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Inorganic nanoparticles show promising properties that allow them to be efficiently used as drug carriers.

The main limitation in this type of application is currently the drug loading capacity, which can be over-

come with a proper functionalization of the nanoparticle surface. In this study, we present, for the first

time, a computational approach based on metadynamics to estimate the binding free energy of the doxo-

rubicin drug (DOX) to a functionalized TiO2 nanoparticle under different pH conditions. On a thermo-

dynamic basis, we demonstrate the robustness of our approach to capture the overall mechanism behind

the pH-triggered release of DOX due to environmental pH changes. Notably, binding free energy esti-

mations align well with what is expected for a pH-sensitive drug delivery system. Based on our results, we

envision the use of metadynamics as a promising computational tool for the rational design and in silico

optimization of organic ligands with improved drug carrier properties.

1. Introduction

In recent years, nanoparticles (NPs) of different compositions
have greatly contributed to the field of biomedicine.
Researchers have been developing novel nanoparticles for both
(i) diagnosis, using imaging technologies, and (ii) treatment
purposes, through drug delivery technologies. Nanostructured
materials, indeed, have unique features and capabilities that
make them suitable for specific interactions with biosystems
(proteins, lipids, or other metabolites) that, in turn, can influ-
ence the properties and the biological reactivity of the nano-
materials.1 In particular, NPs have been studied as drug car-
riers for targeted drug delivery towards tumor cells. Often,
when it comes to antitumoral therapeutic agents, the selecti-
vity of the treatments does not meet expectations: the tumor
cells cannot be completely killed, and the side effects cannot
be prevented.2 For this reason, NPs can be rationally designed
to discriminate between normal and tumor sites and to release
the therapeutic agents at the tumor sites3,4 selectively. A crucial
role in the efficacy of the NP system is played by its dimensions:

NPs of small sizes and spherical shape5,6 are frequently pre-
ferred because of their ability to remain in the blood circulatory
system for a prolonged period of time, resulting in an increase
in their penetration into tumor blood vessels and, in the end,
in a facilitated drug uptake by tumor cells.7

Currently, several targeted drug release strategies are used
based on the different growth, proliferation and metabolism of
tumoral tissues. Such unique characteristics allow drug deliv-
ery systems to attack the tumor selectively and effectively,
based either on biochemical (pH, redox potential, enzymatic
activity, and hypoxia) or pathological (abnormal vascular struc-
ture and overexpression of receptors) differences.8,9 The pH
value of tumor cells’ microenvironment is one of the most
widely investigated features. Due to their faster growth rate,
tumoral cells produce a large amount of lactic acid from
glucose to provide enough energy for tumor growth. The acidic
extracellular pH is a universal characteristic of solid tumors.10

For this reason, many novel pH-responsive nanosystems have
been developed in the last few decades. Some of them can
change their physical properties (shape, size or rigidity),
chemical properties (hydrophilicity/hydrophobicity, isomeriza-
tion, or surface charge) or even conduct chemical reactions
under pH variation.11–15 The mechanism of pH-triggered drug
delivery mainly includes pH-sensitive bond cleavage and
proton transfers, which should be better exploited to design
smart and responsive drug delivery systems.

In recent years, inorganic NPs have shown great potential
as drug delivery systems.16 They are small particles with
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special and enhanced physical and chemical properties
depending on their particle size. The advantages of using in-
organic nanoparticles rely on their very low toxicity profile, bio-
compatibility, and hydrophilic nature; they are not subject to
microbial attack and are extremely stable. Among the most
common inorganic NP materials are silver, gold, calcium phos-
phates, silica, iron oxide, titanium dioxide, and fullerenes.1,5,17

