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Machine learning-based q-RASPR predictions of
detonation heat for nitrogen-containing
compounds†

Shubham Kumar Pandey, Arkaprava Banerjee and Kunal Roy *

The quantitative Read-Across Structure–Property Relationship (q-RASPR) is a novel method for the

property predictions derived from the integrated concept of both similarity-based predictions (i.e., Read-

Across or RA) and statistical modelling-based predictions (i.e., Quantitative Structure–Property Relation-

ship or QSPR). The main performance index of ammunition used in air-to-air and underwater weapons

is the detonation heat energy. In the present work, we have applied the q-RASPR modeling approach

and various Machine Learning (ML) algorithms to predict the detonation heat (an intrinsic property) of

different N-containing compounds. The data set was collected from the literature, curated, and further

divided into training and test sets using the Euclidean distance-based algorithm. The feature selection

was done on the basis of internal validation metrics of Genetic Algorithm (GA) models. A Multiple Linear

Regression (MLR) QSPR model with 6 descriptors was selected, and the model features were used to

calculate the similarity and error-based RASPR descriptors. The RASPR descriptor matrix was then

merged with the features of the QSPR model. A grid search was performed for the selection of a

combination of descriptors which were then subjected to Partial Least Squares (PLS) regression to

obviate the inter-correlation among the descriptors. We have also employed various ML algorithms by

optimizing the hyperparameters based on a cross-validation approach and compared the final test set

prediction results. The PLS q-RASPR model was selected to be the best model based on the external

validation metrics and it also shows enhanced prediction quality using 2D-descriptors compared to the

previous model reported with 3D-descriptors. The developed model can be used for the detection of

the detonation heat of compounds containing nitrogen with an effective performance.

1. Introduction

Compounds or combinations of compounds with explosive
groups or oxidants and incendiary materials are known as high
energy density materials (HEDMs), as these are tiny, compact,
sensitive, and energetic.1 Depending upon the properties, con-
stitutions, and intentional applications, HEDMs can be explo-
sives, propellants, or pyrotechnics. Modern HEDMs should
possess a higher detonation performance (i.e., high detonation
velocity, high detonation pressure, and high heat of explosion)
along with higher stability (least chemical degradation, refuse
phase transition, non-responsive to unintentional mechanical
shock, friction, or non-mechanical stimuli like disclosure to
light, radiation in the infrared spectrum, electrostatic

discharge, etc.).2 Nowadays, civil and military are the prominent
fields where HEDMs are widely used. In terms of time and money,
the development, manufacturing, and testing of a new energetic
material is very costly. Therefore, the detection and elimination of
any poor-performing candidate through predictive capabilities is
highly efficient in the early stages of development.

Detonation is a chemical reaction that involves an explosive
material resulting in the production of a shock wave.3 The heat
of detonation (Q) refers to the quantity of heat energy liberated
by an energetic compound per unit mass when detonated. It is
one of the major thermodynamic features associated with the
performance of HEDMs.4 The heat of detonation is an intrinsic
property of HEDMs composed of chemical and physical para-
meters. Other performance parameters such as detonation
pressure and detonation velocities can also be calculated using
the heat of detonation.5 Chemically it depends on the type and
proportion of the detonation product, the heat of formation of
products, and the heat of formation of the energetic com-
pound, and physical factors governing the heat of detonation
are the loading density and the expansion ratio (of the gaseous
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products).6 For estimating the detonation heat of the explosive
materials one can use the condensed phase heat of formation
of the explosives and the standard heat of formation of the
detonation product. A positive heat of formation (per unit
weight) is advantageous for an energetic compound in order
to gain a higher release of energy upon explosion and an
improvement in performance.7–9 Structurally, explosives com-
prise various energetic functionalized groups known as explo-
sophores linked with carbon-rich backbones that act as fuel.
External oxidizers like ammonium perchlorate (NH4ClO4) and
ammonium nitrate (NH4NO3) are used to facilitate oxidation
and detonation of the main fuel. Combining fuel with oxidizer
fragments in explosives leads to the development of ‘green
explosives’.10 The introduction of nitrogen in the parent struc-
ture (i.e. an increase in the nitrogen/carbon ratio) leads to the
production of new high-performing, stable, and safer HEDMs
as their energy content is predominantly derived from the heat
of formation due to a large number of dynamic N–N and C–N
bonds instead of coming thoroughly from the heat of combus-
tion. Also, after detonation, the major product formed is the
dinitrogen (N2) gas which is nontoxic in nature so is less
hazardous for the user and is eco-friendly.11,12 N-containing
4-membered heterocyclic or heterocyclic compounds having
explosophores like nitro (–NO2), nitroso (–RNO), nitramino
(–NHNO2), amino (–NH2), azides (–N3), azo bridge (–NQN–),
nitrito (–ONO2), etc. are good candidates for designing newer
HEDMs. Energetic materials incorporated with ring/cage com-
pounds have the advantage of excess strain energy released
upon ring opening during the decomposition process and thus
possess high detonation energy.13 Some powerful HEDMs con-
tain units of 5-membered heterocyclic rings like furazan, fur-
oxan, isofurazan, and tetrazole leading to a higher compact
framework and positive higher enthalpies of formation
resulting in excellent detonation performances.14 The heat of
detonation of aromatic energetic compounds is different from
the detonation heat of non-aromatic compounds. So, separate
strategies have been developed to estimate the detonation
heat of aromatic and non-aromatic energetic compounds
respectively.7,15,16 Among the measured and predicted molecu-
lar properties, the heat of detonation is found to be straight-
forwardly related to the impact sensitivities of the explosives,
particularly within chemical families.17

