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Molecular Framework Materials (MFMs), including Metal Organic Frameworks (MOFs), Covalent Organic

Frameworks (COFs) and their discrete equivalents, Metal Organic Polyhedra (MOPs) and Porous Organic

Cages (POCs) are porous materials, composed of molecular fragments, bound in one of many topologies.

MFMs have a wide variety of potential and realised adsorption applications. In order to design an ideal

framework material for a particular application, the composition of molecular fragments is not the only

factor, but the arrangement of the those fragments is also important, especially when the fragments

(molecular building blocks) are chemically functionalized and lack symmetry. As has been observed in

metal organic frameworks, the flexibility and absorption properties may differ greatly when altering the

orientation of the building units or changing the position of functional groups. However, although the

position of the functional groups has a great influence on a targeted property, studies on functional group

arrangements have only been performed on a small set of MOF structures. In this contribution, we

develop a fingerprint/descriptor for optimising functionalized molecular framework structures using

machine learning. We begin from the perspective of a molecular framework structure described as a col-

lection of discrete pore shapes. To describe the chemical environment of the pore, we derive a fingerprint

based on the occurrence of pairwise distances between functional groups in each pore. We present the

possibilities of functional group arrangements in the 14 most common pore shapes, created by ditopic

(2-connected) linkers. The method to enumerate and identify possible isomers is explained. Finally the

performance of the fingerprint on predicting guest molecule binding energy is demonstrated.

1 Introduction

Metal Organic Frameworks (MOFs) are porous crystalline
materials composed of metal oxide building units linked by
organic linkers. The chemical diversity, especially the possi-
bility of tunable host guest interaction, gives MOFs great
potential for a wide variety of applications, not limited to
energy storage,1 gas or molecule separation,2 sensing, water
harvesting and purification, nano-catalysis,3 and drug

delivery.4–6 There are a number of strategic solutions to fine-
tune the physical and chemical properties of MOFs, starting
from varying their building blocks,3,7 adding defects,8,9 tailor-
ing functional groups,10 or by exploring other framework
isomers.11

Isomerism is a structural phenomenon, where a chemical
substance – a molecule or material has the same stoichio-
metry, but is different in the local structure, leading to two or
more related structures. In MOFs, this condition could arise
from a number of factors as classified by Zhou et al.,11 includ-
ing MOFs with the same component building units but
different conformation (i.e. flexible MOFs),12 interpenetrating
structures,13 and MOFs with a specified topology but consist-
ing of low symmetry building blocks, such that changing the
orientation of the building block will create another
isomer.14,15

Framework isomerism is interesting to examine in detail,
either considering each individual isomer or collectively, as it
has been found to influence properties such as flexibility and
adsorption.16 Conformational isomerism is reported to impact
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the collective flexibility in DUT-8, a MOF with Ni2 paddle-
wheels, 1,4-diazabicyclo[2.2.2]octane (dabco) pillars and
naphthalene dicarboxylate (ndc) linkers. In recent work by
Petkov et al.,17 by using DFT calculations they observed the
wine-rack movement of the stable isomers of DUT-8 originated
from the long-range orientation of the linkers, which may
point “up” or “down” relative to each paddlewheel building
block. They discovered that the isomers possess different
energy barriers to transform from the open form to the closed
form, which results in reduced flexibility in one of the
isomers. The energy barrier difference arises due to the
different relative alignment of the naphthalene building
blocks.

Wang et al.,18 investigated the impact of ligand-originated
isomerism and ligand functionalization on gas adsorption of
NbO type MOFs. Using two methoxy-functionalized dii-
sophthalate linkers, differing in the orientation of the central
part of the linker and consequently, the position of the
methoxy groups, they characterise two isoreticular MOFs
ZJNU-58 and ZJNU-59, which show different gas uptake and
selectivity performance. The orientation of the linker in
ZJNU-59 creates a narrower pore size which increases the van
der Waals potential overlap thus strengthening the interaction
between gas molecules and the framework.

One of the most frequent modifications to tune the chem-
istry of MOFs is linker functionalization – e.g. UiO-66,19 NH2-
UiO-66,20 Cl-UiO-66,21 yet there are very limited studies on the
effect of positional isomerism of these functional groups to
the resulting (absorption) properties. In general, functionali-
zation adds more binding sites to the MOF structure. But
adding functional groups may or may not lead to a better sep-
aration capability due to steric hindrance and/or altered pore
or window size.22 A methodological approach is therefore
needed to understand the potential diversity in positional
functional group isomerism, and how these isomers affect the
resultant properties of the framework, which will eventually
lead to design rules for a particular application.

