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etwork for high-throughput
spectral data processing in LIBS imaging:
application to archaeological mortar†

N. Herreyre, ab A. Cormier,a S. Hermelin, a C. Oberlin, b A. Schmitt,b V. Thirion-
Merle,b A. Borlenghi,b D. Prigent,c C. Coquidé,bd A. Valois,d C. Dujardin, a

P. Dugourd,a L. Duponchel,e C. Comby-Zerbino*a and V. Motto-Ros *a

With the development of micro-LIBS imaging, the ever-increasing size of datasets (sometimes >1 million

spectra) makes the processing of spectral data difficult and time consuming. Advanced statistical

methods have become necessary to process these data, but most of them still require strong expertise

and are not adapted to fast data treatment or a high throughput analysis. To address these issues, we

evaluate, in the present work, the use of an artificial neural network (ANN) for LIBS imaging spectral data

processing for the identification of different mineral phases in archaeological lime mortar. Common in

ancient architecture, this building material is a complex mixture of lime with one or more aggregates,

some components of which are of the same chemical nature (e.g. calcium carbonates). In this study, we

trained an artificial neural network (ANN) for automatic detection of different phases in these complex

samples. The training of such a predictive model was made possible by building a LIBS dataset of more

than 1300 reference spectra, obtained from various selected materials that may be present in mortars.

The ANN parameters (pre-treatment of data, number of neurons and of iterations) were optimized to

ensure the best recognition of mortar components, while avoiding overtraining. The results demonstrate

a fast and accurate identification of each component. The use of an ANN appears to be a strong means

to provide an efficient, fast and automated LIBS characterization of archaeological mortar, a concept

that could later be generalized to other samples and other scientific fields and methods.
1. Introduction

Micro-LIBS (Laser-Induced Breakdown Spectroscopy) imaging
is currently experiencing a strong and fast development. This
technique has many advantages such as an all-optical design,
operation in an ambient atmosphere, and a fast acquisition rate
(up to kHz).1–3 In addition to its table-top instrumentation, LIBS
imaging also exhibits strong analytical performances
combining multi-element capabilities, no restrictions in the
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detection of light elements, detection limits in the range of ppm
for most of the elements, microscopic-scale resolution and the
capability to image a large sample surface (>10 cm2) in few
hours.4,5 All these aspects make LIBS imaging a technique with
a high elemental imaging potential in various elds such as
biology, medicine, geology and industry.6–9 However, the large
number of spectra (>million in some cases) contained in an
imaging dataset and the spectral complexity make this task
difficult, in particular when certain elements (i.e., iron or tita-
nium) are present. It becomes even a crucial issue when high
throughput analysis at high speed is foreseen. Indeed, such
data processing generally requires time and a strong expertise
in emission spectroscopy to ensure that spectral interferences
or any other unexpected issues do not bias the results. This
aspect represents an important limiting factor to disseminate
the method outside the LIBS community.

In order to address these issues, several studies have recently
been published on the use of advanced multivariate statistical
methods coming from chemometrics.10–14 The relevance of such
methods was demonstrated in various applications, which may
involve LIBS data containing more than one million spectra. We
can mention, as examples, the use of Principal Component
Analysis (PCA),10,11 classication and clustering
This journal is © The Royal Society of Chemistry 2023
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Fig. 1 Artificial Neural Network principle (a) and the used architecture
(b).
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methodologies,12 as well as spectral unmixing methods.13 More
recently, the group of L. Duponchel proposed a new method
called Interesting Features Finder (IFF), able to retrieve minor
and trace elements present on a small number of pixels, inde-
pendent of the variance they express in the spectral dataset.14

Although all these methodologies are highly powerful and allow
an exhaustive exploration of the LIBS imaging dataset, they still
require an important expertise in data manipulation and in tool
implementation, especially when the dataset contains a large
number of spectra. We propose here the evaluation of the use of
an articial neural network (ANN) for the processing of LIBS
imaging data. The main idea is to address the identication of
various mineral phases present in a sample without any
complex manipulation or prior observation of the data. ANN is
well known to the LIBS community and it has already been
largely explored through various applicative cases either for
qualitative or quantitative purposes, but not in the frame of
imaging.15–18 Advantages of ANN are well known and include
fast response time (possible implementation in real time), low
sensitivity to noise, high robustness, and accurate prediction
capabilities. The use of an ANN to automate micro-LIBS
imaging processing can address most of the current issues
faced in the processing, which include: a large dataset (>1
million spectra, single-shot spectrum which oen experiences
noise, “mixed” spectra (spectral interferences between 2 or
more elements)), and spectral variability due to laser shot-to-
shot uctuations and long period of analysis. However, to the
best of our knowledge, there is no work on the use of an ANN for
processing LIBS imaging data in the literature.