The rapid growth and advancement in the computational
approaches for the prediction of the characteristic behavior of
compounds not only give promising results but also reduce the
hazard risk, and high cost for experimentation, and can screen
large data in a short period of time. Chemoinformatics models
can be used to calculate many physical and chemical properties
that are difficult to derive using theoretical methods such as
density functional theory (DFT) or molecular dynamics (MD).18

Because of the robustness and computational tractability, the
quantitative structure–property relationship (QSPR) has gained
a lot of attention for the prediction of the properties of
compounds. The primary algorithm in QSPR modeling is that
it includes one or more properties (dependent variables) along
with one or more descriptors/features (independent variables)

contributing to the property.19 Chemical read-across (RA) was
originally an unsupervised similarity-based approach for pre-
dicting the activity/property/toxicity of compounds. RA based
on similarity levels recognizes the close source compound for
each query compound. RA-based predictions either use the
analogue approach or the category approach to identify similar
compounds.20 The analogue approach uses a small number of
structurally-similar compounds with irregular patterns on the
properties. The simplest case of the analogue approach uses
only a single chemical as a source chemical for a single target.
If it uses more than one source or target, the evaluation has to
be repeated for each source and/or target compound. The
category approach uses a group of chemicals as source chemi-
cals having structural similarities. The groups are prepared on
the basis of defined structural similarities and differences
among the compounds.21 A combination of QSPR (supervised
learning) with RA (unsupervised learning) forms the basis
of a supervised learning algorithm called the Read-Across
Structure–Property Relationship (RASPR) which shows a better
predictive ability of the model than the conventional QSPR
technique.22 The fundamental premise of the quantitative
RASPR (q-RASPR) is the combination of important structural
and physicochemical descriptors with Read-Across-derived
similarity and error-based measures. The calculation of these
similarities and error-based measures uses the structural and
physiochemical descriptors and similarity-based approach
(Euclidean distance-based, Gaussian kernel similarity-based,
and Laplacian kernel similarity-based).23 q-RASPR models can
be developed using a variety of statistical techniques like
multiple linear regression (MLR), partial least squares (PLS),24

apart from sophisticated machine learning (ML) techniques.
Machine learning (ML) has emerged as one of the most
admissible and effective techniques for creating precise
models, particularly when dealing with complex nonlinear
data. Supervised learning (SL), unsupervised learning (UL),
and reinforcement learning (RL) are the three basic domains
of the ML technique. SL deals with labelled data having inputs
and known outputs, and thus is used to solve regression and
classification problems.25,26 Random forest (RF), artificial
neural networks (ANN), and support vector machines (SVM)
are commonly used machine learning algorithms for numerous
experimental studies.27

In the present work, we have established a q-RASPR model
by employing various ML algorithms for the determination of
chemical features contributing to the heat of detonation of
N-containing HEDMs and for the prediction of new query
compounds without having experimental heat of detonation.
As mentioned above, the incorporation of a nitrogen into the
parent structure or the addition of a nitrogen-containing sub-
stituent enhances the heat of detonation of the energetic
materials because of N–N and C–N energetic bonds. The
replacement of C-atom with nitrogen also leads to more release
of N2 gas simultaneously, lowering the amount of CO2 or CO
produced after decomposition and reducing the ill effect on
the environment. Our dataset contains both aromatic and non-
aromatic energetic compounds, and the prediction of the
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detonation heat does not involve any calculation of heat of
formation of either the energetic compound or of the detona-
tion product. This study uses a data set of 162 compounds
collected from the literature cited under the methods and
material section.

