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Machine learning the vibrational free energy
of perovskites†

Krishnaraj Kundavu, Suman Mondal and Amrita Bhattacharya *

Scanning the potential energy surface of a given compositional space via Ehull analysis is not sufficient to

comment on thermodynamic stability, since the contribution stemming from the vibrational free energy

is typically ignored in high-throughput searches of compositional spaces for stable compounds. The

calculation of the vibrational free energy through first principles can be computationally very expensive

owing to the complexity of the structures, which is directly proportional to the number of symmetrically

non-unique terms to be evaluated for the creation of the dynamical matrix. In this work, we use

machine learning (ML) to predict the free energy of a given compositional space (ternary perovskite

compounds belonging to different symmetric structures) using the elemental and structural descriptors

as fingerprints. The temperature dependence of the free energy is modeled using a 3rd-order polynomial

fit, where the coefficients are learned and predicted using ML. Thereby, a highly accurate model is built

for the zero-point energy (with a root mean square error (RMSE) of 18.9 meV per atom), which is further

improved by employing a symbolic regression technique, SISSO, giving a very low RMSE of 8 meV per

atom. This model, while providing a computationally inexpensive means for predicting the harmonic

vibrational free energy of compounds, also provides an aid to obtain the free energy and hence assess

the thermodynamic stability of a given composition at any temperature. This work also provides

important insights on how the elemental and compound properties are related to the vibrational free

energy and hence, may aid in its prediction.

1 Introduction

Perovskites are one of the most earth-abundant material
classes, with several million compositional variants. They exhi-
bit a wide range of electronic, optical, magnetic, and thermal
properties, leading to their enormous technological advan-
tages1–4 as ferroelectrics,5,6 ferromagnets,7–9 superconduc-
tors,10–12 photovoltaics,13,14 piezoelectrics,15–17 etc. Even
though research in this field had been going on for the past
few decades, each day a new perovskite compound with an
interesting application is discovered. Pertaining to their huge
compositional space, it is practically impossible to explore
the stability and the application potential of each one of
them individually. Naturally, ab initio first-principles-based
density functional theory (DFT) calculations can lead to the
cost-effective prescreening of the compositional space before the
experimental realization of the compounds.18–21 High-throughput

loops have been designed to scan for new stable perovskite
compounds,22,23 which is the foremost vital step that should
be taken, even before the compounds are scanned for their
physical properties.

Several groups have attempted to explore this problem.24–29

However, it is not a trivial one, owing to the huge compositional
space of perovskites. Ideally, a perovskite compound (chemical
formula ABX3) will have a cubic unit cell with A and B cations
occupying the center and corners of the cube, respectively, and
X anions occupying the edge centers to form octahedra around
the B cations. However, not all ABX3 compounds can be
realized in an ideal perovskite structure. Distortions are created
in the octahedra depending on the ionic radii of the cations
and anions.30 The realization of ABX3 compounds in the
perovskite structure has been related to the ionic radii of the
constituent elements. In this regard, Goldschmidt31 gave an
empirical parameter, t, for realization of the ideal perovskite
structure:

t ¼ rA þ rXffiffiffi
2
p

rB þ rXð Þ
(1)

Here, rA, rB, and rX are the ionic radii of A, B, and X ions,
respectively. If this parameter is close to unity, an ideal
perovskite structure is realized. However, a deviation of this

Ab initio Computational Materials Science Laboratory, Department of Metallurgical

Engineering and Materials Science, Indian Institute of Technology, Bombay,

Maharashtra, 400076, India. E-mail: b_amrita@iitb.ac.in

† Electronic supplementary information (ESI) available: The data set and the
codes and models used in this work are available in github repository and link is
provided in the supplementary pdf file. See DOI: https://doi.org/10.1039/

d3ma00216k

Received 6th May 2023,
Accepted 4th August 2023

DOI: 10.1039/d3ma00216k

rsc.li/materials-advances

Materials
Advances

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
A

ug
us

t 2
02

3.
 D

ow
nl

oa
de

d 
on

 7
/1

9/
20

25
 1

2:
04

:4
8 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online
View Journal  | View Issue

https://orcid.org/0000-0001-6784-9744
https://orcid.org/0000-0002-7389-7387
http://crossmark.crossref.org/dialog/?doi=10.1039/d3ma00216k&domain=pdf&date_stamp=2023-09-01
https://doi.org/10.1039/d3ma00216k
https://doi.org/10.1039/d3ma00216k
https://rsc.li/materials-advances
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3ma00216k
https://rsc.66557.net/en/journals/journal/MA
https://rsc.66557.net/en/journals/journal/MA?issueid=MA004018


© 2023 The Author(s). Published by the Royal Society of Chemistry Mater. Adv., 2023, 4, 4238–4249 |  4239

parameter from unity implies structural distortion, resulting in
lower-symmetry structures, with space groups R3m, R3c, Cmcm,
I4/mmm, etc.30 Although the tolerance factor ensures that
the compound can be realized in a perovskite structure, the
so-formed composition need not be thermodynamically stable.
The thermodynamic stability of these compositions should be
typically analyzed by calculating the total energy difference
(including the contribution stemming from the free energy)
of the given perovskite phase from the lowest-energy phase
(Ehull) with an identical elemental composition in the same
stoichiometric ratio. This step is painstakingly lengthy, as it
demands large-scale, high-throughput calculations, whereby
the free energy of each composition (in the given stoichiometry)
is to be calculated by checking for all the different probable
symmetries it may assume. This becomes particularly time-
consuming for structures with low symmetry, which requires a
large number of force calculations to be performed for the
construction of the dynamical matrix.