To evaluate the processing capabilities of the ANN we have
chosen to study the case of archaeological mortars. Limemortar
is a complex mixture resulting from the hardening of lime,
water, and aggregates. From an archaeological point of view, the
study mortar is of strong importance since it has been widely
used from the time of the Roman Empire until the Industrial
Revolution and the recipes used differ according to the
geographical area of preparation, crasman, or function.19

Besides, there is a strong need for accurate dating of such
materials, generally done by carbon-14 (14C) dating, but precise
and reliable identication of the binder, possible secondary
calcite, and aggregates, all present in a carbonate form, are
essential prior to any dating.20,21 These samples are therefore
complex both from amorphological and compositional point of
view. They are then ideal for assessing the capabilities of ANN
processing in a micro-LIBS imaging conguration. Driven by
Palleschi's group, several LIBS studies have been conducted,
recently, on archaeological mortars.22,23 Besides, our group has
published a study showing the potential of micro-LIBS imaging
to provide a global characterization of such samples.24 In the
previous article, we showed the possibility of coupling
elemental images of major, minor, and even trace elements
with optical images to reinforce the degree of accessible infor-
mation. This was done by image processing and mask genera-
tion associated with certain target elements to discriminate and
characterize all the types of materials present in such hetero-
geneous samples. This then allowed the use of semi-automated
processing methods to evaluate the size, shape and proportions
This journal is © The Royal Society of Chemistry 2023
of the different features constituting the sample. One of the
weaknesses of the proposed methodologies was mask genera-
tion, which was made, by hand, by xing a threshold, a priori, in
an arbitrary manner. Here, we aim to demonstrate the ability of
an ANN to create such mask images without human interven-
tion for all the considered types of material categories present
in lime mortar.

2. Methodology
2.1 Preamble

As mentioned above, ANNs have been widely used for LIBS data
analysis both for qualitative and quantitative purposes in many
elds,25 soil study26 and pharmaceutical industry for example.17

ANNs are multivariate models that can process data within
a short period of time and whose operation is inspired by bio-
logical neurons. The elementary brick of an ANN is an articial
neuron. As shown in Fig. 1a, a neuron has n inputs xi. Each
input is multiplied by a weight wi and the sum of these products
is subtracted to a bias b (also called the activation threshold).
The result passes through an activation function f, which then
provides an output signal (i.e., prediction) p, value between
0 and 1, in general. It is important to highlight that the best
behavior of the network is generally obtained for input neuron
values between 0 and 1. Neurons are then organized in layers to
form the structure of the network. In the simplest and most
usual architecture, neurons of a layer are linked to neurons of
the adjacent layers. The input layer is dedicated to the LIBS
intensities for various wavelengths of emission (either all the
spectra or at pre-selected wavelengths) while the output layer
will be associated with the values we aim to predict. The latter
can be either sample categories or concentrations, depending
J. Anal. At. Spectrom., 2023, 38, 730–741 | 731
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on the application case. In this study, we used a classical
network structure known as a 3-layer perceptron (c.f. Fig. 1b).
But broader structures, designed to solve more complex prob-
lems, can be found in the literature.27,28 Generally speaking,
more the neurons distributed in layers, more the algorithm will
be able to process complex models. On the other hand, more
the neurons in a network, larger the training set should be. For
example, the term “deep” network is introduced from 4 layers.
The layer(s) comprised between the input and output layers is
(are) generally named hidden layer(s). Their neuron number is
a parameter which needs to be optimized to avoid problems of
over-training.

In addition, ANNs have some interesting advantages, but
they also have at least 2 shortcomings. First and foremost is
their “black box” nature. A trained ANN may be able to provide
a very good prediction but its “reasoning” remains, in general,
obscure. Secondly, training is a critical step that needs to be
conducted with great care from the use of perfectly mastered
reference spectra. The learning step consists in determining the
best weights and biases for minimizing the prediction error. It
is generally done using a backpropagation algorithm through
hundreds, thousands or even more iterations during which the
weights and biases are updated. We can mention that for the
rst evaluation of the ANN prediction all the weights and biases
are randomly initialized with values between 0 and 1. Therefore,
if we perform several trainings using the same reference data,
the network sets obtained will not be perfectly similar. Obvi-
ously, larger the neuron number in the network, longer the
learning step will be and more reference spectra will have to be
provided to the network. This makes the model optimization
more and more complex. In addition, some parameters like the
iteration number, the type of spectra pre-processing and the
neuron number in the hidden layer(s) may play a key role in the
network performance and robustness. In this work, we have
used the simplest possible network structure while trying to
optimize all of these parameters, through repeated learning
steps.

To facilitate this optimization, we extracted intensities at
relevant pre-selected wavelengths to dene our input. Working
with whole spectra increases signicantly the already massive
amount of data to process. Moreover, we showed in a previous
publication24 that a few specic wavelengths, presented here-
under, were sufficient to accurately characterize the different
mineral phases present in mortar. Network parametrization,
including number of neurons in the hidden layer, selected
lines, validation/learning rate or number of identied phases,
will be discussed below.
Fig. 2 Overview of the samples used to build the reference spectra
database (see ESI Table 1† for more details).
2.2 Reference spectra and studied samples

Lime mortar results from the hardening of a mixture composed
of a binder, a ller or aggregates and water.19 Used since ancient
antiquity, it could be produced for many functions, to make
joints in masonry for instance or for coating. Its preparation
follows general principles that have not changed since the
material origins. The exact mortar composition however differs
according to its intended use. Indeed, if the binder does not
732 | J. Anal. At. Spectrom., 2023, 38, 730–741
really differ from a lime mortar to another one, the ller is
different depending on its use. In general terms, it is added to
prevent cracks from the volume decrease during carbonatation
and to ensure a better hardening. In some coatings for example,
vegetable and animal bers may have been added for the rein-
forcement provided by the ber network.29 For most of the
hydraulic structures, specic aggregates can be used to improve
the water resistance properties: there are pozzolans and tile
pieces that are common, but sometimes wood ash and charcoal
could have been added for the same purpose. When the char-
coal is present in very low amounts, its presence may be acci-
dental; it comes from a failure in the production process. As for
the sand, it is frequently part of the ller, used alone because it
is generally inert with lime, or used with the above-mentioned
aggregates. It will be easily found in the watercourses near the
construction sites,30 since it has been washed down the river,
which explains that it may also contain shells and plants. The
mineral nature is then heterogeneous, silicate as well as
calcareous, and with the granulometry it reects its geograph-
ical origin. For all these reasons, lime mortars are highly
heterogeneous and complex materials but rich in information
for building archaeology.31