2. Material and methods
2.1. Data set

The values of detonation heat (expressed in KJ kg�1) of 162 N-
containing compounds were collected from previously published
literature1 and are available in the form of an Excel sheet in the
ESI† SI-1. The structures were prepared in MarvinSketch28 (ver-
sion- 5.5.0.1), the explicit hydrogen was added, the structure was
cleaned, and the aromatic rings were aromatized as applicable. A
chemical diversity plot (Fig. 1) was prepared using the molecular
weight and logPcons which shows the diversity in the chemical
nature of the compounds.

2.2. Descriptor calculation and data pre-treatment

Molecular descriptors are the quantitative values derived from
the structural information of the molecules. Different classes of
2D descriptors like molecular properties, 2D atom pairs, atom
type E-state indices, atom-centered fragments, functional group
counts, connectivity indices, ring descriptors, constitutional
indices, and extended topochemical atom (ETA) indices were
calculated using alvaDesc v2.0.6.29 These different classes of
descriptors are so chosen as they are highly interpretable and
are also efficient in the development of models as evident from
our previous experiences. A total of 689 molecular descriptors
were calculated initially.

The obtained descriptors were then subjected to a pretreat-
ment process using a java-based tool DataPreTreatmentGUI
1.2 available from https://teqip.jdvu.ac.in/QSAR_Tools/ to remove
the intercorrelated descriptors with a variance cut-off of 0.0001
and a correlation coefficient cut-off value of 0.95. In this process,
descriptors that are highly inter-correlated to each other and

descriptors with null or constant values for each data point are
obviated. After the pre-treatment process, a total of 473 descrip-
tors were left which were used for further study.

2.3. Data division

The division of the dataset is a necessary step prior to the
model development. To establish a powerful QSPR model with
good predictive ability the data set is divided into a training set
and a test set. In this work, the dataset was divided in a ratio of
75 : 25, constituting 122 compounds in the training set and 40
compounds in the test set using the Euclidean Distance-based
division algorithm30 with the help of a java-based tool dataset-
DivisionGUI1.2 available from https://teqip.jdvu.ac.in/QSAR_
Tools/. After division, the training and test sets were subjected
to pretreatment with the help of dataPreTreatmentTrainTest1.0
tool from https://teqip.jdvu.ac.in/QSAR_Tools/ to remove inter-
correlated descriptors. The development of the model is done
using the training set whereas the test set is used to check the
predictive ability and external validation of the developed model.

2.4. Feature selection and QSPR model development

The selection of important features contributing to the property
of compounds is a crucial step during the development of a
QSPR model.31 We have prepared several Genetic Algorithm
(GA)32 models using a java-based tool GeneticAlgorithm_v4.1
from https://teqip.jdvu.ac.in/QSAR_Tools/ and selected the
descriptors that appeared frequently in a maximum number
of models. The generation of GA models and feature selection
is done using the training set only without the involvement of
the test set. The training set and test set matrices with the
selected features were prepared. Furthermore, we have used the
Best Subset Selection v2.1 tool available from https://teqip.jdvu.
ac.in/QSAR_Tools/ to generate different MLR models with all
possible combinations of a given number of descriptors. A good
robust model was selected based on the cross-validation result
which is used for further q-RASPR analysis.

2.5. Optimization of the Read-Across hyperparameters

Identification of the optimized setting of hyperparameters (s, g,
number of close source/training compounds, and best
similarity-based algorithm) is an essential step for Read-
Across based prediction. As per the QSPR prediction principles,
hyperparameter optimization should be done on the basis of
training/source set only without any involvement of the test/
query set. The training set containing the descriptors involved
in the QSPR model was further divided into the corresponding
sub-train and sub-test sets. With the help of a java-based tool
Auto_RA_Optimizer-v1.0 available from https://sites.google.
com/jadavpuruniversity.in/dtc-lab-software/home, we have
selected the values for s and g to be 0.5, the number of close
training compounds to be 8, and the Gaussian kernel-based
similarity as our best similarity-based algorithm. Here, the
selection of hyperparameters was based on the maximum
occurrence frequency of individual hyperparameters obtained
during optimization using different sub-training and sub-testFig. 1 Chemical diversity plot.
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sets prepared through the division of the training set via
different algorithms.

