolar one (Fig. 1b). This high voltage supply
(Model 5HVA24-BP1, Advanced Energy Industries Inc.) provides
both positive and negative high voltages in the range of —5000
to +5000 V. We also made a control system to regulate the
voltage of the radial DMA and collect data from the CPC. After
modification, the bipolar NanoScan can measure both posi-
tively and negatively charged particles in the size range of 11.8-
297.1 nm, which are divided into 13 channels. During each
cycle, the voltage was scanned from 5000 V to 10 V for 30
seconds, then —10 V to —5000 V for 30 seconds with 5 seconds
in between for the polarity to switch, and 10 seconds of zeroing

Bypass flow: Exhaust flow:

Inlet flow: 0.8 Ipm

0.8 Ipm

— cyclone

Cha

Unipolar

0.95] ,
LU Ny 1

rger

Sample flow:
0.25 Ipm

e

—

[

Sheath flow:

Radial

Negative
high voltage

0.75Ipm
J |

DMA

supply

(b) Modified NanoScan SMPS

CPC

0.25Ipm

Inlet flow:
1.2 Ipm

Bypass flow:

Exhaust flow:
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A.2lpm |

Sample flow:

HEPA [—

e

—— 0.25 Ipm
Sheath flow: | Radial
0.75 Ipm DMA

Bi

polar high
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L] \

supply

CPC

0.25Ipm

Fig.1 Flow schematic of (a) the original NanoScan SMPS with the main components, and (b) the modified NanoScan SMPS after discarding the

unipolar charger and replacing the unipolar high voltage supply with a
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after the positive scanning, enabling a time resolution of 75
seconds.

To test whether our modification is successful, we calibrated
the voltage of the power supply, the plumb time of the CPC, and
the sizing accuracy of the DMA before use. We also confirmed
that the collected CPC readings (analog pulses) and those
downloaded from the instrument were consistent with each
other. A combined factor of the transfer function, CPC detection
efficiency, and penetration efficiency through the modified
NanoScan SMPS were also measured with the setup shown in
Fig. S1, which will be incorporated into the data inversion
routine.

2.2 Measurements

We compared the NanoScan SMPS with a set of well-calibrated
bipolar SMPS as reference.” It consisted of a soft X-ray
neutralizer (Model 3087, TSI corp.), a long DMA (Model 3081,
TSI corp.), and a butanol-based CPC (Model 3772, TSI corp.).
The aerosol flow rate is 1 Ipm, and the sheath flow rate for the
long DMA is 10 Ipm and controlled by a homemade sheath flow
control box. The power supply (Model 10HVA24-BP1, Advanced
Energy Industries Inc.) provides both positive and negative high
voltages for the DMA and both negatively and positively charged
particles in the size range of 7.4-286 nm are measured, which
are divided into 30 channels. A comparison of the original
NanoScan SMPS, the modified NanoScan SMPS, and the

Table 2 Specifications of instruments used in this study
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reference SMPS in terms of their operation specifications is
shown in Table 2.

Three types of aerosols were tested as the reference SMPS
and NanoScan SMPS were operated in parallel. The NanoScan
SMPS was tested both before and after modification. Indoor
aerosols in the lab, outdoor aerosols, and polydisperse NaCl
aerosols were chosen as test aerosols, representing aerosols in
different environments with varying concentration levels. Both
indoor and outdoor aerosols were sampled in a laboratory
located on the campus of Tsinghua University.”® The poly-
disperse NaCl aerosols were generated using a home-made
collision atomizer with a diffusion dryer (Fig. 2). A neutralizer
that conditions the charge state of the NaCl aerosols can be
turned on or off, representing two different charging schemes.
The NaCl aerosols are charged by colliding with bipolar ions
(bipolar diffusion charging) with the neutralizer turned on, and
by spray electrification with the neutralizer turned off.>® Note
that bipolar diffusion charging of the measured aerosols is
a prerequisite for our method of obtaining charge fractions
from measured raw size distributions of both polarities to work.

To compare the original NanoScan SMPS and the reference
SMPS, indoor aerosols and outdoor aerosols were measured for
48 hours each. For polydisperse NaCl aerosols, the measure-
ment lasted for 15 minutes so that three replicate tests were
obtained for the reference SMPS. When comparing the modi-
fied NanoScan SMPS and the reference SMPS, indoor aerosols
and outdoor aerosols were measured for 46 hours each, and
polydisperse NaCl aerosols were measured for 15 minutes.

Sample flow Sheath flow High voltage
D Size range® (nm) Time resolution rate (Ipm) rate (Ipm) supply Other settings
Original NanoScan SMPS 11.5-365.2 60 s 0.25 0.75 Unipolar Unipolar charger
Modified NanoScan SMPS 11.8-297.1 75s 0.25 0.75 Bipolar No charger
Reference SMPS 7.4-286 5 min 1 10 Bipolar Bipolar charger

“ The geometric midpoints of the first and last size channels are used here to denote the size range.