Among them, titanium dioxide (TiO2) NPs stand out because
they are cheap, easy to prepare and can be functionalized with
anchoring ligands, and they act as highly efficient photosensi-
tizers.18 An example of TiO2 NPs’ application as drug delivery
systems is provided by the work of Wang et al., where folate
ions were covalently bonded to polyethylenimine-functiona-
lized TiO2 NPs to obtain a targeting anticancer drug carrier for
paclitaxel.19 In particular, folate molecules enhance the selec-
tive delivery to tumor cells, as folate receptors are over-
expressed in cancer cells. Moreover, Zhang et al. found that
daunorubicin, a molecule with a broad spectrum of anti-tumor
activity, can be loaded on TiO2 NPs and that its release is
faster at pH 5.0 and 6.0 than at pH 7.4.20 In addition, Wu et al.
used TiO2 NPs functionalized with flavin mononucleotides for
the delivery of the anticancer drug doxorubicin (DOX).21 DOX
is a conventional chemotherapy drug that belongs to the
anthracycline family that intercalates in the DNA double helix,
thereby preventing DNA replication and cell division pro-
cesses.22 The loading of DOX on the NPs functionalized with
flavin mononucleotides allowed NPs’ internalization in BT-20
cells and led to cell death. DOX was also successfully loaded
by Qin et al. on TiO2 NPs functionalized with TETT (N-(tri-
methoxysilylpropyl)ethylenediamine triacetic acid trisodium
salt) ligands.23 TETT ligands induce NPs’ water dispersibility
and allow non-covalent drug loading, therefore preserving the
biological and pharmaceutical activities of DOX.

Computational nanomedicine is a growing field, with the
need for theoretical models capable of simulating more and
more realistic nanodevices in terms of both their dimensions
and the conditions of the surrounding environment.
Nowadays, the affinity of a drug for its target protein is routi-
nely tackled by molecular docking or more advanced mole-
cular dynamics (MD) techniques. However, only a few studies
addressed the problem of drug-loading mechanisms on or
into NPs. Regarding drug binding to a target protein, methods
based on MD have gained increasing attention for their higher
accuracy in considering the protein conformational
flexibility.24–26 These methods can be classified into two cat-
egories:27 those mainly focused on the bound and unbound
states for estimation of the binding free energy28–31 and those
aimed at reproducing the physical pathway (PP) of drug
binding.32–40 This last category of methods simulates the com-
plete binding and/or unbinding events, and, in principle, they
can lead to the calculation of both thermodynamic and kinetic
properties41 and the characterization of relevant states along
the pathways. In particular, metadynamics (MetaD) is a widely
used method for the investigation of drug binding to its
target.42–51 The critical aspect of MetaD is the choice of a suit-
able set of collective variables (CVs) that describe the event

under investigation. Neglecting a relevant CV may lead to a
non-converged value of the free energy.52–55

Here, we used the MetaD approach to study the binding
mechanism of DOX to a TiO2 NP functionalized with TETT
molecules. Despite the wide use of MetaD in protein–drug
studies, to the best of our knowledge, this is the first attempt
at its application on an NP–drug system. For this reason, part
of the work was devoted to developing an accurate MetaD pro-
tocol. The principal difference with protein–drug studies lies
in the presence of multiple, similar, but not identical, binding
spots on the functionalized NP surface, which may establish
different interactions with the drug. MetaD accelerates the
simulation of binding and unbinding processes, allowing one
to sample most of these interaction sites, collecting the
average free energy of binding. Moreover, given the importance
of modeling pH conditions, which influence the strength of
the interaction, we performed MetaD calculations at different
protonation states of the TETT ligands. The MetaD protocol
developed herein turned out to be robust, providing similar
binding free energies using different sets of CVs, and captured
the decrease of DOX affinity that follows the reduction of pH.
The obtained results are in line with what is expected for a pH-
sensitive drug delivery system and are promising for the devel-
opment of a computationally driven design of NP functionali-
zation that optimizes the selective drug release under certain
pH conditions.

2. Computational details
2.1 System preparation

The starting point geometry of the TETT functionalized
anatase TiO2 NP (Fig. 1) is a result of previous works.56–58 The
TiO2 spherical NP model was carved from a large bulk anatase
supercell with a diameter of 2.2 nm. Only atoms within that
sphere were considered. The 3-fold and some 4-fold co-
ordinated Ti atoms or mono-coordinated O atoms were either
removed or saturated with OH groups or H atoms, respectively.
In other words, we used a small number of dissociated water
molecules to achieve the chemical stability of the nano-
particles, with a resulting stoichiometry of (TiO2)223·10H2O
(699 atoms). This model then underwent simulated annealing
at 700 K at the DFTB level of theory and full atomic relaxation
at the hybrid DFT level.57 In a following work,58 this NP model
was fully decorated with forty TETT linkers anchored in a
monodentate, bidentate or tridentate fashion through the for-
mation of Si–O–Ti bonds between the silanol group of TETT
and 4-fold and 5-fold coordinated Ti atoms and simulated
through DFTB-molecular dynamics at 300 K.56–59