2.6. Calculation of the RASPR descriptors

Before proceeding with the q-RASPR study, the prominent step is
to calculate the similarity and error-based RASPR descriptors33

(Table 1, ESI†) for the individual training set and the test set.
Unlike the calculation of structural and physiological descriptors,
the RASPR descriptors are calculated after the division process.
This is because the RASPR descriptors are calculated on the basis
of the similarity of query set compounds to the training set
compounds. The Gaussian kernel-based similarity descriptors
with s value 0.5 were calculated using a java-based tool RASAR-
Desc-Calc-v2.0 available from https://sites.google.com/jadavpuru
niversity.in/dtc-lab-software/home. For the calculation of RASPR
descriptors for the test set, we have used the training set and the
test set containing the selected physiochemical descriptors as the
input whereas for the computation of training set RASPR descrip-
tors only the training set is used as the input.

2.7. Feature selection and development of the q-RASPR model

Since the q-RASPR study is the combination of both QSPR and
RA-based predictions, it is necessary to combine the structural and
physiological descriptors with the similarity and error-based
RASPR descriptors. The 15 similarity and error-based descriptors
are fused with the previously selected structural and physiological
descriptors for respective training and test sets. A grid search was
performed to generate an MLR q-RASPR model with all the
possible combinations of a given number of descriptors using
the Best Subset Selection v2.1 tool available from https://teqip.
jdvu.ac.in/QSAR_Tools/. The optimization of the number of
descriptors was based on the Q2

LOO (cross-validation) metric. The
final PLS q-RASPR model was developed with the selected features.

2.8. Application of other machine learning (ML) algorithms

The predictive performance of the developed q-RASPR model
was further evaluated by applying various supervised Machine
Learning (ML) algorithms. We have used 7 different ML

algorithms to develop various regression models such as Ran-
dom Forest (RF),34 Adaptive Boosting (AdaBoost/AB),35 Gradi-
ent boosting (GB),36 Extreme Gradient Boosting (XGB),37

Support Vector Machine (SVM),38 Linear Support Vector
Machine (LSVM), and Ridge Regression (RR).39 Scaling of the
training and test sets data values was achieved using a Java-
based tool Scale1.0 from https://sites.google.com/jadavpuruni
versity.in/dtc-lab-software/home. With the help of a Python-
based tool Hyperparameter Optimizer v1.2 and the scaled data
of the training set, we have calculated the optimized hyperpara-
meters for each ML algorithm. The selection of the hyper-
parameters was based on the MAE results. Using the optimized
settings of the hyperparameters and the scaled training and test
sets, we have developed several ML models using a Python-
based tool Machine Learning Regressor v 2.0 available from
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/
home. The final selection of the best predictive model was done
based on MAETest results.

2.9. Statistical validation metrics

The developed models were evaluated for their predictability and
reliability in terms of various internal and external validation
parameters. Internally the model was evaluated on the basis of
determination coefficient (R2), adjusted R2 (R2

adj), Leave-One-Out
cross-validated Q2 (Q2

LOO), and root mean squared error of calibra-
tion (RMSEC) while the external statistical parameters involve the
calculation of R2

pred or Q2
F1, Q2

F2, Q2
F3, CCC, and root mean

squared error of prediction (RMSEP).40 Both internal and external
validation tests were done using the mean absolute error (MAE)
based criteria41 as Q2

ext does not always provide exact prediction
quality because of its dependence on the response range and
response value distribution in the training and test set compounds.

2.10. Applicability domain (AD)

The validity of the q-RASPR model is denoted by a defined
domain of applicability (OECD principle 3).42 AD43 represents
the response and chemical structure space which is defined by
the chemicals used in the development of the model (in the

Table 1 Detailed list of RASPR descriptors and their definition

S. No. RASPR descriptors Definition

1. RA function A composite function derived from Read-Across
2. MaxPos Similarity score of the closest positive source compound (with an observed response

value greater than the mean activity of the training set)
3. MaxNeg Similarity score of the closest negative source compound (with an observed response

value less than the mean activity of the training set)
4. Abs MaxPos-MaxNeg Absolute difference between the MaxPos and MaxNeg levels
5. SE Weighted standard error of the close source compounds’ response values
6. CVact Coefficient of variation of the close source compounds’ observed response values
7. SD_Activity Weighted standard deviation of the close source compounds’ observed response values
8. CVsim Coefficient of variation of the similarity values of the close source compounds
9. SD_similarity The standard deviation of the close source compounds’ similarity levels
10. Pos.Avg.Sim The positive close source compounds’ average similarity levels
11. Neg.Avg.Sim The negative close source compounds’ average similarity levels
12. Avg.Sim Average similarity level of the close source compounds
13. gm A novel concordance measure also known as Banerjee-Roy Coefficient
14. gm*SD_Similarity Product of the gm and SD similarity levels
15. gm*Avg.Sim Product of the gm and Avg. Sim levels

Paper Materials Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

4 
O

ct
ob

er
 2

02
3.