However, the addition of a simple functional group into
MOF linkers creates a huge complexity in the framework; the
number of isomers increasing exponentially with the number
of functionalized linkers.23–25 As an example, in Fig. 1,
suppose that the linker is a simple benzene-1,4-dicarboxylic
acid (bdc), for which there are 4 hydrogen atoms where a func-
tional group could be substituted. If the system is functiona-
lized by one functional group per bdc linker, the number of

possible isomers is 4 to the power of the number of linkers,
minus any duplicates arising due to symmetry of the frame-
work. In the case of a MOF, which is typically periodic in three
dimensions, considering all linkers distinctly would lead to an
incredibly large number of linkers. Considering the number of
isomers of even a unit cell of UiO-66 (CCSD Refcode: RUBTAK,
24 linkers) is intractably large: the chemical formula for
UiO-66 is C48H28O32Zr6, but for one unit cell, Z = 4, so the
molecular weight of one unit cell of UiO-66 is 6656.24 g mol−1,
there are, therefore, 9.047 × 1019 unit cells per g of UiO-66 and,
given there are 24 bdc linkers per unit cell, 2.171 × 1021 linkers
per g.

To make this tractable, we consider isomerization at the
pore level. This is chemically justifiable as any individual guest
molecule will ‘see’ only one pore environment at a time, and
also allows application to discrete molecular cages. At the pore
level then, every pore isomer is noteworthy as it has a different
potential surface and represents a different environment for
the guest molecule, especially where the guest molecule is of
sufficient size to interact with multiple functional groups on
different pore walls. Even in the comparatively small case of a
square D4h ‘cage’ with four bdc linkers, there are a total of 256
possible isomers, of which 39 are unique. A full illustration of
this example, including a python notebook is included in the
ESI Section S4.‡

Returning to the example of (mono-functionalized) UiO-66:
each UiO-66 unit cell contains 4 octahedral pores (generated
by coordinates (0.5, 0.5, 0.5)) and 8 tetrahedral pores (gener-
ated by coordinates (0.25, 0.25, 0.25)). This means that in 1 g
of UiO-66, there are: 4 × 9.047 × 1019 = 3.169 × 1020 octahedral
pores and 8 × 9.047 × 1019 = 7.238 × 1020 tetrahedral pores.
Dividing by the number of isomers of the octahedral (351 976)
and tetrahedral pores (176) (tabulated for all pores in ESI
Section S1‡) gives the number of times each pore isomer
would occur in 1 g of UiO-66: 1.028 × 1015 times for the octa-
hedral pore and 4.112 × 1018 times for the tetrahedral pore. A
guest/adsorbate molecule may therefore encounter each/every
pore isomer many times and modeling adsorption of a guest
molecule in UiO-66, or indeed any 0–3D MOF/COF/MOP/POC,
requires accessing and describing the “average” pore,
somehow summed over every possible pore isomer. In this
work, we present such a description.

Typically, the absorption properties of framework materials
such as MOFs are computed using the Grand Canonical
Monte Carlo (GCMC) method. It is possible to do GCMC simu-
lations for a small number of positional functionalization
isomers, however, due to the extremely large number of poss-
ible structures the procedure needs to be incorporated into
(stochastic) optimisation algorithms26,27 or machine learning
approaches. Machine learning is a very attractive research area,
because it can accelerate the discovery of top performing
MOFs. Machine learning in general, learns patterns from pro-
vided data to make a simpler model that connects input and
output. Each MOF candidate is linked to a descriptor, which
can discriminate between MOFs and contains the important
features that reflect the targeted property. Choosing a descrip-

Fig. 1 Placement of one functional group onto a benzene-1,4-dicar-
boxylic acid (bdc) linker has 4 possible locations for substitution.
Assuming that the linker is not free to rotate through 180° about the
linker axis (dashed), all four isomers are distinct.
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tor is the most crucial step in a machine learning procedure;28

if a descriptor has low correlation to the property of interest,
the model will have poor predictive performance and may be
difficult to interpret.29

A variety of descriptors have been developed for MOFs and
COFs, that fall into one or more classes based on the features
they take into account: geometric descriptors may describe the
global geometry, the local geometry or both and typically
include features such as largest pore diameter, limiting pore
diameter, void fraction, framework density, volumetric and
gravimetric surface area. Geometric descriptors are typically
easily computable and are well suited to problems involving
gas uptake and selectivity.

Chemical descriptors represent a second class of descriptor,
and include features such as the number and type of atoms,
and possibly further information about the atomic environ-
ment, such as the electronegativity, electron affinity or force
field parameter type.30 Chemical descriptors for M/COFs often
take advantage of the reticular nature of the structure by
including information about the building blocks.31 A more
sophisticated descriptor combining both geometric and
chemical descriptors based on radial distribution functions
weighted by an atomic property, such as electronegativity,
polarizability and van der Waals volume has been used for pre-
dicting gas uptake capacities.32 Two recent works33,34 have
employed Pair Distribution Functions, PDFs, to describe MOF
structure, especially where defects alter the structure.