Data-driven methods can be used as an alternative aid to
solve similar problems and gain further insight. These methods
can be applied on a data set containing ab initio results of a
given physical property under consideration (called the target
property) and some relatively less complex and physically
meaningful properties (called descriptors). The descriptors
can be used as fingerprints to explain and analyze the target
property. These methods, while aiding in the discovery of
new materials with improved properties, allow prediction of
new trends, hidden traits, anomalies, etc. Naturally, enormous
computational effort has been spent to build online reposi-
tories containing different physical properties of compounds,
which may be used to build meaningful machine-learning (ML)
models.32–42 Many works have been carried out in this regard.
ML models are being built to predict the inter-atomic potentials
to circumvent the problems associated with the use of DFT in
predicting various properties of materials, which may be com-
putationally expensive.43,44 While these methods are yet to be
tested for a wide variety of compound classes, researchers are
using ML to predict the stability of compounds. For instance,
tolerance factors, ionic radii, bond distances, etc., have been
used to build an ML model to categorize perovskites from
nonperovskites.45,46 ML models have also been built to predict
the crystal structure based on the tolerance factor.24 Structure
maps have been developed based on the bond lengths of A and
B cations with X anions, and formability has been predicted
using the tolerance factor.28 Bartel et al.47 defined a new
tolerance factor, by considering multiple A- and B-site cations
in double perovskites. They used SISSO,48 which is one of
the compressed-sensing techniques, for formulating this new
factor. Xu et al.49 built a machine-learning model using the data
available in the Materials Project database32 to identify form-
able single and double B-cation perovskites. Similar to form-
ability, machine-learning models have also been built to study
the thermodynamic stability of perovskites.50 Li et al.51 pre-
dicted the thermodynamic phase stability of ABO3 compounds
based on convex hull analysis. Balachandran et al.52 used the
ionic radii of elements to build an ML model for predicting new

cubic perovskite materials using an experimental database
of 390 perovskite compounds. Talapatra et al.53 studied the
overlap between the formable and thermodynamically stable
perovskites predicted using machine-learning models, and
predicted around 300 new compounds that are stable in their
perovskite structures.

All these works provide some critical insights for the pre-
diction and realization of new perovskite compounds. However,
the vibrational (or thermal) free-energy content of a composi-
tion, at any given temperature, plays a very crucial role in
determining its thermodynamic phase stability. The Ehull ana-
lysis reported in most literature focusing on high-throughput
studies, however, does not take this into account. Hence, the
energetically most stable phase, as concluded, may still not be
the most stable phase thermodynamically. To completely
define the thermodynamical stability, one needs to incorporate
the vibrational free energy of the compound at constant volume
(Helmholtz free energy, FH) and at constant pressure (Gibbs
free energy, FG). The vibrational free energy can be estimated
from the phonon frequency of the vibrational modes of a given
composition. Using ab initio DFT-based methods, one can
either employ finite displacement or perturbative approaches
to calculate these phonon frequencies. However, the procedure
is non-trivial, since it involves several force calculations for the
displaced or the perturbed structures. The exact number of
calculations that need to be performed depends on the sym-
metry of the considered unit cell. The lower the symmetry of the
crystal, typically the larger the number of force calculations that
are required for constructing the dynamical matrix.54,55 Hence,
most of the materials databases do not contain the vibrational
properties of the compounds. Few research groups have tried to
predict free energy using ML models with their own databases.
Legrain et al.56 built ML models for the vibrational free energy
and entropy of 292 compounds from Inorganic Crystal Struc-
ture Database (ICSD) entries in aflow.org repositories. They
used the elemental descriptors to predict various thermal
properties. They achieved an RMSE of 18.76 meV per atom
for the vibrational free energy. Bartel et al.57 used the SISSO
(sure independence screening and sparsifying operator)
approach to predict the experimental Gibbs free energy of
inorganic compounds. Yoon et al.58 used adaptive learning
techniques to build a generalized ML model for the Gibbs free
energy of 40 000 ICSD compounds. However, these works focus
on the generalization of models to predict the Gibbs free
energy, ignoring the temperature-dependent phase transition,
which cannot be represented by just the chemical composition.
Building ML models by incorporating inherent features of a
compound class is required to solve this problem.