 D
ow

nl
oa

de
d 

on
 1

0/
5/

20
24

 1
:3

7:
53

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
https://teqip.jdvu.ac.in/QSAR_Tools/
https://teqip.jdvu.ac.in/QSAR_Tools/
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3ma00535f


© 2023 The Author(s). Published by the Royal Society of Chemistry Mater. Adv., 2023, 4, 5797–5807 |  5801

training set). The distance to model X (DModX) approach44 was
used with a 99% confidence level with the help of SIMCA
software (https://landing.umetrics.com/downloads-simca) to
check whether the compounds in the sets are within the AD.
In the DModX technique, the residuals of X and Y act as
diagnostic values for the quality of the model. The standard
deviation (SD) of X-residuals corresponds to the respective row
of residual matrix E. As SD is directly proportional to the
distance between the data points and the model plane in X-
space, it is commonly called DModX (distance to the model in
X-space). Those compounds which are present in the chemical
space can be predicted precisely and those lying outside the AD
are termed as outliers.

The detailed workflow is represented in Fig. 2.

3. Results and discussion
3.1. QSPR model development

The data set comprising 162 compounds with the detonation
heat energy and computed descriptors is provided in the ESI†
section. The training set consists of 122 compounds, while the
predictions and external validation were carried out using a test
set with 40 compounds. After the feature selection process, a
total of 6 descriptors were used to develop the final PLS QSAR
model with 5 latent variables as shown in eqn (1)

Q = 2504.432 + 264.478 � F01[N–O] � 151.749 � X%

+ 156.626 � SddsN + 297.997 � nCt + 2393.524

� EtaepsiD
� 284.446 � F01[C–F] (1)

n(Training) = 122, n(Test) = 40

R2
(Train) = 0.851, Q2

(LOO) = 0.832, R2
(adj) = 0.843, MAE(Train)

= 482.451

Q2
F1 = 0.921, Q2

F2 = 0.920, Q2
F3 = 0.916, CCC = 0.960, MAE(Test)

= 430.542

The developed model was statistically reliable as the internal
as well as external validation metrics were far above the
required threshold values.

3.2. Chemical Read-Across (RA) prediction

To perform the similarity-based Read-Across predictions, the
structural and physiochemical parameters of the developed
QSPR model were used. Hyper-parameters (similarity approach,
the number of close source compounds, s, and g) optimization
was done using the training set containing the selected vari-
ables. The training and test sets with the selected features were
used as the inputs for the RA predictions based on the different
similarity approaches like Euclidean distance-based similarity,
Gaussian kernel-based similarity, and Laplacean kernel-based
similarity. The results obtained show that the Gaussian kernel-
based similarity has the best predictive quality for the test set
(or query set) using the default hyper-parameters (close source
compounds = 8, s = 0.5, and g = 0.5) with Q2

F1 = 0.906, Q2
F2 =

0.905, MAETest = 418.004, and RMSEP = 580.938. The same
information of the hyper-parameters and Gaussian kernel-
based similarity were used to calculate the similarity and
error-based RASPR descriptors for individual training and test
sets respectively.

3.3. q-RASPR model development

Clubbing of the structural and physiochemical features with
the similarity and error-based measures was carried out before
further model development. The new descriptor matrix con-
tains information on both chemical structure attributes and
RA-based similarities. The training set formed after clubbing
the features was used for the selection of the important
contributing descriptors for the development of the models.
A 5-descriptor combination MLR model was prepared
based on internal validation metrics. Finally, a PLS model

Fig. 2 Workflow of the q-RASPR model development to estimate the detonation heat of N-containing compounds.
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was developed using the selected 5 descriptors with 4 latent
variables and was evaluated for its robustness, reliability, and
predictive ability using various internal and external validation
parameters. Eqn (2) (vide infra) shows the corresponding q-
RASPR model and the descriptors involved. Detailed informa-
tion of the descriptors is listed in Table 2. The Scatter plot
(Fig. 3) represents the observed and predicted detonation heat
energy values of individual training and test set compounds.
The graph infers that there is a low difference between observed
and corresponding predicted values of compounds present in
both the training set and the test set.

Q = 1930.622 + 217.106 � F01[N–O] � 78.832 � X% + 130.881

� SddsN + 237.814 � nCt + 0.536 � RA function (GK)
(2)

n(Training) = 122, n(Test) = 40

R2
(Train) = 0.846, Q2

(LOO) = 0.828, R2
(adj) = 0.839

Q2
F1 = 0.927, Q2

F2 = 0.927, Q2
F3 = 0.923, CCC = 0.963

MAE(Train) = 489.865, MAE(Test) = 395.705, RMSEc = 723.177,

RMSEP = 510.755

Additionally, we also checked for the structural outliers in
the training and test sets using the Williams Plot (Fig. 4). The

plot infers that two of the compounds from the training set and
one compound from the test set are structural outliers.