The same starting point geometry was used in a previous
MD work by some of us.60 The protonation state of TETT ioniz-
able groups was assigned to model specific pH conditions.
According to the pKa values for the ionizable groups of TETT,
we either removed one or two protons from the three car-
boxylic groups of each TETT ligand to mimic acidic or neutral
pH conditions, respectively. Protons were removed from the
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carboxylic groups that lie at the furthest extremity of the TETT
chain tail since they are more exposed to the solvent and,
therefore, are expected to be the most acidic (labelled with one
star in Fig. 1). In this work, we used some very recently devel-
oped parameters for TiO2

61 that were reported to improve pre-
vious ones by the same group62 and others by Matsui and
Akaogi.63 TETT (in the different protonation states), and DOX
molecules were parametrized using the GAFF2 force field with
atomic partial charges obtained following the standard
restrained electrostatic potential fitting protocol64 (RESP) on
the single molecules using the 6-31G* basis set at the Hartree–
Fock (HF) level of theory. The system was then immersed in a
large octahedral box (boundaries at 20 Å from the solute) of
TIP3P65 water molecules and neutralized with Na+ ions using
the GROMACS preparation tools.66 All the subsequent energy
minimization calculations and MD simulations were per-
formed using the GROMACS MD engine.66

2.2 Equilibration protocol

The solvated system was subjected to 2000 steps of the steepest
descent energy minimization, followed by a Berendsen NVT
dynamics that heated the system from 0 to 300 K in 500 ps.
During this simulation phase, all TETT and DOX heavy atoms
were restrained to their initial position with a force constant of
1000 kJ mol−1 nm−2. The Particle Mesh Ewald method67 was
used to treat long-range electrostatic interactions with the
cutoff distance set at 12 Å. Short-range repulsive and attractive
dispersion interactions were simultaneously described by a
Lennard-Jones potential, with a cutoff at 12 Å. A time step of
2.0 fs was used, together with the SHAKE algorithm, to con-
strain H-involving covalent bonds. During the production
phase (NPT in water), the restraints were removed, the thermo-
stat was switched to the V-rescale,68 and the pressure was set
to 1 bar with the Parrinello–Rahman barostat69 (coupling con-
stant of 2.0 ps). To avoid deviation from the QM-optimized

conformation of the NP, we also restrained the NP oxygen and
titanium atoms during all the equilibration steps and the fol-
lowing MetaD simulations with a force constant of 10 000 kJ
mol−1 nm−2. The same approach was applied in previous
works.70,71

2.3 Metadynamics simulations

In MetaD33,54 a system is biased along a set of CVs using a
history-dependent potential. To achieve this, a Gaussian-
shaped potential is added to bias the system at the current
position of the CVs, at regular time intervals. This allows the
system to escape from any local minimum and to visit new
regions in the space of CVs. In Standard MetaD (St-MetaD),
the Gaussian-shaped potential has a constant height to push
the system to visit even high free energy regions. While, in the
Well-Tempered MetaD72 (WT-MetaD) approach, the height of
the Gaussian is decreased with the amount of bias already de-
posited according to:

w ¼ w0e
� Vðs;tÞ

ΔT

� �
τG

where w0 is an initial Gaussian height, ΔT an input parameter
with the dimension of a temperature, and τG is the time inter-
val at which Gaussians are deposited.72 In this work, we per-
formed both St-MetaD and WT-MetaD, biasing a different set
of CVs that are designed to describe different properties of the
system during the binding process. They are shown in Fig. 2
and can be described as follows:

1. d: the distance between the DOX nitrogen atom, and the
closest NP atom;

2. Φ: the angle formed by the center of the NP, the DOX
nitrogen atom, and the carbon on the opposite side of the
anthraquinone ring;

3. C: the number of carboxylic groups H-bonded to the DOX
amino group (coordination number).

Fig. 1 Chemical structures of TiO2 NPs decorated with TETT chains (left), TETT (middle), and DOX (right) molecules. Carboxylic groups of TETT that
were deprotonated in simulations are labelled with one star, while the one that remains neutral is labelled with two stars.
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The first two CVs were considered in a previous work in
terms of interesting parameters for a fair representation of the
distribution of the DOX states sampled during the unbiased
MD simulations.60 The third CV is selected in this work to
describe the interaction of the (positively charged) DOX amino

group with the carboxylic tails of TETT, which we expect to be
critical for the investigation of the pH effect on the drug
binding. We are aware that the chosen set of CVs does not
describe the relative position of the drug with respect to the
nanoparticle. This type of description would require two
additional CVs related to the drug’s polar coordinates with
respect to the NP center. However, since we want to keep the
number of CVs at most two, for an efficient MetaD run, and
since we expect the drug to sample spontaneously different
regions of the NP surface, we decided not to include these two
additional CVs.