We have dened a total of 8 categories (i.e., classes) to
represent all the materials that can be found in the vast majority
of mortars.32,33 It includes rst of all the binder and various
aggregates added on purpose or by the production process
(carbonate, quartz, aluminosilicate, coal and tile). A category
hole has also been added as well as a category resin to take into
account the sample preparation as for induration in the resin.
The reference spectra for each category were produced on
a corpus of 27 samples, presented in Fig. 2 and reported in ESI
Table 1.† Both raw and resin-embedded mortars were analyzed
(7 archaeological and 1 standard produced in the laboratory)
along with raw materials whose integrity was preserved in
mortars, such as ceramic (x3), quartz (x2), epoxy resin (x1), coal
(x2), limestone (x2), marble (x4), speleothem (x1) and shell (x4).
In the perspective of robust and accurate identication of the
This journal is © The Royal Society of Chemistry 2023
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binder for radiocarbon dating, it was important to provide
a large and wide set of calcium carbonates (geogenic and some
biogenic), but also other carbonaceous materials such as
charcoal.

We selected a total of 1353 reference spectra. For each of the
raw samples presented in Fig. 2, a LIBS imaging sequence was
recorded, whose size varied from 300 × 20 pixels to 300 × 100
pixels depending on the sample sizes. Images obtained from
mortar samples were larger and specic to each sample due to
their size variability. The pixel (i.e., spectrum) selection was
done randomly on the phases identied by an archaeometrist
(specialist in ancient materials), each one corresponding to
a single-shot spectrum and having been precisely attributed to
one of the 8 categories. As shown in ESI Table 1,† between 102
and 230 spectra were selectedmanually for each category. On an
average, a few more spectra were selected for the binder and the
carbonates because the rst aim of this work was to discrimi-
nate these 2 phases well. Before being injected in the ANN for
learning, the set of spectra was entirely studied using PCA in
order to check that each one was clearly representative of its
specic category and not a contribution from a different
component of mortar because of a misidentication. Note that
the archaeometrist had the possibility of observing the samples
nely under optical microscopy.

To test and evaluate the predictive capabilities of the ANN for
LIBS image processing, we applied it to 3 archaeological
samples collected in France (M1, M2, and M3). A description of
their origin and properties is detailed in the following.

(i) M1 was sampled from the Roman aqueduct of the Gier
(Soucieu-en-Jarrest, France).34 This aqueduct supplied water to
the Roman colony of Lugdunum (Lyon, France) aer a course of
86 km.35 The dendrochronological dating of the wooden casing
of one of the piers of the Beaunant siphon-bridge and the
epigraphic evidence, conrmed by recent excavations, places its
construction in a chronological range of the 2nd century AD.36

The charge is mainly composed of tile pieces for its hydraulic
function. The raw sample was dry-polished with diamond discs
(Tissedia series, Pressi, grain size: 75 mm, 40 mm, 20 mm).

(ii) M2 was collected from the Brévennes aqueduct (Dardilly,
France).37 This aqueduct also served Lugdunum in terms of
water. The lime mortar ller is therefore mainly composed of
tile pieces. It was built in the middle of the 1st century AD, it
crosses 16 communes and has its source at Aveize sur L'Orjolle.
The sample was included in an epoxy resin and then cut and
dry-polished with SiC paper to obtain a planar section (QATM,
P240, P600, P1200).

(iii) M3 was collected from the Cathedral of Saint-Maurice in
Angers (Angers, France).38 The aggregates are essentially
minerals that probably come from the sands of the river Maine,
which ows close to the cathedral. Nothing has been preserved
from the rst cathedral founded in the 4th century in the city of
Angers. However, the north and south “gouttereaux”walls of the
wide, single nave from the early 11th century were covered by
ogival vaults aer 1150. The transept and the choir, also vaulted
in Plantagenet Gothic style, were built at the end of the 12th
century and the rst half of the 13th century. M3 comes from its
High Middle Ages state. The sample was included in an epoxy
This journal is © The Royal Society of Chemistry 2023
resin and then cut and dry-polished to obtain a planar section
thanks to SiC paper with different granulometries (QATM, P240,
P600, P1200).
2.3 LIBS imaging measurements