3.4. Descriptor interpretation of the PLS q-RASPR model

The descriptor RA function (GK) is a composite RASPR descrip-
tor that contains all the selected atomic as well as structural
information of the compounds. The RA function (GK) descriptor
contributes positively to the prediction of detonation heat energy
of N-containing compounds which is easily visualized in 3,6-
Bis(1H-1,2,3,4-tetrazolyl-5-amino)-1,2,4,5-tetrazine (12) where the
value of the RA function (GK) is more resulting in high detona-
tion heat energy while in 3,30-Azobis(6-amino-1,2,4,5-tetrazine)
(13), the RA function (GK) is low resulting in a low detonation
heat energy.

The descriptor nCt defines the number of tertiary carbons in
the compound and it contributes positively to the prediction of
detonation heat energy. Octanitrocubane (97) due to its cage-
like structure represents a total of 8 such tertiary carbons in its
structure present at the vertices. Compounds with ring/cage
structures can liberate more energy at the time of detonation
because of the excess strain energy associated with the ring.45

In isopentanetriol trinitrate (156), the value of detonation heat
energy is less as it contains only a single tertiary-carbon.

The descriptor F01[N–O] defines the frequency of N-O bonds
at the topological distance 1. This descriptor contributes posi-
tively to the value of detonation heat energy which can be seen
in 4,40-heavy (N-trinitroethyl-N-nitro)-3,30-difurazan (47) and
heavy (N-trinitroethyl-N-nitro)furazan (48) having 20 and 18
N–O bonds respectively and high detonation heat values, while
3-nitro-1,2,4-triazole (8) and 1-methyl-2,4-dinitrobenzene (19)
have 2 and 4 N–O in their structures respectively; hence, they
have low values of detonation heat. In the compounds, F01[N–
O] corresponds to the presence of explosophores in the form of

Table 2 List of descriptors and their contribution in the final PLS q-RASPR model

S. No. Descriptor Type Description Contribution

1. X% Constitutional indices Percentage of halogen atoms Negative (�ve)
2. F01[N–O] 2D Atom Pairs Frequency of N–O at topological distance 1 Positive (+ve)
3. nCt Functional group counts Total number of tertiary carbon Positive (+ve)
4. SddsN Atom-type E-state indices Sum of ddsN E-states (–NQ) Positive (+ve)
5. RA function (GK) RASPR descriptor All structural information Positive (+ve)

Fig. 3 Scatter Plot (Yobs vs. Ypred) for eqn (2).
Fig. 4 Williams plot (standardized cross-validated residuals vs. leverage
values).
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nitro (NO2), nitrito (ONO2), furazan ring, furaxan ring, etc.
leading to the production of more detonation heat energy.14

The descriptor X% depicts the percentage of halogen pre-
sent in the compound. This descriptor contributes negatively to
the value of detonation heat energy. This can be seen in 2,2-
difluoro-2-nitroethyl trifluoromethane-sulfonate (65) with a
high halogen percentage and showing the least value of deto-
nation heat among all the 162 compounds whereas methyl
4-fluoro-4,4-dinitrobutyrate (76) has the lowest halogen percen-
tage and have a greater value of detonation heat energy. In
trifluoromethane-sulfonate (65), the electronegative fluorine
atom is situated close to the positively charged nitrogen (more
energy, less stable), therefore stabilizing its energy due to ion–
dipole interaction resulting in a decrease in detonation energy.

The descriptor SddsN describes the atom-type E-state
index for –NQ groups (nitro) and contributes positively to the

detonation energy. The nitrogen present in the form of the
nitro group is in a high energy state (higher oxidation state in
nitro) which after explosion forms inert N2 gas (lowest oxida-
tion state) and hence releases more energy.10 Pentaerythritol
tetranitrate (135) and 1-nitropiperazine-2,3-co(1 0,3 0-dinitroimi-
dazolidinone-20)-5,6-nafurazan (45) have higher SddsN values
compared to hexanitrodiphenyl sulfide (38) and tetranitrogly-
coluril (108), respectively, with a lower E-state index for the
–NQ group showing lower detonation energy.

The descriptors with their respective VIP levels and com-
pounds with higher and lower detonation heat energy values
associated with individual descriptors are represented in Fig. 5.