In all the simulations we used a height of the gaussian hills
of 0.5 kJ mol−1. Biasing only one CV, we increased the pace of
the deposition from 1 ps to 3 ps. The bias factor used in
WT-MetaD was set to 10. The width of the gaussian hills was
set to about one-third of the standard deviation of the CV
during previous unbiased MD simulations of a DOX bound to
the functionalized NP. An upper wall at a d value of 33 Å was
applied. A summary of the MetaD parameters of all the simu-
lations is provided in Table S1 in the ESI.† Similar parameters
were used in protein–ligand or RNA-ligand MetaD
simulations.42,73–76 The convergence of the simulations was
assessed by estimating the free energy difference between the
bound state (d between 2 Å and 18 Å) and the unbound state
(d greater than 25 Å). For the CV describing the coordination
of DOX nitrogen by the TETT carboxylic group, we used a
switching function with an R_0 value of 5.0 Å.

2.4 Self-organizing maps

A self-organizing map (SOM) is an unsupervised learning
method that allows the visualization of multidimensional data
in a low-dimensional representation and their clustering by
keeping similar input data close to each other in the map.77–79

Several applications of SOMs to the analysis of biomolecular
simulations can be found in the literature ranging from the
clustering of ligand poses in virtual screening80 to the cluster-
ing of protein conformations from MD trajectories77,81 and
analysis of pathways in enhanced sampling MD
simulations.82–84 In this work, we used the PathDetect-SOM
tool85 to investigate molecular features of the sampled bound
states and recognize differences in the configurations sampled
during the MetaD simulations. For the SOM training, we used
a 10 × 10 toroidal SOM (with periodicity across the boundaries)
with a hexagonal lattice shape. The input features to train the
SOM were computed on St-MetaD biasing only d, and they are
the intermolecular distances between the DOX N1, O4, O8 and
C26 atoms (see Fig. S1 in the ESI†) and:

• the four closest NP oxygen atoms
• the two closest NP titanium atoms
• the six closest TETT deprotonated carboxy-groups
• the six closest TETT protonated carboxy-groups
• the two closest TETT nitrogen atoms
• the three closest TETT silicate oxygen atoms
Measuring the distances with the closest atom instead of a

specific atom allowed us to account for the change of the DOX
position around the NP system. A capping value of 12 Å was

Fig. 2 Representation of the CVs that were used during the MetaD
simulations. Starting from the top they are: (a) d, the distance between
the DOX nitrogen atom, and the closest NP atom; (b) Φ, the angle
formed by the center of the NP, the DOX nitrogen atom, and the carbon
on the opposite side of the anthraquinone ring; (c) C, the number of car-
boxylic groups coordinating the DOX nitrogen atom.
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applied to all distances. This set of distances was optimized to
obtain a good description of the interaction of both the sugar
ring and the anthraquinone ring of DOX with the functiona-
lized NP. After training, each frame of the simulations was
assigned to a neuron on the map, with each neuron represent-
ing a protein–ligand conformational microstate. In the second
step, the neurons were further grouped in a small, but repre-
sentative, number of clusters by agglomerative hierarchical
clustering using Euclidean distance and complete linkage. The
visualization of the map was optimized by reconstructing
boundaries based on the similarity between neurons. The
optimal number of clusters, N, was selected based on the
Silhouette profiles (Fig. S2†). All the analyses were performed in
the R statistical environment using the kohonen package.86,87