The protocol used for LIBS-based imaging of mortar samples
has already been described in detail in Richiero et al.24 The
parameter optimization, given below, was conducted based on
the work reported in the previous paper.4,5 The same instrument
was used, including a Nd:YAG nanosecond pulsed laser
(Centurion, Quantel Lumibird) emitting at the fundamental
wavelength (1064 nm) with a 100 Hz repetition rate. Laser pul-
ses were focalized on the sample surface by a 15×magnication
lens (LMM-15X-P01, Thorlabs). A pulse energy of 700 mJ was set
for all the acquisition, with an argon ow of 0.9 L min−1 used to
enhance the LIBS signal and prevent surface deposition. The
experiment was done at room temperature and ambient pres-
sure. Three different spectrometers (denoted as A, B and C in
the following) were used for the spectral acquisition of the
elements of interest. A & B correspond to two Czerny–Turner
spectrometers both coupled with ICCD cameras (Istar, Andor
Technology). The rst spectrometer (A), a Shamrock 500, was
congured with a 600 L mm−1 grating in the 245–334 nm
spectral range. The second (B), a Shamrock 303, was setup with
a 1200 L mm−1 grating and covered the wavelengths between
419 and 486 nm. Both ICCD acquisitions were performed with
a delay and gate of 1 ms and 5 ms, respectively. The third spec-
trometer (C) was an Avantes compact spectrometer (EVO Sens-
Line XL) congured in the 640–960 nm spectral range. The LIBS
imaging sequences were recorded with the use of motorized x, y,
z stages on which the sample was placed and that allows a pixel
by pixel scanning. The used lateral resolution was xed at 25 mm
for all the measurements. The procedure to build the elemental
images from the recorded spectra is detailed in several
papers.4,10,39

Typical single-shot spectra obtained in M1 are shown in
Fig. 3. These six spectra correspond to (1) aluminosilicate; (2)
quartz; (3) charcoal; (4) carbonate; (5) binder; and (6) tile. The
spectral windows covered by the three spectrometers are also
indicated. Note that for better clarity, only the interesting
spectral regions covered by the SensLine spectrometer (C) are
shown. As resumed in ESI Table 2,† a total of 27 emission lines
were selected as inputs to the ANN. Such line selection was done
based on several criteria. First, we selected lines frommajor and
minor mortar compounds, characteristic of each of the eight
categories. This includes: aluminum (Al), carbon (C), calcium
(Ca), iron (Fe), potassium (K), magnesium (Mg), sodium (Na),
oxygen (O), and silicon (Si). Trace elements were also selected
since they may give a signicant contrast for some specic
phases, such as barium (Ba), copper (Cu), lithium (Li), phos-
phorus (P), strontium (Sr), and titanium (Ti). We also selected
a line from hydrogen (H), since we previously showed that it was
a binder marker, due to the adsorption of water vapor by the
(porous) surfaces of the binder.24 In addition, several lines from
the same element were also considered to consolidate the
analysis. We have selected two lines for Al, C, Fe, Mg and Si.
J. Anal. At. Spectrom., 2023, 38, 730–741 | 733
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Fig. 3 Example of single shot spectra obtained in the M1 sample for 6 component categories: (1) aluminosilicate; (2) quartz; (3) charcoal; (4)
carbonate; (5) binder; and (6) tile.
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Depending on the lines, this allows us to take into consider-
ation possible spectral interferences, and also to provide addi-
tional information to the ANN due to the different species (I or
II) and/or energy levels associated with each line. Finally, six
lines were selected for calcium, with the aim to get all the
possible signal variations from the different forms of calcium
carbonates (binder and geogenic).
2.4 Learning and validation methodology

Among the 1353 reference spectra associated with the 8 cate-
gories, 75% were used for training (i.e., 1018) and 25% for
validation (i.e., 335). This spectra selection was done randomly.
The validation step consisted in assessing the ANN predictions
of known spectra but which were not seen by the ANN during
the learning phase. This allows us to evaluate the performance
of the network under “real” conditions and to avoid over-
training. The used network was then constituted by 27 neurons
in the input layer (associated with the LIBS intensities at 27
selected wavelengths), and 8 neurons in the output layer
(associated with the sample categories). The number of neurons
in the hidden layer is considered as a parameter to be optimized
and it will be discussed in the next section.
Fig. 4 Schematic view of the data manipulation from raw spectra to t
treatment of one spectrum.

734 | J. Anal. At. Spectrom., 2023, 38, 730–741
The general methodology of data manipulation is presented
in Fig. 4, which schematically describes the processing of 6
spectra associated with 6 different categories among the 8
(named from 1 to 6). A pre-treatment, consisting in a normali-
zation, was rst applied to each spectrum. This step appeared
necessary since all the data presented hereaer were obtained
on a rather long time scale. The reference spectra were
measured over a few days of experimentation but the imaging
data of the three shown samples (M1, M2 and M3) were ob-
tained over a little more than a year. We have evaluated two
normalization approaches applied to each of the 3 spectrome-
ters: a normalization by the total intensity of each spectrum and
a standard normal variate (SNV) normalization. The results of
such normalization will be discussed below. Then, the next step
was to extract the selected line intensities. We used the meth-
odology introduced in Motto-Ros et al. (2019),39 which consists
in the peak area determination from which the spectral back-
ground is subtracted. Before being presented to the ANN (either
for the learning or prediction), we decided to rescale all these 27
intensities by the maximum value obtained on all the 1353
reference spectra. This allowed us to compensate the large
dynamic range that was observed between certain lines and to
he final ANN predictions. An indicative temporal strip is given for the

This journal is © The Royal Society of Chemistry 2023
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provide input values to the ANN between 0 and 1, favoring the
network operation. Note that these 27 rescaling factors were
obtained from all the set of reference spectra, and then applied
to any new incoming spectra. All the soware tools used were
custom-made and developed in a LabVIEW environment. The
computer used for all the processing was a laptop with an Intel
i9 processor and 32 GB of RAM. With this computer, the time
required for all the processing step of one spectrum was about
180 ms, showing the possibility of implementing it on a LIBS
imaging system up to kHz acquisition rate.
3. Results
3.1 ANN optimization