3.5. Predictions through various ML models

We have also employed different machine-learning algorithms
for the prediction of the detonation heat energy of N-containing

Fig. 5 Variable importance plot with structural representations of molecules with higher and lower Q values.
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compounds. Here, in this work, we have applied 7 different ML
algorithms to develop our models and check their predictive
performance. Before applying different ML methods, we have
scaled both the descriptor matrix and the response values of
individual training and test sets using a java-based tool Scale1.0
available from https://sites.google.com/jadavpuruniversity.in/
dtc-lab-software/home. For the optimization process, we have
used a python-based tool Hyperparameter Optimizer v1.2 avail-
able from https://sites.google.com/jadavpuruniversity.in/dtc-
lab-software/home and performed a grid search for optimizing
the hyper-parameters of each method using the scaled training
set as the input. The results of RF and Adaboost/AB show that
these models are not robust as the difference between the
values of R2 and Q2

LOO is high and hence are not reliable.
The predictive performance of Gradient boost, XGBoost, and
ridge regression are almost similar to our developed PLS
model. Based on the MAETest results, the Gradient boost model
shows the best predictive performance with the lowest error. To
check the quality of the models we have checked MAE from
cross-validation (CV), i.e. leave-one-out CV, 20 times 5 fold CV,
and shuffle-split CV with n_splits = 1000. The MAE CV results
of RF, AB, GB, and SVM models have increased significantly
which shows the models are of inferior quality in comparison
to other models. In comparison, it was found that the PLS and
RR models have efficient predictive performance in terms of
Q2

F1, Q2
F2, MAEP, and RMSE and RMSEp. So, on the basis of

RMSEP criteria, we have selected the PLS q-RASPR model as the
best model for the prediction of both the training and test
sets. The validation metrics of all the models are represented in
Table 3.

3.6. Interpretation of the PLS plots

To identify the outliers in the respective training set and test set,
the DModX (distance to model X) AD plots (see Fig. S1 in the
ESI† SI-2) were prepared for the training set and the test set, and
it shows that there are 2 outlier compounds in the training set
while no compounds from the test set were outside the applic-
ability domain (AD). To determine the relationship between the
X-variables (descriptors) and the Y-variable (property) and also
obtain an idea about the variable importance, we have prepared
the loading plot (see Fig. S2 in the ESI† SI-2) developed using the

first and second PLS components. The interpretation of the plot
depicts that the descriptors situated at a greater distance from
the origin have more impact on the Y-variable (here the
property). In the plot, RA function (GK) and X% descriptors
were the farthest from the origin showing their larger impact
on the prediction of detonation heat which can also be verified
from the VIP plot (Fig. 5) showing their VIP score 41. The
coefficient plot (see Fig. S3 in the ESI† SI-2) shows the standar-
dized regression coefficient values of each descriptor of the
model. The bubble plot (Fig. 6) shows the standardized regres-
sion coefficient of the descriptors on the Y-axis and the size of
the bubble corresponds to their importance (VIP levels). The
score plot (Fig. 7) was prepared using the first two PLS compo-
nents for the training set. The score plot for the training set
contains a total of 4 outliers. We have also performed Shapley
Additive exPlanations (SHAP) analysis46 (Fig. 8) to determine
the contribution of each feature to the outcome of the model
(i.e. detonation heat). The SHAP analysis for the training set
shows that the F01[N-O] is the most important descriptor for
the prediction of detonation heat while in the case of the test
set, the RA function (GK) has the highest impact on the
detonation heat prediction. The nCt descriptor is of the least
importance for both the training and test sets.

Table 3 Comparison between the performances of different q-RASPR models

q-RASPR
models

Training set statistics Test set statistics

Optimized hyperparametersR2 Q2
LOO MAEC MAELOO

MAE � SEM
(20 times
5 fold CV)

MAE � SEM
(Shufflesplits CV
n_splits = 1000) RMSEC Q2

F1 Q2
F2 MAEP RMSEP

PLS 0.846 0.828 0.265 0.28 0.29 � 0.006 0.29 � 0.0016 0.391 0.927 0.927 0.214 0.276 (LV = 4)
RF 0.957 0.722 0.142 0.36 0.36 � 0.007 0.36 � 0.0016 0.206 0.885 0.884 0.242 0.347 (n = 120, leaf = 1, split = 3, depth = none)
AB 0.864 0.677 0.301 0.41 0.42 � 0.008 0.41 � 0.0016 0.367 0.859 0.858 0.284 0.385 (n = 60, loss = linear)
GB 0.878 0.750 0.226 0.33 0.34 � 0.007 0.34 � 0.0016 0.349 0.925 0.925 0.199 0.280 (n = 150, leaf = 1, split = 2, depth = 1)
XGB 0.840 0.825 0.267 0.28 0.29 � 0.006 0.29 � 0.0025 0.399 0.926 0.925 0.213 0.279 (n = 60, depth = 5, booster = gblinear,