2.5 Preliminary analysis and choice of TiO2 force field
parameters

The system consisting of NPs functionalized with TETT and
DOX has already been studied through unbiased MD simu-
lations and simulated annealing by some of us.60 In that work,
we used the set of TiO2 parameters developed by Brandt
et al.62 and we noticed an overestimation of the interaction
between the NP and the DOX molecule (states at low distance
values, Fig. S3a and c†). Recently, the same group61 proposed
an improved version of the latter FF in which a more accurate
description of intermolecular interactions between TiO2 NPs
and small biomolecules in an aqueous solution was achieved.
Thus, we started our investigation by comparing the results
obtained with the old TiO2 parameters with the ones obtained
with the most recent set of FF parameters. Starting from DOX
in the bulk solvent, we performed two cycles of simulated
annealing and compared the distributions of DOX state prob-
abilities in the subspace of two selected variables. The details
regarding this type of simulation can be found in our pre-
cedent work.60 The results with the new force-field are pre-
sented in Fig. S3b and d† and they show that with the new set
of FF parameters61 the DOX molecules tend to interact more
with the TETT ligands and less with the NP surface (more
states were visited at high distance values). This is consistent
with the fact that a change in the pH (and in turn protonation
of TETTs) leads to a change in the affinity of the ligand. The
few configurations near the NP surface that are still present
with the new force-field may be an artifact or may represent
configurations of DOX molecules that are not released follow-
ing a pH change mechanism. For this reason, the most recent
TiO2 parameters have been used in the present work.

3. Results and discussion
3.1 Setup of the metadynamics protocol: choice of the
collective variables

To perform meaningful MetaD simulations, it is crucial to
define appropriate CVs, which can capture the slow degrees of
freedom of the system and discriminate among its relevant
states. At the same time, the number of CVs should be kept as

small as possible (ideally not more than two) to maintain a
reasonable computational cost. For this reason, we investi-
gated the optimal choice of CVs able to describe the DOX
binding to TiO2 nanoparticles functionalized with TETT
ligands (see Fig. 1). The selected CVs are described in section
2.3 and represent the distance between the DOX nitrogen atom
and the closest NP atom (d ); the angle formed by the center of
the NP, the DOX nitrogen atom, and the carbon on the oppo-
site side of the anthraquinone ring (Φ); the number of car-
boxylic groups H-bonded to the DOX amino group (coordi-
nation number, C).

To find the best CVs among the three selected above and to
identify an efficient protocol that describes the binding
process, we then performed a set of simulations. In all of
them, we decided to include the d CV, as it is a good descriptor
of the distance of the drug with respect to the NP surface, and,
therefore, of the binding/unbinding process. Moreover, we also
considered the possibility of performing well-tempered (WT)
or standard (St) MetaD simulations. Slightly acidic conditions
were investigated, with only one deprotonated carboxylic group
per TETT ligand, as discussed in section 2.1 and below.
Simulations were run for about 1.5 μs each, although some
were extended until they reached convergence. The simulation
parameters are reported in Table 1.

The time evolutions of the biased CVs are reported in
Fig. S4† and they show that a good level of diffusion was
attained in all the simulations. Interestingly, for all the simu-
lations the computed binding free energy values are in the
range of −5.1/−5.9 kcal mol−1. This fair agreement suggests
that all the approaches are equally valid. However, the values
computed with WT-MetaD are systematically more negative
than those obtained with St-MetaD. We have investigated the
possible reason for this discrepancy, and we found that,
during the WT-MetaD, DOX only explored some regions on the
NP surface (around one-third of the total surface), while in St-
MetaD the molecule explored almost the whole NP surface
(Fig. 3).

In WT-MedaD, indeed, after the first part of the simulation,
where the hill height is still relatively high, DOX binding/
unbinding sampling proceeds at a slower rate. This is reason-
able as the height of the hills decreases during the WT-MetaD
simulation and, at a certain point, it becomes harder to
observe the unbinding events (due to a small hysteresis effect).
Usually, this is not a problem, as the simulation reaches a con-

Table 1 Parameters of the MetaD simulations and final value of the
binding free energy difference between the bound and unbound states.
Estimates of errors are computed through block analysis

CV
MetaD
approach

Simulation
length (μs)

Deposition
rate (ps)

Binding free energy
(kcal mol−1)

1 d St 1.6 3 −5.34 ± 0.4
2 d, Φ St 1.5 1 −5.10 ± 0.4
3 d, C St 3.4 1 −5.09 ± 0.5
4 d WT 2.0 3 −5.67 ± 0.2
5 d, C WT 1.5 1 −5.93 ± 0.3
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verged value for the free energy and does not need to sample
further binding/unbinding events. In the present case,
however, the continuous sampling of DOX binding and
unbinding is necessary to compensate for the lack of CVs
describing the DOX position around the NP. WT-MetaD simu-
lations using a higher starting hills height or a higher bias
factor may mitigate this problem and help in reaching the con-
vergence of the simulation.