As mentioned above, an important step of this work consisted
in optimizing the different parameters of the network with the
idea to get the best ANN performance. For that we have assessed
the MSE (mean square error), giving the average squared
difference between the estimated predictions and the reference
values. The evaluation of the MSE was done both for the
training and the validation datasets. The training MSE can only
decrease with the multiplication of iterations, in contrast to the
validation MSE that may even show an increase in the presence
Fig. 5 Optimization of ANN parameters with MSE minimization. (a) Exa
mization of the number of hidden layer neurons; (c) optimization of the

This journal is © The Royal Society of Chemistry 2023
of overtraining (i.e., the ANN gets too specialized on the exact
training set details). These trends are illustrated in Fig. 5a for an
ANN trained with 1500 iterations. Here, we have considered as
parameters to be optimized: the iteration number of the
training algorithm, the type of normalization applied to the
spectral data, and the neuron number in the hidden layer. All
settings except the studied one were xed. These trainings were
performed ve times with the same conguration, from which
we have extracted the mean values and the standard deviation
(STDV), the latter being used as the error bars in all the graphs
shown in Fig. 5. We may note that a typical training (about 1000
iterations) required less than 3 minutes with this computing
capability.

Regarding the number of neurons in the hidden layer (c.f.
Fig. 5b), aer 45 neurons, the validation MSE ceased to
decrease. Considering this value, MSE was then evaluated to
search for the optimal iteration number of the learning algo-
rithm. As can be seen in Fig. 5c, validation MSE is optimal for
thousands of iterations. This observation was supported by the
evolution of the MSE (c.f. Fig. 5a) which shows good stability for
the validation set aer 800 iterations. Finally, the ANN was
tested considering different spectral normalizations: by the
sum of the intensities; by the standard normal variate (SNV)
mple of training with the training and validation MSE curves; (b) opti-
number of iterations; (d) evaluation of different types of normalization.
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which consists in subtracting each spectrum by its own mean
and dividing it by its own standard deviation; or without any
normalization. Results are shown in Fig. 5d for 45 neurons in
the hidden layer. As can be seen, there are no important
differences between these three methods even if the sum
normalization gives a better performance. To resume, the
optimal parameters retained for our ANN were: 45 neurons in
the hidden layer, 1000 iterations and a normalization by the
sum of the intensities for each spectrum.

Generally speaking, we can observe that there is no signi-
cant evolution of the predictive performances according to the
network parameters and normalization methods (c.f. Fig. 5).
This is a rather positive point because it shows that the network
can easily identify the different categories, despite the fact that
some of them are very similar. We can also point out the
importance of using a validation set (not used during the
training) to characterize the performance of the network. We
can notice in Fig. 5a–c that the MSE, evaluated on the training
set, only decreases when we increase the iteration number or
the neuron number in the hidden layer, which is characteristic
of overtraining.

In order to implement, in the long term, this type of pro-
cessing in real time, it was necessary to nd a fast and robust
way to assign a spectrum to a category. Two examples of
predictions related to the validation set are illustrated in Fig. 6a
Fig. 6 Example of ANN predictions for certain (a) or double-identificati
thresholds for (c) all categories, (d) binder, (e) aluminosilicate.

736 | J. Anal. At. Spectrom., 2023, 38, 730–741
and b. In the rst case (i.e., spectrum #724), the prediction is
clear and refers to the 5-binder category. In the second case (i.e.,
spectrum #1215), the situation is more delicate since two cate-
gories may be considered: 5-tile and/or 8-aluminoscilicate. The
chosen alternative was to introduce a threshold parameter. If
the ANN prediction of the category X is higher than the
threshold, then the spectrum is identied as having originated
from this class. On the other hand, if the prediction value is
lower, then the spectrum is classied as coming from an
unknown material (i.e., classied as not identied). Note that
a sigmoid transfer function is rather insensitive for values close
to 0 and 1 (horizontal asymptotes). Therefore, the input values
(originally either 0 or 1) were rst contracted between 0.05 and
0.95, then a reverse stretch was applied following the predic-
tion. With this necessary contraction and stretch steps, the
network can provide negative values and/or values above 1 (c.f.
Fig. 6a and b).

In micro-LIBS imaging, we can also expect to have a certain
number of pixels associated with 2 or more categories. This will
be the case for all pixels of the image obtained at the interface
between 2 (or more) phases. In this case, the inputs will corre-
spond to linear combinations of the reference spectra, and the
network will behave as in the example of Fig. 6b by giving an
important weight to 2 (or more) categories. Therefore, the
denition of the threshold will be an important parameter and
on spectra (b), and percentage of identification according to different

This journal is © The Royal Society of Chemistry 2023

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2ja00389a


Paper JAAS

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
Fe

br
ua

ry
 2

02
3.