learning rate = 0.1)
SVM 0.885 0.747 0.212 0.31 0.32 � 0.008 0.32 � 0.0016 0.337 0.854 0.853 0.224 0.391 (C = 5.0, Degree = 2, Gamma = auto)
LSVM 0.831 0.824 0.270 0.28 0.29 � 0.006 0.29 � 0.0016 0.409 0.916 0.915 0.223 0.297 (C = 25.0)
RR 0.847 0.829 0.264 0.28 0.29 � 0.006 0.29 � 0.0013 0.390 0.927 0.926 0.214 0.277 (a = 1.0)

Fig. 6 Bubble plot of the q-RASPR model depicting the contribution of
the descriptors.
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4. Comparison of the q-RASPR model
with other models
4.1. Comparison with the present QSPR model

We have compared the results of the developed q-RASPR model
with our own QSPR model (Section 3.1). The chemical informa-
tion associated with both the models is the same as the features
appearing in the QSPR model and was used for the RASPR
descriptor calculation and further model development.
Although the internal validation metrics were comparable
for both QSPR (R2

(Train) = 0.851, Q2
(LOO) = 0.832, MAE(Train) =

482.451) and q-RASPR (R2
(Train) = 0.846, Q2

(LOO) = 0.828,
MAE(Train) = 489.865) models, the results of the test set prediction

of the q-RASPR model (Q2
F1 = 0.927, Q2

F2 = 0.927, MAE(Test) =
395.705) were better than the QSPR model (Q2

F1 = 0.921, Q2
F2 =

0.920, MAE(Test) = 430.542) in terms of MAE(Test). The external
validation results show that there is an enhancement in the
prediction quality of the q-RASPR model. It should also be noted
that the q-RASPR model is developed using 5 descriptors while
the QSPR model has 6 descriptors. This depicts that the q-RASPR
model with a lower number of descriptors is more efficient in the
prediction of detonation heat with the same type of chemical
information.

4.2. Comparison with the previous model

The previous QSPR study was performed using the random
forest (RF) algorithm using a set of 3D-descriptors. Our
q-RASPR model shows better predictive results in terms of
Q2

F1 and RMSEP with a lower number of descriptors. It should
also be noted here that we have only used the 2D-descriptors
which do not need prior structure optimization, unlike com-
puting 3D-descriptors. A comparison of different validation
metrics of our model with the previously developed model is
given in Table 4.

5. Conclusion

The present work reports a q-RASPR model developed using a
step-wise process of data point collection, computation of
molecular structures, descriptor calculation, pre-treatment,
data division, feature selection, QSPR model development,
Read-Across predictions, calculation of RASPR descriptors, data
fusion and finally feature selection to develop the final q-RASPR

Fig. 7 Score plot of the q-RASPR model for the training set.

Fig. 8 SHAP analysis for the training set (A) and test set (B) for the
developed PLS model.

Table 4 Comparative results of the previous model with our q-RASPR model

Models No. of descriptors R2 RMSEC Q2F1 RMSEP

He et al.1 7 0.965 377.8 0.880 641.8
Our q-RASPR model 5 0.846 723.177 0.927 510.755
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model. Initially, an MLR q-RASPR model was selected based on
the cross-validation result, and thereafter the corresponding
PLS model was developed with a lower number of latent
variables. The authors have also employed various ML algo-
rithms for predicting the detonation heat through the genera-
tion of different ML-based models. Furthermore, different
cross-validation strategies such as leave-one-out (LOO), 20
times 5-fold CV, and shuffle-split CV (n-splits = 1000) were
performed for each model to detect any over-fitting in the
models. A comparison between the predictive performances
of all the developed models was made as shown in Table 3. The
selection of the final model (here PLS) was done on the ground
of an error-based measure, i.e. Root Mean Squared Error of
Predictions (RMSEP) of the test set compounds, i.e. RMSEP. The
purpose of this study was to develop an efficient model to
predict the detonation property of N-containing compounds in
terms of detonation heat. The study represents the develop-
ment of a novel q-RASPR model in accordance with the OECD
guidelines and is highly robust, easily interpretable, and repro-
ducible. The developed model can be used to prepare new and
efficient nitrogenous compounds with better detonation per-
formance in measures of the detonation heat and to predict the
detonation heat of a new compound.
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