Based on the above, we decided that St-MetaD is better
suited for more efficient exploration of the phase space, and
therefore, we adopted it for the subsequent simulations. A
comparison of different CV combinations revealed that the use
of d alone is sufficient to describe the binding process, as also
evidenced by the same converged values of the free energy
obtained with all the St-MetaD simulations (Fig. 4a–c). During
this simulation, we observed a large oscillation of the free
energy value, probably due to hysteresis and the rapid filling
of the free energy wells. In the second half of the simulation,
however, the average of the free energy converged at around a
value of −5.3 kcal mol−1. The block analysis also corroborates
the convergence of this simulation (Fig. S5†). Here, the average
free energy across blocks and the error as a function of the
block size are computed. The converged value of the error in
correspondence with a block dimension that exceeds the corre-
lation between data points is an indicator of the convergence
of the calculation.

Including additional CVs leads to similar values for the
converged binding free energy (Table 1). However, looking at
the bidimensional free energy surface (Fig. 5), it is evident that
no relevant energetic barrier exists along the Φ CV (Fig. 5a and
Fig. S4†). For this reason, the inclusion of the Φ CV was not
considered in the subsequent simulations. St-MetaD simu-
lations, where an additional bias on the number of TETT car-
boxylic groups interacting with the DOX-charged amino group
(C) is applied, show that, surprisingly, the deepest minimum
is found with a zero-coordination number (C), although other
relevant states can be observed at higher coordination
numbers. These other states could play a key role at neutral
pH, where more deprotonated TETT carboxylic groups are
expected. For the reasons explained above, in the next section,
we have investigated the effect of pH through St-MetaD simu-
lation where either only the d parameter is biased or both the
d and C parameters are biased.

3.3 Effect of pH

To clarify the pH effect on the DOX binding to TETT-functio-
nalized TiO2 NPs, we compared St-MetaD simulations with
different TETT protonation states. Since pKa values for TETT
are not available in the literature, we used those reported for
hydroxyethylethylenediaminetriacetic acid (HEDTA), an
organic compound similar to TETT, where the silanol group is
substituted by a hydroxyl group. The three reported pKa values
for HEDTA are 2.51, 5.31 and 9.86.88,89 This implies that,
under neutral pH conditions, two of the three carboxylic
groups in each TETT ligand are expected to be deprotonated,
leaving only one protonated carboxylic group per TETT ligand
(overall charge: −2). Differently, at slightly acidic pH, only one
of the three carboxylic groups is deprotonated (overall charge
−1). For this reason, in the following, using the St-MetaD
approach we will compare the DOX binding process to a TETT-
functionalized NP presenting either two or one deprotonated
carboxylic groups per TETT ligand, corresponding to neutral
or slightly acidic pH conditions, respectively. We want to
clarify that simulations at acidic pH are the same as that pre-
sented in the previous section.

In all St-MetaD simulations, considering only a bias on d or
on both d and C, we attained a converged value for the free
energy difference between the DOX/NP bound and unbound
states (Fig. 4 and Fig. S6†). Moreover, also during simulations
at neutral pH we obtained a good level of diffusion for the
biased CVs (Fig. S7†). The values of converged binding free
energy are summarized in Table 2.

It can be noted that the change in pH from neutral to
acidic causes a reduction of about 2.75 kcal mol−1 (about 30%)
in the binding affinity. Interestingly, the simulations with a
bias on both d and C showed a slightly less negative binding
free energy (about 0.25 kcal mol−1) than those with only a bias
on d. However, the results are highly consistent, supporting
the reliability of the employed protocol.

The free energy profiles along d (Fig. 6) show that at neutral
pH the most favorable DOX binding modes are located
between 7 and 9 Å, indicating a specific and strong interaction

Fig. 3 Region of the NP surfaces visited during (a) St-MetaD biasing
only d and (b) WT-MetaD biasing only d. Surface shows regions within
17 Å from the NP surface sampled by DOX.
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with the TETT molecules. On the other side, the bound
minimum is wider at acidic pH and comprises configurations
between 5 and 14 Å. In particular, the configurations at 5 Å
present a specific minimum that can be interpreted as DOX
also interacting with the O atoms at the NP surface. “It is inter-
esting to note that no stable minima were identified for values
of d below 5 Å, whereas these configurations frequently
appeared in previous simulated annealing runs (Fig. S3†). To
rationalize this apparent discrepancy, one should note that the
two simulations were performed under different conditions: in
the simulated annealing 10 DOX molecules were simul-
taneously put in the bulk solvent and, then, allowed to bind
the TETT-functionalized NP, whereas during MetaD only one
DOX molecule was present along all the simulations. The
number of DOX molecules may affect the behavior of the
overall system, leading, for instance, to a larger number of
TETTs in a bent conformation in the simulated annealing case
(Fig. S8†). Moreover, due to the high temperature during the
simulated annealing, one can notice that TETT chains become