We, therefore, perform harmonic vibrational calculations on
a set of perovskite compounds from the ICSD database with
Ehull r 80 meV. We first classify them as vibrationally stable
(with all real modes) or unstable (with large phonon instabilities)
by analyzing their harmonic phonon spectrum. A considerable
number (B32%) of compounds lying at the surface of the hull
are found to be vibrationally unstable. We thus prepare a data set
of 80 vibrationally stable compounds, along with their elemental
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and structural features. We employ one unique strategy to
predict the variation of vibrational free energy, FH, as a function
of temperature. We find that a third-order polynomial fit is
adequate to represent the temperature variation of FH. Thus,
we use ML to predict the coefficients of the polynomial fit.
A flowchart illustrating the steps in our study is given in Fig. 1.
Using our approach, a very accurate ML model is built to predict
the variation of free energy with temperature. Thus, using only
elemental and a few simple compound descriptors, the vibra-
tional free energy of the compounds can be predicted, in a way
that is fast, reasonably accurate and computationally inexpen-
sive. Finally, we analyze the role of different descriptors in
constituting the vibrational free energy.

2 Methodology
Classification of compounds

As the first step, a database is built by searching the
literature49,53 and existing materials databases, i.e. Aflowlib,
Materials Project, Inorganic Crystal Structure Database (ICSD),
and Open Quantum Materials Database (OQMD), for com-
pounds (Fig. S1 of the ESI†) with elements in the given
stoichiometry, i.e. 1 : 1 : 3, as in perovskite. A preliminary
run through more than 50 000 compounds gives a list of 3823
perovskite compounds. Out of these, 206 perovskite compounds
are filtered in steps using three criteria, viz. (a) a tolerance factor
of 0.7 o t o 1.1, (b) a negative formation energy and (c) an Ehull

less than 80 meV. These compound are shortlisted for DFT
calculations. DFT calculations (cf. Computational details) are

performed for complete structural relaxation and subsequently,
density functional perturbation theory calculations (cf. Computa-
tional details) are performed for plotting their phonon disper-
sions. Since the thermodynamic properties depend on the
frequency of vibration of the phonons, very accurate force calcula-
tions are carried out and the convergence of the phonon spectrum
is checked by using the supercell method. Compounds having no
vibrational instability, i.e. no negative phonon modes, in the
phonon spectrum (Fig. 2(a)) are considered as vibrationally stable.
Compounds with very small phonon instabilities (i.e., up to
0.3 THz in frequency) are also included in this list. This is because
such small phonon instabilities may be a result of some computa-
tional artifacts. All other compounds with large phonon instabil-
ities are concluded to be vibrationally unstable and discarded.

Construction of the descriptor sets

The descriptors used in this work are broadly classified as
elemental and compound descriptors. The elemental descrip-
tors, i.e. the physical properties of the elemental constituents
(cf. Table 2), are collected mainly from the python Mendeleev
library59 and also from Matminer.60 19 elemental descriptors
are collected for each of the three elements, totaling to
57 descriptors.

Since the compound descriptors may vary with different
numerical settings used in the theoretical calculations, we
extract them from the output of our DFT calculations
(cf. Computational details). Thereby, 12 compound descriptors
are collected (cf. Table 2), which are explained individually
below.

Fig. 1 Schematic diagram showing the criteria for screening of vibrationally stable perovskite compounds and construction of the data set containing
the descriptors for machine learning.
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1. The density, r, of the relaxed structures (in kg m�3).
2. Cohesive energy, Ecoh per f.u. (in eV), of the compound as

calculated from its total energy (E[ABX3]) and that of the
isolated atoms (taken as the reference chemical potential, viz.
mA, mB and mX)

Ecoh[ABX3] = E[ABX3] � mA � mB � 3mX (2)

3. The tolerance factor (1) and octahedron factor (3), which
are calculated using the Shannon ionic radii61 of the A, B, and
X ions;

m ¼ rB

rX
(3)

4. The nearest-neighbor distances between various atoms in
the unit cell of the relaxed structure are generalized and
considered as a set of descriptors. To keep all descriptors
identical for the cubic as well as non-cubic structures, the
means (%xAB, %xAX, and %xBX) and standard deviations (sAB, sAX,
and sBX) of the three non-unique bond distances (viz. A–B, B–X,
and A–X) are extracted from the relaxed geometry.

Target property

The target property in our problem is the Helmholtz free energy
(FH), as calculated using:

FH = F(0)
vib � TS (4)

where F(0)
vib is the vibrational free energy of the system at 0 K,

i.e. the zero-point energy (ZPE), T is the absolute temperature,
and S is the vibrational entropy of the system. FH (kJ mol�1) is
extracted from the output of the phonon calculations as the
target property. The temperature dependence of FH is analyzed
using exponential, sinusoidal, polynomial, etc. fits, out of
which the polynomial fit is found to fit well. The 3rd-order
polynomial fit is found to fit the FH vs. T curve perfectly, which
can be written using eqn (5) as a function of T:

FH = A � T3 + B � T2 + C � T + D (5)

where A, B, C, and D are coefficients of the fit. At absolute-zero
temperature, FH reduces to coefficient D, which is the ZPE of
the system. Thus, we learn the coefficients A, B, C and D for
predicting the variation of FH as a function of temperature.