 D
ow

nl
oa

de
d 

on
 7

/2
2/

20
25

 3
:0

9:
08

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
adjustable according to the needs of the application. Higher the
threshold value, more robust the algorithm will be, i.e., more
accurate the identications will be, but on the other hand,
greater the number of unidentied spectra will be. To assess the
inuence of this threshold, we evaluated the percentage of
correct, false, and unidentied assignment obtained on the
validation set for each category as well as for the whole. Fig. 6c
illustrates the case for all categories. As can be seen, for
a threshold of 0, we obtain ∼98% of correct identication and
∼2% of wrong identication (i.e., 6 spectra out of 335).
Increasing the threshold value reduces the number of false
identications, thus improving the robustness of the algorithm,
but also increases the number of unidentied spectra (predic-
tion below the threshold). It was also important to look at the
binder category since our primary objective was to discriminate
as accurately as possible the two forms of carbonates present in
these samples (geo and neo formed). The results are illustrated
in Fig. 6d, which shows excellent prediction capabilities for the
binder class. Thereaer, we chose to use a threshold at 0.65
which corresponds, in our point of view, to a good compromise
with regard to these results. At this point, it is interesting to note
that the 2% of incorrect spectra are mostly associated with the
classes: tile, quartz, and aluminosilicate. As shown in Fig. 6e,
the percentage of correct identication for aluminosilicate is
only in the range of 93%. This is explained by the fact that it is
not easy to generate reference spectra of the tile class. These
materials have indeed an important number of inclusions of
small quartz or silicate aggregates, difficult to discriminate
from an elemental point of view, because these 3 types of
Fig. 7 Results provided by the ANN obtained on sample M1: (a) optica
categories (threshold value of 0.65). (c) ×2.5 zoom of the blue rectangl
black pixels in (b) and (c) correspond to unidentified spectra.

This journal is © The Royal Society of Chemistry 2023
materials are quite close in terms of composition. For instance,
the spectrum shown in Fig. 6b is probably a mixture of both tile
and aluminosilicate.
3.2 Archaeological mortar

The rst step to test the performance of the network was to
apply it on the data collected from the sample M1. These data
correspond to a sequence of 900 × 800 pixels obtained with
a spatial resolution of 25 mm. The elemental images associated
with the 27 selected lines are illustrated in ESI Fig. 1.† As can be
seen in this gure, this sample is highly heterogeneous and
complex from an elemental point of view. Each of the 720 000
spectra was presented to the network following the same pre-
processing and extraction steps (see Fig. 4) as in the training
phase. The optical imaging and ANN results are shown in Fig. 7.
The time required to process all the data was less than 2
minutes. The colors associated with the different classes have
been chosen to best match the natural colors of these materials:
beige for the binder, brown for carbonate, blue for quartz, light
blue for silicate, green for coal, red for the tile, and gray for the
hole.

As can be seen, the results provided by the ANN show overall
an excellent similarity to the optical image (c.f. Fig. 7a and b).
These results, as well as the results obtained for samples M2
and M3 (see thereaer), were inspected with great care by our
archaeologist colleagues, specialists in these materials, to
nally test the network performance in real operation mode.
They have indeed reviewed all the minerals (including aggre-
gates, tiles, binders, etc.) generated by the ANN and checked
l image of the sample surface. (b) ANN images of the seven detected
e shown in (b) with various threshold values: 0.25, 0.65 and 0.90. The
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their equivalence to the ones on the samples. Except for a few
small minerals, unknown to the network since they were not yet
considered in the training set (c.f. below), their conclusions
were extremely positive about the network's ability to provide
accurate mineral phase identication, and this despite the great
complexity and heterogeneity of its materials.

As shown in Fig. 7, the ANN identies numerous and varied
sizes of tile pieces. The tiles used are oen of architectural type.
The tile itself is a complex material which results from the 900 °
C ring of natural clay minerals. These natural clay materials
originally contain clay minerals but also some macroscopic
minerals: quartz, feldspars and rock fragments. Sometimes, the
crasman may choose to add more sand or clay materials to
adapt the ceramic paste properties. The proportions vary
according to the potter workshop but also according to the
crasman. There are also practices that consist in washing the
clay materials to eliminate the coarsest parts. This is why on the
ANN images, within the tile aggregates, we can observe quartz,
silicates and carbonates. The presence of aluminum oxides
(Al2O3), silicon oxides (SiO2) and iron oxides (Fe2O3) in the clay
minerals used to make the tiles induces hydraulic properties
favorable to their use for the construction and water tightness of
aqueducts. This is known as articial pozzolan. However, the
primary quality of these materials was better mechanical
resistance, as well as higher durability.40 In general, to increase
the hydraulic properties, the tile fragments were reduced in
size, which led to an increase in the specic contact surface
between the lime and the pozzolans. We can also observe on the
image of sample M1, 2 layers of mortar with different aggregate
sizes. The ANN image also allows us to identify coal. Its sporadic
presence would rather suggest a stochastic event. To conclude
about this last point, we need to analyze a larger surface area.
However, the black aggregate present on the tile in the upper
le of the optical image Fig. 7a has been identied by the ANN
as a tile. Referring to the elemental images (Fig. 1 ESI†), we
notice a relatively high intensity of manganese and oxygen. We
can therefore assume that it is a manganese oxide grain in its
mineral phase. As the oxides were not entered as input values in
the ANN, they will not be identied.