Fig. 4 Convergence plot of the binding free energy difference between the bound and unbound states for the different simulations: (a) St-MetaD
biasing only d; (b) St-MetaD biasing d and Φ; (c) St-MetaD biasing d and C; (d) WT-MetaD biasing only d; (e) WT-MetaD biasing d and C. The value of
the free energy difference during the simulation is plotted as black lines, the running averages as orange lines and the final averaged value as purple
dashed lines.

Table 2 Final values of the binding free energy differences between
the bound and unbound states under different pH conditions. Estimates
of errors are computed through block analysis

CV pH
Simulation
length (μs)

Binding free
energy (kcal mol−1)

d Acidic 1.6 −5.34 ± 0.4
d, C Acidic 3.4 −5.09 ± 0.5
d Neutral 1.8 −8.09 ± 0.5
d, C Neutral 4.5 −7.86 ± 0.5

Fig. 5 Free energy surface for the simulation biasing (a) d and Φ; (b) d
and C. In (b), the y-scale is modified to enlarge the region around the
values of C near 0.
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very mobile and, thus, unable to establish stable interactions
with the DOX amino groups, which, consequently, penetrate
more deeply towards the NP surface. As a result, configurations
of DOX near the NP surface appear more frequently after the
simulated annealing protocol than in MetaD calculations.

The free energy surface in St-MetaD simulations with a bias
on both d and C variables reveals that at acidic pH (Fig. S8a†)
the favorite coordination number of the DOX amino group by
TETT carboxylic groups is around 0, at values of d between 5
and 14 Å. Interestingly, at neutral pH (Fig. S8b†), the deepest
minimum is found at values of C between 1 and 2, indicating
the presence of one or even two carboxylic groups coordinating
the DOX amino group. This minimum is found at a value of d
within the range of 6–9 Å, consistent with results obtained by
biasing only d (Fig. 6). Additional minima are found in corre-
spondence of a C value of three, while a significantly higher
energy is found at low C values.

Together, the MetaD simulations highlight a strong effect
of the TETT protonation state on the DOX binding affinity for
the functionalized NP. At neutral pH, the highest number of
deprotonated TETT carboxylic groups contribute to stabilizing
the charged DOX amino group, increasing the NP-DOX affinity
of about 2.75 kcal mol−1.

3.4 Self-organizing maps

To investigate the structural binding features of DOX on the
NP surface, we used a self-organizing map (SOM), an unsuper-
vised machine learning method for visualizing multidimen-
sional data in a low-dimensional representation and for their
clustering.77–79,90 Here, we trained a SOM with a set of selected
distances that describe the binding feature of the DOX mole-
cule computed on the St-MetaD simulations biasing only d
(see the Computational details section). During the training,
the map is optimized to describe input conformations, each of
which is finally assigned to a particular neuron (hexagon on
the map). Thus, each neuron of the SOM represents a confor-
mational microstate of the system, and neurons close to each

other represent similar configurations. The neurons are
further grouped into small but representative numbers of clus-
ters representing the macrostates of the system.

The trained SOM is presented in Fig. 7. The unbound state
is included in cluster D, while the bound state closer to the NP
surface is included in cluster A, as shown in Fig. S9a.† The
latter is characterized by DOX molecules with the charged
amino group near the NP surface and interacting both with
the O atoms at the NP surface and with the TETT chains.
Clusters B, C, E and F are intermediate configurations with the
DOX molecules forming contacts with the TETT chains. In par-
ticular, the DOX molecule turns the amino group towards the
solvent in clusters C and E, whereas the anthraquinone ring is
immersed in the TETT chains (cluster E) or in contact with the
NP surface (Cluster C). In clusters B and F, conversely, the
charged amino group interacts with the carboxylic group of
the TETT chains but, while in cluster B the anthraquinone
ring is immersed in the solvent, in cluster F it also forms con-
tacts with the TETT chains.