Machine-learning model

To build the ML model, the performance of several different ML
algorithms is compared, viz. linear regression (LR), least abso-
lute shrinkage and selection operator regression (LASSO),
random forest (RF) regression, gradient boosting (GB) regres-
sion and Gaussian process regression (GPR), using the radial-
basis function (RBF) along with the white kernel and rational
quadratic kernel (henceforth referred to as GPR-1 and GPR-2,
respectively), which are available as part of the scikit-learn
package.62 Since our filtered data set comprises only 80 com-
pounds, the K-fold cross-validation method is first used to

Fig. 2 Phonon calculations performed for one of the selected perovskite compounds taken as a tentative example, viz. BaLiF3. (a) Phonon dispersion
plotted along the high symmetry path in the Brillouin zone with the acoustic modes shown in blue and optical modes shown in purple, (b) thermal
properties viz. the Helmholtz free energy – FH (kJ mol�1), entropy – S (J K�1 mol�1), and specific heat capacity at constant volume – Cv (J K�1 mol�1)
plotted as a function of temperature, and (c) 2nd- and 3rd-order polynomial fit to FH showing that the 3rd-order fit accurately matches the actual trend.
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make sure of the suitability of the model and avoid bias/
overfitting. In K-fold cross-validation, the data set is divided
into K subsets. The machine-learning model is then built using
K-1 subsets and tested on the rest. This process is repeated
multiple times with randomly selected subsets until conver-
gence in accuracy is reached. The performance of these models
is then judged based on two factors: the accuracy (R2 score) and
the root mean square error (RMSE). The accuracy gives an
estimation of the ability of the model to predict the accurate
target values. The closer the R2 score to unity, the better the
performance of the model. The R2 score is calculated as:

R2 ¼ 1� SSRES

SSTOT
¼ 1�

P
i

yi � ŷið Þ2P
i

yi � �yð Þ2
(6)

where SSRES is the sum-square of the regression error of
the predicted value (yi) and the actual value (ŷi) of each of the
individual target variables, while SSTOT is the sum of the square
of the yi’s from the average of the actual values (%y).

The RMSE indicates the variance of the residuals, which is
given by:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

yi � ŷik k2

N

vuuut
(7)

Machine-learning strategy

The ML models are built in several steps. In the first step, only the
elemental descriptors are used. A correlation heat map is plotted
for each of the individual elemental constituents. All the highly
correlated features with a correlation score of �0.9 are dropped.
Recursive feature elimination (RFE) is carried out to identify the
feature’s importance. The R2 score of the model is plotted as a
function of the number of features. The same procedure is
repeated after inclusion of the compound features in the feature
list. This entire procedure is repeated with different ML algo-
rithms and their performance is compared. Finally, one of the
compressed-sensing methods, SISSO48 is used to build a model
for the ZPE with combined but reduced dimensions using the
elemental and simple compound descriptors (see Computational
details section for details of the numerical settings used in SISSO).

Testing on unseen data

The coefficients obtained using the best-performing ML models
are used to predict the Helmholtz free energy of a set of

perovskite compounds that is unknown to the sample space
used to generate the models. Results of a few experimentally
observed compounds are then compared with the literature to
ascertain the utility of the ML models.

3 Results and discussion
Construction of the data set

As already mentioned before, our dataset contains 206 perovs-
kite compounds, which have negative formation energy and
an Ehull value of r80 meV in the Materials Project database.32

To remove any bias imposed from the symmetry of the com-
pounds, an equal distribution of cubic as well as non-cubic
structures has been maintained in the dataset. As the first step,
ionic as well as geometric relaxation of these structures is
carried out. Subsequently, the cohesive energies of the com-
pounds are calculated from the static total energy calculations
of the relaxed structures, which are found to be negative in all
cases. For all these structures, harmonic phonon calculations
are performed, whereby we have filtered the vibrationally stable
compounds (with no or negligible negative phonon modes) and
subsequently extracted the thermal properties of the com-
pounds. The final data set contains an even distribution of
compounds with different symmetries. Thereby, the final data
set comprises 21 cubic structures (i.e., in the Pm%3m space-
group), 26 trigonal structures (i.e., in space-groups R3c, R3m,
R%3c, R%3m, etc.) and 33 other structures (i.e. in space-groups
Cmcm, Pnma, etc.) as provided in Table 1 of the ESI.†

The thermal properties of the vibrationally stable com-
pounds are further calculated. The phonon spectrum
(Fig. 2(a)) and thermal properties of BaLiF3 have been discussed
as a representative case study. The Helmholtz free energy FH

(kJ mol�1), entropy S (J K�1 mol�1) and specific heat at constant
volume Cv (J K�1 mol�1) are plotted as a function of tempera-
ture T in Fig. 2(b). As already discussed in the methods section,
the main motivation of our study is to learn the T dependence
of FH. Fig. 2(c) shows the comparison of the 2nd- and 3rd-order
polynomial fit for the Helmholtz free energy FH as a function of
T. The 3rd-order fit (eqn (5)) ideally captures the variation.
Hence, the four coefficients (A, B, C and D) of this fit are learned
and predicted using ML.