Indoor air

Outdoor air ———

— = Neutralizer

HEPA On/off
filter
Diffusion
dryer

Compressed Atomizer
air (NaCl)

— Polydisperse
NaCl aerosols

(]

S

Original/Modified
NanoScan SMPS

—_—

Reference SMPS

]

C1
&

Fig.2 Schematic of the measurement setup in this study. Indoor aerosols, outdoor aerosols, and polydisperse NaCl aerosols were tested in turn
as either the original or the modified NanoScan SMPS were operated in parallel with the reference SMPS.
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2.3 Data analysis

With the bipolar data from the reference SMPS and the modi-
fied NanoScan SMPS, we retrieved PNSDs with actual charge
fractions calculated using measured raw particle number
concentrations of both polarities. We first obtained the ion
mobility ratio weighted using ion concentrations, denoted as x:

_ ]vic»nJrZic»nJr

— on Ton 1
~ Nionizioni ( )

where Ni;, is the concentration of positive or negative ions (cm ™)
and Zg,, is the mobility of positive or negative ions (cm> V" s™).

With the obtained ion mobility ratios, charge fractions are then
calculated using a modified Gunn and Woessner formula
proposed by Chen & Jiang,” and PNSDs in the form of dN/dlogD,
are retrieved with a linear inversion algorithm.*® Note that the
charge fractions were calculated for each scan, and the whole
inversion routine would take less than 3 seconds for the modified
NanoScan SMPS (less than its voltage retrace time of 15 seconds),
which can be conveniently incorporated into existing SMPSs. For
the original NanoScan SMPS, we downloaded the stored number
concentrations of each size bin from the instrument. Loss
correction was performed and the PNSDs in the form of dN/dlogD,,
were calculated from the concentration data.

To compare the PNSDs in detail, we calculated several
parameters that can characterize them. Number concentrations
in nucleation mode, Aitken mode, and accumulation mode as
well as the whole measured size range are integrated from the
PNSDs. Geometric mean diameters and geometric standard
deviations are also calculated based on the obtained PNSDs.
More details can be found in the ESI.}
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3. Results and discussion

3.1 Improved indoor and outdoor PNSDs using the modified
NanoScan SMPS

For both indoor and outdoor aerosols, the PNSDs measured
using the modified NanoScan SMPS showed good consistency
with those measured using the reference SMPS (Fig. S31 and
Fig. 3). As shown by the outdoor aerosol results of all collected
data (46 hours in total), the modified NanoScan SMPS and the
reference SMPS both detected new particle formation events
and captured the time evolution of the PNSDs (Fig. 3a and b).
More specifically, both instruments are consistent with each
other in terms of averaged size distribution and integrated
particle number concentrations in the size ranges of 12-25 nm,
25-90 nm, 90-297 nm and 12-297 nm (Fig. 3c-g). Number
concentrations in different size ranges are mostly within +20%
of those measured using the reference SMPS. The same level of
consistency was also observed when indoor aerosols were
measured (Fig. S31), with the occasional exception when a new
particle formation event was observed indoors (measurement
conducted on April 22nd). The cause of this deviation remains
uncertain, and more studies targeting the measurement of
indoor aerosols during new particle formation events are
needed. Nevertheless, PNSDs measured using the modified
NanoScan SMPS are generally consistent with those measured
using the reference SMPS.

The PNSDs of both indoor and outdoor aerosols measured
using the original NanoScan SMPS showed poor consistency
with those measured using the reference SMPS. The original
NanoScan SMPS tends to underestimate particles in the nucle-
ation mode and accumulation mode, and overestimate particles

Modified NanoScan SMPS —— Reference SMPS
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Fig.3 PNSDs of outdoor aerosols for a total of 46 hours using (a) the modified NanoScan SMPS and (b) the reference SMPS. (c) The averaged size
distributions and standard deviations during the measurement period, as denoted by the line and shaded area, respectively. Integrated number

concentrations in the size ranges of (d) 12-25 nm, (e) 25-90 nm, (f) 90—

297 nm, and (g) 12-297 nm of measured size distributions are shown,

and the shaded area represents the £20% range of the reference SMPS. The time resolution for the PNSDs and thus the calculated parameters
measured using the original NanoScan SMPS and the reference SMPS are 75 s and 5 min, respectively.
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in the Aitken mode compared to the reference SMPS (Fig. S4 and
S57). Size-segregated number concentrations in different size
ranges can deviate much from those measured using the
reference SMPS, but the total number concentrations in the
whole size range are mostly within £20% of those measured
using the reference SMPS. Similar results were observed by
Ahlawat et al.*® when comparing ten sets of NanoScan SMPSs
with a reference SMPS during four hours of outdoor aerosol
measurement. Their averaged PNSD was bimodal, with an
underestimation of 60% in the PNC of the first mode (around
20-25 nm) and an overestimation of 120% in the PNC of the
second mode (around 70-80 nm). They also reported that the
total number concentrations measured using the NanoScan
SMPS instruments were mostly within the £20% range of those
measured using the reference CPC.