In Fig. 7c, 2 areas (denoted (i) and (ii)) have been identied
by the ANN as carbonates, which it distinguishes very well from
the binder, although the molecular composition is similar
(CaCO3). This identication is essential because if we plan to
carbon 14-date the building, only the carbon of the binder is of
interest. Indeed, if we compare with the optical image, (i) could
be due to a secondary calcite phase.41 Secondary calcite corre-
sponds to the formation of new crystals aer the mortar has set.
In fact, in the presence of ambient water (due to precipitation,
surface water and groundwater), the mortar binder could
dissolve, react with fresh atmospheric CO2 and redeposit.
Secondary calcite then has a 14C age younger than the time of
construction.42 On the other hand, (ii) would appear to corre-
spond to a geological carbonate aggregate. Its 14C dating would
be much earlier than the time of construction. In addition, the
inuence of the above-described threshold can be observed in
Fig. 7c which shows 3 zoomed images obtained with threshold
values of 0.25, 0.65 and 0.9. With values close to 1, more spectra
738 | J. Anal. At. Spectrom., 2023, 38, 730–741
are undened (black pixels). It is important to note that this
threshold inuences especially spectra registered on interface
zones, between different materials, many of which are black
with 0.90 threshold for example. It may be attributed to the
plurality of contributions in such zones.

The binder, secondary calcite and geological carbonates have
very different densities. The binder is porous whereas the
geological carbonates are dense. These characteristics have
made it possible to discriminate between these different
“CaCO3” type compounds. First of all, as the binder is much
more porous, moisture is xed by physisorption. The hydrogen
line is therefore discriminating. Secondly, the “matrix effect”
permits the discrimination. The proportion of the intensities of
the ionic and atomic Ca lines (Ca II and Ca I) differs according
to the nature of the calcium carbonates. Various parameters
inuence the plasma composition and thus the intensity of the
lines, in particular the ablated mass, the electronic temperature
and the electronic density. At thermal equilibrium, the physical
behavior within the plasma is governed by the Boltzmann
equation and the Saha equation.43 It is found that the plasma
temperature (between 7000 and 12 000 K) and the amount of
material depend on the ablated material, in particular its
melting temperature and density. Indeed, denser the material,
higher the plasma temperature, which is the case for geological
carbonate that is denser than the porous binder. Furthermore,
a hotter plasma favors the ionization of species, which is in
agreement with the higher intensities of calcium ion lines for
denser carbonates (whose plasma is therefore hotter).
Conversely, the binder shows high Ca I line intensities, which
can be explained by a colder plasma in this porous phase. Thus,
variations in the plasma properties for materials of the same
chemical composition induce variations specic to each emis-
sion line, which then allow these differences to be observed.
The inuence of the atomic H I (656.10 nm), Ca I (318.13 nm
and 643.91 nm) and ionic Ca II (458.52 nm) lines has been
evaluated with a quaternary diagram (Fig. 2 ESI†). Note that the
secondary crystallizations seem close to the geological phase
but intermediate with the micritic crystallization of the binder.

The same treatment was then applied to two other datasets
(samples M2 and M3). These samples have been characterized
in great detail in a previous article.24 Our objective was to
evaluate the robustness of the methodology on an extended
measurement period. Indeed, the LIBSmeasurements inM1 are
about one year behind those in M2 andM3. Besides, during this
time, the micro-LIBS instrument moved to another building
and had to be totally recongured and optimized. M2 and M3
also differ in their preparation. M2 and M3 were embedded in
resin but M1 was measured raw. The comparison of results in
Fig. 7 and 8 shows the robustness of the ANN. In M2 andM3, we
notice that unlike M1, there is no charcoal. M2, like M1,
contains tiles, probably due to its hydraulic properties. M3, on
the other hand, does not contain tiles but aggregates of quartz,
silicate, and carbonate which could correspond to sand. In
Richiero et al.,24 the sand origin from the Maine River, which
ows at the foot of the cathedral, was assumed due to the
different natures of the silicates. At present, the ANN does not
allow classication of the different silicates.
This journal is © The Royal Society of Chemistry 2023
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Fig. 8 Results provided by the ANN obtained on sample M2 and M3. Both samples were embedded in epoxy resin. (a) Optical image of the
sample M2. (b) ANN images of M2 for the seven detected categories (threshold value of 0.65). (c) Optical image of M3. (d) ANN images of M3 for
the detected categories (threshold value of 0.65). Note that the charcoal category is not displayed since it was not detected in both samples.

Fig. 9 (a) Sum of all the predictions for sample M3. (b) Zoom on the
region indicated by a green rectangle in (a). (c) Single shot spectrum
corresponding to a pixel of the red spot (i) observed in (b).
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4. Discussion

The proposed methodology is based on the use of a relatively
simple ANN (only 80 neurons) yet very efficient in terms of
robustness, prediction quality and response time (<ms per
spectrum). It allows us to consider this type of processing
directly during the experiment in order to have an almost real
time processing of the spectra and the display of the image as
the experiment progresses. This could indeed be of great
interest for industrial applications and for simplied routine
analyses. For our case study (i.e., characterization of archaeo-
logical mortars), this processing method addresses several
important obstacles. First of all, we have shown no difficulties
in identifying the different forms of carbonates (in particular
geo-formed aggregates and binder) which opens up good
prospects for their use in the framework of carbon-14 dating.
Then, the identication of mineral phases and the generation of
masks is now automatic and no longer requires the intervention
of human supervision to set the threshold, oen arbitrarily, as
was the case in our previous article.24 The global characteriza-
tion of the samples (not shown here), including the evaluation
of the different proportions between the binder/tile/aggregates/
or others, the size and the shape of the aggregates now becomes
fast and undoubtedly more accurate.