Thus, the final data set of 80 perovskite compounds with 57
descriptors in total is obtained. As the first step, we analyze the
feature correlation to eliminate the strongly correlated features.
A high correlation between the descriptors may lead to over-
fitting of the model and hence, may decrease the accuracy of

Table 1 List of elemental and compound descriptors used to build our machine-learning models

Category Descriptors

Elemental Atomic number (Z), atomic mass (M), period (P), and group (G) number of the constituent elements in the periodic table, first
ionization energy (IEI), second ionization energy (IEII), electron affinity (EA), Pauling electronegativity (wP), Allen electronegativity
(wA), van der Waals radius (rvdw), covalent radius (rcov), atomic radius (ratomic), melting point (MP), boiling point (BP), density (r), heat
of fusion (DHfus), heat of vaporization (DHvap), thermal conductivity (k) and specific heat (cv)

Compound Density (r), cohesive energy per f.u. (Ecoh), tolerance factor (t), octahedron factor (m), and mean and standard deviation of neighbour
distances (%xAB, %xAX, %xBX, sAB, sAX, sBX)
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the model. The Pearson correlation coefficient heat maps for
both elemental and compound descriptors are shown in Fig. 3.
Pearson correlation coefficient between features is calculated as
given below.

r ¼

P
i

xi � �xð Þ yi � �yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

xi � �xð Þ2
P
i

yi � �yð Þ2
r (8)

Here, xi and yi are the values of two descriptors to be compared.
%x and %y are the averages of all values of these two descriptors in
the data set.

Using the above correlation score, strongly correlated
features (with correlation of 4�0.9) are dropped. Thus, out
of the correlated features, viz. atomic number, atomic mass,
and period, only atomic mass is chosen based on it’s highest
feature importance. The higher importance of atomic mass
may be related to the crucial role of mass in lattice vibration.
Similarly, all three different radii are found to be correlated and
thus, only the van der Waals radius of A and X elements is
retained. Also, the Pauling electronegativity, boiling point, and
heat of vaporization are removed, while retaining their signifi-
cantly correlated counterparts i.e., Allen electronegativity, melt-
ing point, and heat of fusion, respectively. The correlation
between compound descriptors is further calculated, which
has been shown in Fig. 3(b). The compound features are found
to be uncorrelated. After dropping all the correlated descrip-
tors, a total of 52 descriptors are left with which the ML models
are built.

ML is performed on the processed data set to build a regres-
sion model for the zero-point energy (ZPE), i.e. the coefficient D

of eqn (5), of the compounds. A 10-fold cross-validation (CV)
method is used for evaluating our models to make sure that
there is no bias due to the small size of our data set. In the first
step, the performance of models is compared to decide the
scaling method that is to be used. Since the descriptors used in
our models belong to different dimensions, their magnitude
varies in different ranges and thus, they need to be scaled to
improve the performance of our models. This is illustrated in
Fig. 4(a), where the performance of the models for unscaled,
standard scaled and min-max scaled datasets is compared.
As can be observed in the figure, scaling improves the perfor-
mance of the models considerably for GPR-1 and GPR-2.
In particular, the performance of GPR-2 is found to be very
poor for the unscaled data and hence it’s R2 score is not shown
in the figure. The standard scaler is chosen, which gives the
best results (with GPR-2) among all the models. To understand
the critical role of descriptors in the target property, the
descriptors are classified into three groups, viz. (a) elemental,
(b) compound, and (c) mixed. Subsequently, the R2 scores of the
models built using the elemental, compound, and mixed
descriptor sets are compared. The final set of 80 compounds
and their compound descriptors used in our data set are listed
in Tables S2 and S3 of the ESI.† Fig. 4(b) compares the
performance of the chosen algorithms for the different descrip-
tor sets. As can be seen from the bar chart, the combined set of
descriptors yields the best performance, while the elemental
descriptor set is a close second.

Once the descriptor set and scaling methods are decided,
the number of descriptors required is optimized to build the
best-performing model for the ZPE. The performance of various
ML algorithms is compared for the set of top 50, 40, 30, 20, and

Fig. 3 Correlation heat map plotted for (a) descriptors of one of the elements, viz. the element B presented as a representative case study (the heat maps
for elements A and X are provided as a part of the ESI†), and (b) compound descriptors of perovskites in our database. Descriptors with a correlation score
of �0.9 are concluded to be strongly correlated (symbols have their usual meaning as given in Table 1).
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10 descriptors in our data set. The top descriptors are decided
using the SelectKBest method provided by scikit-learn. The
comparison of the R2 scores for different models is shown in
Fig. 4(c). As can be observed, the GPR-2 algorithm gives the best
results with a CV score of 0.95 with the top 30 features. Except
for the LASSO algorithm, the performance of other models is
found to be comparable.