These collected data for both indoor and outdoor aerosols
are further analyzed to illustrate the improved accuracy of the
modified NanoScan SMPS. For the studied parameters (denoted
as P) including integrated number concentrations in different
size ranges, geometric mean diameters, and geometric standard
deviations, Pnodified/Preference ar€ mostly within the range of 0.9-
1.1 (Fig. 4a), while Pyiginai/Preference deviated much from 1.0
(Fig. 4b). Obvious underestimation for nucleation mode particle
concentrations (median value for Pgriginal/Preference 15 0.72) and
overestimation for accumulation mode particle concentrations
(median value for Priginal/Preference iS 1.40) can be observed.
When these data are presented in scatter plots, the data points

1.8
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Fig. 4 The ratio of different parameters between (a) the modified
NanoScan SMPS and the reference SMPS and (b) the original NanoScan
SMPS and the reference SMPS for all periods when outdoor and indoor
aerosols were measured. The compared parameter for each box
(denote as P) is shown in the x-axis. The dashed lines are for guiding
the eye.
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for the modified NanoScan SMPS and the reference SMPS are
also distributed near the equal dashed lines (Fig. S61), while for
the original NanoScan SMPS and the reference SMPS the data
points are more scattered and away from the equal dashed lines
(Fig. S71).

These results indicate that large uncertainty can be observed
for PNSDs measured using the original NanoScan SMPS as
suggested by several other performance studies.'®***' By
modifying the NanoScan SMPS, it can now provide more accu-
rate PNSD results, with reduced size and maintenance needed
as well.

3.2 Implication

Finding a balance between the accuracy of measured PNSDs
and compactness along with easy maintenance is one of the
main considerations when choosing the instrument for
building dense monitoring networks. Ideal instruments would
have high scores from both perspectives, for example, by being
as small and easily maintained as hand-held devices and able to
provide PNSDs as accurate as those measured using an SMPS
(Fig. 5). Such instruments have not yet been developed to the
best of our knowledge. We do, however, see potential in
portable SMPS that have managed to reduce the size to
a reasonable range, and can obtain quite reliable PNSD results
(compared to handheld devices) despite the uncertainty caused
by unipolar charging. We have shown in this study that by
discarding the unipolar charger and measuring charged parti-
cles of both polarities, the modified NanoScan SMPS can be
more compact and also obtain more accurate results. With one
less part which required high voltage and clean sheath air to
protect the charger needle, it also reduces the maintenance
needed for such instruments. This can be further applied to
other models of portable SMPSs, making this type of instrument
closer to the ideal one for building dense networks. What's
more, these modified portable SMPSs can also find applications

Ideal for network
o _ *
8 Modified portable
SMPS
25 s
S a
=
o ©
® £
< S,
E o
O @©
ouw
o
=
©

Accuracy

Fig. 5 Conceptual image of different types of size distribution
measurement instruments rated with accuracy (x-axis) and
compactness along with easy maintenance (y-axis).
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Fig.6 PNSDs measured using the reference SMPS and modified NanoScan SMPS of (a) polydisperse NaCl aerosols without pre-conditioning and

(b) polydisperse NaCl aerosols pre-conditioned with a neutralizer.

in occupational hygiene, mobile exposure monitoring, and
aircraft measurement.

3.3 Limitation when measuring aerosols charged by other
mechanisms

A prerequisite for a modified NanoScan SMPS to work properly
is that the charge state of measured aerosols be conditioned by
colliding with bipolar ions.? When this assumption is not met,
the calculated charge fractions can deviate, leading to devia-
tions in the obtained PNSDs. For example, when measuring
polydisperse NaCl aerosols that are charged by spray electrifi-
cation as they are atomized®*** (Fig. 2, neutralizer turned off),
the modified NanoScan SMPS would fail to produce correct
PNSD results (Fig. 6a). If we turn on the neutralizer so that the
prerequisite is met, the PNSDs of polydisperse NaCl aerosols
can be effectively measured using the modified NanoScan
SMPS, even for concentrations as high as 1.8 x 10° cm™®
(Fig. 6b). These results indicate a limitation in extreme situa-
tions where a modified NanoScan SMPS is used to measure
aerosols whose charge states are not conditioned by colliding
with bipolar ions. Fortunately, this prerequisite can be met for
indoor and outdoor environments where most of the dense
network nodes would be placed.

4. Conclusion

Unipolar chargers are widely used for portable SMPS instru-
ments and have caused uncertainty in the obtained size distri-
butions due to their unstable charging performance. We
demonstrate that it is feasible to discard the unipolar charger
and obtain size distributions that are in better agreement with
those obtained using a reference SMPS. This is achieved by
measuring charged particles of both polarities and obtaining
the actual charge distributions of aerosols conditioned by
natural air ions. This improvement has proven to be a solution
to the uncertainty brought about by unipolar chargers for both

344 | Environ. Sci.: Atmos., 2023, 3, 338-346

indoor and outdoor aerosols. By discarding the charger, it
reduces the size and simplifies the maintenance needed for
these instruments, making them much more suitable for
applications in building networks in a variety of different
environments.
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