A representation of the per-neuron average values of the
three CVs used in the present work (d, Φ and C) is reported in
Fig. S9.† Interestingly, some neurons within cluster A dis-
played very low coordination C values, despite the short dis-
tance from the NP. These are configurations in which DOX can
reach the NP surface, but its amino group does not interact
with the TETT carboxylic groups.

Comparing the population of the neurons in the simu-
lations at different pH (Fig. 8), it can be noted that clusters A
and B are more populated during the simulations at neutral
pH, while clusters C, E and most of F are more populated
during the simulations at acidic pH. This finds an explanation
in the different hydrophilicity of the layer around the NP
caused by the different protonation states of TETTs. At neutral
pH, where a greater number of negative charges makes the
layer more hydrophilic, the polar side of DOX is most fre-
quently found to interact with TETT ligands. On the other
hand, the lower number of charges at acidic pH increases the

Fig. 6 Free energy profiles for the St-MetaD simulations biasing only d at neutral (green) and acidic (orange) pH. Three-dimensional structures of
representative configurations for each minimum identified on the surface are presented on both sides of the graph.
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hydrophobicity of the TETT chains and enhances their inter-
action with the DOX anthraquinone ring.

The analysis with SOM highlighted the features of the
binding configurations under different pH conditions that

were not captured by the representative states of the minima
presented in Fig. 6. This was possible because SOM considers
a wide set of intermolecular distances that well describes the
binding configuration and creates a large number of micro-
states that represent all the possible DOX binding modes.

4. Conclusions

In the present study, we have developed a successful MetaD
protocol for the computational investigation of drug binding
to functionalized NPs. The work benefits from previous efforts
that allowed us to obtain chemically stable structures of a
TETT-functionalized TiO2 NP of realistic size.56–58

Our first concern, here, was to investigate the effect of
neglecting some descriptors of the system in the selected
biased CVs during the MetaD calculations. We found that the
distance between the positively charged amino group of the
drug and the surface of the NP is a good descriptor for the
binding event in St-MetaD. On the one hand, additional CVs
did not significantly change the computed binding free
energy. On the other hand, the use of WT-MetaD suffers par-
ticularly from the lack of CVs describing the position of DOX
around the NP, leading to slightly different and less statisti-
cally meaningful results. We want to underline that in all the
MetaD calculations performed in this study, the binding free
energy converged to values that lie within 0.3 kcal mol−1 for St-
MetaD and 1 kcal mol−1 for WT-MetaD.

Then, we investigated the pH effect by performing the cal-
culation at two different TETT protonation states. Given that
the second carboxylic group of TETT is expected to present a
pKa value that falls within the pH range of healthy and
tumoral cells, we performed St-MetaD calculations in which

Fig. 7 SOM clustering of St-MetaD simulations. The representative conformation of each cluster is depicted with the NP as balls and sticks, the
TETT chains are presented as cream sticks and DOX as green sticks.

Fig. 8 Representation of the per-neuron population of the SOM map.
(a) Comparison between the populations at neutral and acidic pH. The
dimension of the circles is proportional to the neuron population. (b)
Differences in the per-neuron population between the two simulations
mapped with a color-scale.
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each of the TETT molecules has either one or two deproto-
nated carboxylic groups. These calculations led to a difference
of about 2.75 kcal mol−1 in the DOX binding affinity, which
corresponds to a 100-fold increase in the probability of finding
DOX in the solvent under acidic conditions compared to that
at neutral pH, according to the Boltzmann distribution. The
increased propensity of the molecule to stay in solution at
acidic pH explains the efficient release mechanism of DOX
under acidic conditions.

The MetaD simulations were then analyzed to identify the
typical binding configurations using a SOM, i.e., an unsuper-
vised machine learning method. This analysis revealed that
DOX strongly interacts with the TETT negatively charged
chains under neutral conditions through its positively charged
amino group. The pH change alters the electrostatic properties
of the layer around the NP and DOX tends to interact more
through its anthraquinone ring, leaving the amino group
exposed to the solvent. The lack of a complete stabilization of
the charged moiety of DOX by the nanocarrier is the main
reason for the reduced stability of the interaction.

To conclude, the outcomes of our study provide a solid
basis for the rationalization of a pH-triggered release mecha-
nism of DOX by functionalized inorganic NPs and are promis-
ing for the future computationally-driven optimization of NP-
coated ligands to enhance the selective release of drugs under
certain pH conditions.
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