The top 15 descriptors for describing the ZPE are shown
with their importance score as per the SelectKBest method,
which is shown in Fig. 4(d). The atomic number and electron
affinity of the X atoms are found to be very important descrip-
tors. This is mainly due to the wide difference in the range
of ZPE that is observed depending upon the variation of
X elements in the perovskite. Other important features are
found to be the bond-distance averages and standard devia-
tions, the radius of A and X elements, heat of fusion of the B
element, the first ionization energy of the A atom, etc. These
properties directly or indirectly contribute to the bond strength

of the atoms in the crystal and hence to the vibrational
frequencies of phonons.

A CV score of 0.95 is obtained, from which it can be
concluded that our data set does not have a huge bias in the
samples and hence the model is built by splitting the data set
into test and train subsets. The train subset is used to build the
ML model and the test set is used as the unseen data to validate
the model’s performance. To decide the optimum size of the
training subset, we compare the R2 score and RMSE as a
function of the number of data samples in the train set. Both
R2 score and RMSE saturate at a train-subset size of 64 samples.
Hence, 64 out of 80 compounds are randomly selected for the
train set using scikit-learn methods and the remaining 16
compounds are used for testing. With this data set, we
obtain a best test R2 score of 0.97 and RMSE of 1.84 kJ mol�1

(18.9 meV per atom) for the zero-point energy, i.e. the coeffi-
cient D, which is comparable to the results of Legrain et al.56

The scatter plot of the testing set is shown in Fig. 5(d).

Fig. 4 (a) R2 scores of different ML algorithms for unscaled and scaled features, viz. with the standard scaler and min-max scaler. The standard scaler
was chosen to proceed further. (b) R2 score with elemental, compound, and combined descriptor sets. (c) R2 scores of different ML algorithms as a
function of the number of descriptors in the data set. (d) Feature importance of the top 15 descriptors, as predicted using the SelectKBest method.
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The above-mentioned approach is also used to build the ML
models for coefficients A, B, and C of eqn (5) (as shown in
Fig. 5(a)–(c)). Comparisons of cross-validation R2 scores of
different algorithms for coefficients A, B, and C are shown in
Fig. S3 of the ESI.† Fig. S4 in the ESI† depicts the important
features in the models built for these coefficients. The GPR-2-
based model worked best for coefficient A with an R2 score of
0.88 with 40 descriptors. For coefficient B, the maximum R2

score using GPR-2 is obtained as 0.93 with standard scaling and
40 top descriptors. For coefficient C, GPR-2 gave a best CV score
of 0.93 with 30 top descriptors using standard scaling. The R2

scores obtained for these models using test–train splitting are
found to be very high (i.e. 0.94).

To increase the accuracy of predictions and to gain further
insight into the role of descriptors, SISSO48 is used. With this
method, the descriptors can be reduced to highly important
compressed dimensions obtained by combining the original
descriptors. Details of the seven dimensions obtained from
SISSO are listed in Table 2, and yield a very highly accurate
model for the ZPE. By analyzing the top features, we observe
that most descriptors found in these complex dimensions are
also found to have good correlation with our target property.
For the ZPE, SISSO gives a dimension with a correlation score
as high as 0.96. This feature involves a square root relation to
the atomic radius of B and average AX bond length. The bond
distance and radii of the constituent elements dominate 6 out
of the 7 important features given by the SISSO algorithm. Some
exceptions are the electron affinities and the thermal features
like the melting points of constituent elements. Using the

non-linear dimensions from SISSO, a linear regression model
is trained, which yields a maximum R2 score of 0.99 and RMSE
of 0.74 kJ mol�1 (8 meV per atom). Fig. 6 shows the scatter plot
of predicted vs. calculated ZPE of the perovskite compounds in
our data set. The ML models built for the different coefficients
are used to predict the FH of several unknown compounds that
are not present in our original dataset. As a tentative case study,
the Imma and Pm%3m phases of EuNbO3 are selected, which are
known to show phase transition,63 i.e., at room temperature,
EuNbO3 exists in the orthorhombic (Imma) structure and
undergoes phase transition to the cubic (Pm%3m) structure
at 460 K. To verify the capability of our model to predict the
FH and the thermodynamic phase transition, the total energy,

Fig. 5 Calculated vs. predicted scatter plot of (a) coefficient A, (b) coefficient B, (c) coefficient C, and (d) ZPE using the GPR-2 model for the test set.
The R2 score and RMSE of the models are given within the graphs.