One point that must be emphasized is the importance of the
reference spectra. The more the base of spectra used for the
learning is rich and well mastered, the more the network will be
efficient, both in its training and its predictions. Here we have
chosen to create a general category representing all the alumi-
nosilicates. However, this class of material is much broader
than those considered in this study. We will have to acquire
a greater number of known minerals and expand this category.
One advantage of the use of neural networks is that it is possible
to apply several networks in cascade, and we could for example
add a second network, which will treat specically the class of
aluminosilicates.
This journal is © The Royal Society of Chemistry 2023
It is true that an ANN will identify known signatures and will
obviously be unable to identify unknown materials. However, it
can be interesting to observe the global set of predictions of the
ANN. An example is given in Fig. 9 where we represent the sum
of all the predictions provided by the network for the sample
M3. For an optimal behavior of the network obtained on
a known material, we expect to obtain one output neuron close
to 1 and the other outputs close to 0. Under normal conditions,
the sum should thus be around 1, which is represented by the
grey regions of Fig. 9. On the other hand, for unknown spectra
(i.e., materials absent from the training), two possibilities exist.
First, in the case where the spectral structure is totally different
from the training set, one can expect to obtain a low prediction
for all output neurons. This will result in a sum much lower
than 1. Such a case is, a priori, not observed in the case of
J. Anal. At. Spectrom., 2023, 38, 730–741 | 739
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sample M3. Second, the most likely case is that a spectrum
contains information associated with several classes. In this
case, the sum of the output neurons will be higher than 1 (red to
yellow color in Fig. 9). This may occur mainly for measurements
taken at the interface between two mineral phases, but the
arrow indicated by (i) in Fig. 9b shows a small aggregate not
detected so far containing both Ca and Si as major elements, as
illustrated in the spectrum of Fig. 9c. Such types of materials,
containing Ca and Si as major elements, were not taken into
account during learning. Such a type of representation can be
very interesting to identify spectra out of categories, and thus
reveal exotic spectra. In addition, this can also be used to dene
an additional condence level for the inclusion or exclusion of
the pixels concerned.
5. Conclusion

In this paper, we have demonstrated that the use of an ANN
algorithm for the processing of LIBS imaging data may be
helpful as much as powerful. Even a simple network structure,
a 3-layer perceptron with 80 neurons in total, can provide a fast,
automated, robust, and efficient processing for a large number
of spectra. Its optimization points out that the ANN robustness
does not depend so much on its own parameters (neuron
number in the hidden layer, iteration number for the training,
and spectra normalization) as on the quality of the reference
dataset for training. The accuracy of the nal identication is
also improved by the use of a threshold on output values, to
allow as much identications as possible and avoiding
misrecognition.

In particular, for mortar characterization, ANN provides
good identication of spectra thanks to a specic training on
nearly 1000 spectra which has been validated on a 300 spectra
set. It allows us to supply in an automatic way a mask of each
mineral phase present on the mortar surface, depending on the
component categories we implemented. Furthermore, it clearly
differentiates the calcium carbonates from the binder and from
other origins (geological especially and secondary phase prob-
ably) that may be due to the difference in the densities of each
one (quantity ablated and plasma parameters), as well as the
physisorption of H2O in the binder (micro)porosity. It allows us
to precisely map the mortar and determine where the lime
binder of interest for radiocarbon dating is.

Nevertheless, ANN treatment is limited by the training
dataset; to improve its capacity of mineral identication, it will
be necessary to implement more data and a broader reference
dataset in terms of their mineralogical nature. The use of
different interlinked neural networks would also be useful for
the specic identication of some minerals, such as silicates.
Thus, it could be then translated to the analysis of other
geological or composite materials, such as archaeological
ceramics, but also to any sample kind in general. In the future,
experimental data could be implemented in an ANN in real
time, spectrum by spectrum, for a synchronous treatment with
the acquisition. This would provide robust compound identi-
cation results immediately following LIBS measurements.
740 | J. Anal. At. Spectrom., 2023, 38, 730–741
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G. Galbács, Anal. Chim. Acta, 2021, 1147, 72–98, DOI:
10.1016/j.aca.2020.12.054.

2 L. Jolivet, M. Leprince, S. Moncayo, L. Sorbier,
C.-P. Lienemann and V. Motto-Ros, Spectrochim. Acta, Part
B, 2019, 151, 41–53, DOI: 10.1016/j.sab.2018.11.008.

3 B. Busser, S. Moncayo, J.-L. Coll, L. Sancey and V. Motto-Ros,
Coord. Chem. Rev., 2018, 358, 70–79, DOI: 10.1016/
j.ccr.2017.12.006.

4 C. Fabre, D. Devismes, S. Moncayo, F. Pelascini, F. Trichard,
A. Lecomte, B. Bousquet, J. Cauzid and V. Motto-Ros, J. Anal.
At. Spectrom., 2018, 33, 1345–1353, DOI: 10.1039/
C8JA00048D.
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19 A. Coutelas, Éditions Errance, Le mortier de chaux, Paris
(France), 2009.

20 R. Hayen, M. Van Strydonck, L. Fontaine, M. Boudin,
A. Lindroos, J. Heinemeier, Å. Ringbom, D. Michalska,
I. Hajdas, S. Hueglin, F. Marzaioli, F. Terrasi, I. Passariello,
M. Capano, F. Maspero, L. Panzeri, A. Galli, G. Artioli,
A. Addis, M. Secco, E. Boaretto, C. Moreau, P. Guibert,
P. Urbanova, J. Czernik, T. Goslar and M. Caroselli,
Radiocarbon, 2017, 59, 1859–1871, DOI: 10.1017/
RDC.2017.129.
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