Table 2 List of top 7 dimensions as obtained from the SISSO algorithm for
the ZPE (symbols have their usual meaning as given in Table 1)

Dimension
Correlation
scoreffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ratomic;B þ �xAX
2
p � eGX þ e�sAX

� �
0.9614

rcov;B þ rvdw;A � �xAX

�� ��� rvdw;B þ sAX

expðEAXÞ
0.6654

8rvdw,A + rvdw,B � rcov,B � %xXX| � |rvdw,X + sAX � %xAB � %xXX8 0.6102
EAA � EAX

rvdw;B � �xAX
� rcov;B � �xAX

�� ��� �xAB � �xXXj j
� � 0.6046

rcov;B � Cv;B

rcov;B � �xAX

� �
� rvdw;A � �xXX

�� ��� sAB � �xABj j
� � 0.5556

rvdw;A � rvdw;X
�� ��� ratomic;B � rvdw;X

�� ��
rvdw;B � sAB � sBX � �xABj j

0.5544

wA,A
2 � MPA � MPB � (sBX � %xAB � |ratomic,B � sAB|) 0.5144

Paper Materials Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
A

ug
us

t 2
02

3.
 D

ow
nl

oa
de

d 
on

 7
/1

9/
20

25
 1

2:
04

:4
8 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3ma00216k


4246 |  Mater. Adv., 2023, 4, 4238–4249 © 2023 The Author(s). Published by the Royal Society of Chemistry

i.e., the sum of the DFT static energy (electronic and ionic) and
free energy (predicted from the model), is plotted as a function
of temperature for both the phases in Fig. 7. The phase

transition can be seen at B450 K, which is highlighted by the
crossover between the blue (Imma phase) and the green (Pm%3m)
curves. Similar verification is also performed for phase transi-
tions within different phases of BaBiO3, KCaCl3, CsSrCl3 and
LaAlO3, which are also found to be in agreement with the
literature.64–67 Even in compounds (viz. ErMnO3 and EuZrO3)
where phase transitions are not observed, the predicted stabi-
lities of different phases are found to be in agreement with
literature. The results for these compounds are given in the
ESI,† and the inputs and codes used for these predictions are
supplied in the github repository link included in the ESI.†

One of the main goals of our study is to understand the
underlying science in the variation of the free energy and
compound properties. By analyzing the correlation between
the different descriptors and their importance in the ML
models with good accuracy, further insights can be obtained.
The analysis of the correlation between the descriptors and the
target variables brings out some trends in the nature of the
vibrational free energy. It is observed that for higher free-energy
values, the 3rd-order variation of temperature, i.e., the contri-
bution arising from coefficient A, is negligible. Also, an increase
in the ZPE leads to a decrease in the curvature of the variation
of the ZPE with temperature. This can also be observed in the
bar charts in Fig. 8(a and b). The correlation of �0.99 between
coefficients A and B can also be exploited to increase the
prediction accuracy of models for coefficient A. Coefficient B
(predicted from our model) can be incorporated as a descriptor
to predict coefficient A.

A comparison of elemental descriptors shows that descrip-
tors corresponding to the X-site element are more correlated
to our target properties as compared to those corresponding to
A- and B-site elements. Fig. 8(a) shows a clear trend in the
variation of the ZPE (coefficient D) as the X-site element is
varied. ZPE values decrease as we move down the periodic table
within the same group (example: O - S - Se). Similarly, the ZPE
decreases as we move to the right in the periodic table (example:
N - O - F). This correlates with the variation in the atomic
radius of these elements, which in turn plays a role in the bond
formation in the perovskite structure. Elements at the A and B sites
do not show such high correlation with our target properties
(Fig. S6 and S7 in the ESI†). The atomic number, electron affinity

Fig. 6 Calculated vs. predicted zero-point energy (ZPE) plotted using the
7 dimensions obtained from the SISSO algorithm.

Fig. 7 Sum of the DFT static energy, E[ABX3], and Helmholtz free energy,
FH (predicted using our ML models), plotted as a function of temperature
(T) for two different phases of EuNbO3, i.e., Imma and Pm %3m.

Fig. 8 (a) and (b) Variation of ZPE (coefficient D) and coefficient A of the polynomial fit, respectively, for different elements at the X site. (c) and (d) Scatter
plots of ZPE as a function of mean A–X bond length and top dimension obtained from SISSO, respectively (all values are scaled).
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and atomic radius of the X element have 40.7 correlation with all
four coefficients in our study. Descriptors of element A also follow
a similar trend, although with a lower correlation. Descriptors of
element B show low correlation (o0.5) with the coefficients.
Similarly, when comparing the correlation of elemental descriptors
to the different coefficients, the element at site B becomes more
prominent in determining coefficient D or the ZPE. These correla-
tions are translated exactly to the feature importance for different
ML models built in our study.

Comparing the correlation of compound descriptors to our
target variables, it is more evident that compound descriptors
have higher correlation to the coefficients of fit. In particular,
mean bond lengths between the A and B elements and A and X
elements are found to be very important. However the standard
deviation between these bond lengths becomes less important
to coefficients A, B and C as compared to D. Fig. 8(c) shows the
scatter plot of ZPE as a function of mean A–X bond length,
indicating that moderate correlation exists between these two.
However, this correlation is enhanced by SISSO using non-
linear operators to combine multiple descriptors, as shown in
Fig. 8(d). The dependence of FH on the bond lengths is driven
by its direct correlation with the force constant required to form
the dynamical matrix, which depends on the strength of the
bonds and hence, the bond lengths. Thus, this is directly
reflected in the top descriptors obtained in our models.

4 Conclusion

In the context of perovskite research, predicting new stable
ones prior to their synthesis in the laboratory is a problem that
has acquired immense attention in the past. To date, many
researchers have attempted to solve this problem by perform-
ing high-throughput calculations using ab initio density func-
tional theory. The vibrational free-energy contribution to the
total energy is absolutely vital for the prediction of a given
perovskite composition as thermodynamically stable/unstable
in different temperature ranges. However, the calculation of the
free energy of vibration of a solid is computationally very
expensive, owing to the basic symmetry of the structure. The
lower the symmetry, the more force calculations are required
for constructing the dynamical matrix. In order to reduce the
computational cost of calculating the vibrational free energy,
machine-learning (ML) methods can be used. We perform
structural relaxation and harmonic vibrational calculations on
a set of 206 compounds with Ehull o 80 meV. Thereby, we filter
80 dynamically stable compounds with no/negligible negative
phonon modes by ensuring all the convergence criteria are met.
The phonon frequencies are used to calculate the Helmholtz
free energy of these compounds as a function of temperature.
We use polynomial fitting of the third order to depict the
temperature dependence of the vibrational free energy. Using
ML, we build regression models to predict the coefficients of
the polynomial fit using elemental and simple compound
descriptors. We obtain a highly accurate model for the zero-
point energy, as well as for all the other coefficients, with a

maximum R2 score of 0.97 and RMSE of 1.84 kJ mol�1

(18.9 meV per atom). Further, we use SISSO to reduce the
dimensions and with 7 combined dimensions, an unprece-
dented accuracy is achieved. Our models succeed in correctly
predicting the phase stability of many unseen compounds
(viz. EuNbO3, BaBiO3, CsSrCl3, etc.), which provides validation
of the utility of our models. This study thus offers a simple
route to predict the vibrational free energy of perovskite
compounds. Although the performance of the model may
improve with the inclusion of more sample points, the exis-
tence of the model definitely hints towards a cost-effective
pathway to predict the thermodynamic stability of a given
compositional space.

5 Computational details
Structure relaxation

We employ first-principles density functional theory (DFT)68,69

to calculate the structural and thermal descriptors of the
perovskite compounds. The calculations are performed using a
popular DFT code, VASP (Vienna Ab initio Simulation Program),70

which is a plane-wave-based electronic structure code. The gene-
ralized gradient approximation of Perdew, Burke, and Ernzerhof
(PBE)71 is used for the treatment of electronic exchange and
correlation. All numerical settings are chosen so as to ensure
convergence in energy differences to better than 10�5 eV and a
plane-wave cutoff energy of 520 eV. The atomic positions and
lattice vectors are fully relaxed for all structures using the con-
jugate gradient minimization algorithm. The forces are converged
to less than 10�3 eV Å�1. For all calculations, a converged
Monkhorst–Pack k-mesh grid is applied for the unit cell. For each
structure, ionic as well as geometric relaxations are performed.

Phonon calculations

With the relaxed geometry, the phonon band structure is
calculated using the density functional perturbation theory
(DFPT) method as implemented in the phonopy code.72

A converged supercell of 2 � 2 � 2 is used to calculate the
phonon band structure and thermal properties. The amplitude
of the displacements is fixed to 0.01 Å, and the forces are
converged to an accuracy of 10�3 eV Å�1. From the phonon
frequency details obtained using phonopy, we can get the
energy E of the phonon system as

E ¼
X
qj

�hoqj
1

2
þ 1

exp �hoqj

�
kBT

� �
� 1

" #
(9)

and vibrational FH as

FH ¼
1

2

X
qj

�hoqj þ kBT
X
qj

ln 1� exp ��hoqj

�
kBT

� �� �
(10)

where q represents the q-point and j represents the index of the
mode for the phonon frequency, o, at a given temperature, T.
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SISSO

In order to build a regression model with reduced dimensional
space for the ZPE, SISSO48 is used on our data set with elemental
and compound descriptors. We start with a total of 50 non-
correlated elemental and compound features with ZPE as the target
property. All features are scaled between 0 and 1 to avoid imaginary
features in the SISSO algorithm. The mathematical operations
used to generate the complex non-linear dimensions include the
operations O � fþ;�;�; =; jj; �1; 2; 3; ffip

;
ffi

3
p
; expðÞ; expð�Þg. The

combined features were built in 3 steps with descriptor sets F1,
F2, and F3 corresponding to increasing feature complexity. The
numbers of descriptors in F1, F2 and F3 are 1905, 1 740 446 and
1 853 192 759 494, respectively. The magnitude of correlation of
each feature is calculated during sure independence screening
(SIS) at each iteration, and subsequently, only the top 20 ranked
features are retained. At each iteration, O operates on all available
combinations, and B1012 features are constructed using a com-
plexity cutoff of 3 and dimensionality of 7.
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