Two further classes of descriptors for M/COFs are energy
and topology-based. Energy-based descriptors are especially
useful for adsorption applications but require the expensive
step of computing a potential energy surface of the MOF inter-
acting with a probe, which may be arbitrary (e.g. a spherical
charge distribution corresponding to a particular kinetic dia-
meter) or a real molecule.35–38 The final class of descriptors
employed for M/COFs are topological descriptors that aim to
describe the pore connectivity over multiple length scales.39–42

To develop our descriptor, we consider the fact that host–
guest interactions occur mainly by the influence of local inter-
action, thereby only including a small effect from the linkers
in adjacent pores. In addition, while there are 2941 3D topolo-
gies (nets) reported in the RCSR database43 to date, they
consist of repeating a limited number of pore shapes, such as
cubic, tetrahedral, octahedral, square antiprism and cubocta-
hedral. These two considerations combined, brings us to
observe and isolate the potential created by each functiona-
lized pore shape. To describe the distribution of chemically
important functional groups, we consider only the key atoms
of each functional group (e.g. the N atom of the NH2 group)
and neglect the rest of the framework, effectively resulting in a
simplified PDF representing the distances between pairs of
functional groups in each MOF pore.

Combinatorial enumeration of chemical structures, includ-
ing isomers is a well-known area of chemical mathematics.44,45

In this work, we have enumerated all possible functional
group arrangements for common pore geometries, and devel-
oped a fingerprint (represented by a histogram) for characteris-

ing the dissimilarity between pore environments based on a
quantification of their functional group–functional group (FG–
FG) distance distribution. We propose this descriptor to be
useful for molecular framework materials, such as MOFs and
COFs46 as well as discrete porous cages such as Metal Organic
Polyhedra (MOPs)47 and porous organiccages.48–51 Finally, we
demonstrate the descriptor applicability to predict the binding
energy of drug propranolol to different isomers of an NH2-
UiO-66 octahedral pore.

2 Computational method

General pore shapes have already been listed in the context of
porous organic cages.52 From the 20 pores (cages) identified, we
focus on those having a ditopic (2-connected) linker. There are
15 pore shapes that meet this criterion, as shown in Fig. 2, we
adopt the pore nomenclature and topologies from the organic
cage topology classification designed by Jelfs and coworkers,
where Di, Tri and Tet are used to indicate ditopic, tritopic and
tetratopic building blocks respectively and the following (super-
script) numbers indicate the number of each building block
required to compose the pore/cage structure.52 The pore struc-
tures are constructed with metal nodes of radius ≈ 5 Å, chosen to
reproduce the approximate size of the Zr6O building block, and
benzene-1,4-dicarboxylic acid (bdc) and poly(1,4-benzenedicar-
boxylic acid) (pbdc) for the ditopic linkers. The orientation of the
benzene plane is placed such that the structure will have the
highest symmetry point group. Accordingly, each of the hydrogen
atoms on the benzene linker could be located in one of two dis-
tinct orientations, either pointing into the centre of the pore or
pointing outside the pore.

The functional group added to the linker is a nitrogen atom
(representing an amine group) with C–N bond distance 1.47 Å
and the FG–FG distance is measured between two nitrogen
atoms. An example of a pore structure, Tet2Di4, constructed
using these rules is presented in Fig. 3(c). To show the
relationship between our constructed pore structure and a real
chemical structure, Fig. 3(a) shows the only known example of

Fig. 2 The 15 pore shape topologies analysed in this work. Topology
and nomenclature adopted from the work of Jelfs and coworkers.52

Upper line is the tritopic + ditopic topology family, vertices are in blue,
ditopic linkers in purple. Lower line is the tetratopic + ditopic topology
family, vertices are in orange, ditopic linkers in purple. Of these topolo-
gies, the Tet42Di

8 topology is excluded from this work as no crystal struc-
tures of this topology are yet reported and the topology is not contained
within the stk package.53
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the Tet2Di4 topology, LUXVAB,54 Fig. 3(b) shows LUXVAB in
partial skeleton form, then Fig. 3(c) replaces the alkyl linkers
with the phenyl linkers that we consider in this paper. The
enumeration performed to the pore structure is based on 1×-
functionalization or one functional group per linker. The pore
structures are constructed partly using the python package
supramolecular toolkit (stk).53

The procedure to generate and enumerate the isomers of
each pore is as follows:

(1) Enumeration of all possible isomers
After constructing all of the pore shape structures,

functionalization is applied. Every combination of functional
group position in the benzene linkers are enumerated. The
number of pore isomers for each topology is listed in the ESI
Section S1.‡ However due to the orientation of the pore, some
isomers could be equivalent by symmetry, thus only the
unique structures are collected, while duplicates are elimi-
nated. To examine if a structure is unique, each conformation-
al isomerism transformed by its symmetry operations, then if

an overlapping structure is found, the isomer will be identified
as a duplicate, otherwise it is a unique isomer. The detailed
algorithm is explained in the ESI Section S3.‡

(2) Counting the number of unique structures using group
theory

The number of unique isomers is also computed using the
Cauchy–Frobenius theorem.55 The total number of unique
structures is given by equation:

n ¼ 1
Gj j

X

x[G

χðxÞ

x [ G

where G are the symmetry elements of a given pore shape, x is
an element of G. Let H be the set of all possible isomers,
and h is one possible isomer (h∈H). χ(x) is total number of h
that satisfies the equation:

x � h ¼ h

which means that when a structure is transformed by a sym-
metry element, it is equivalent to its original structure. A dem-
onstration of calculating the number of unique structures of
topology Tet2Di4 is presented in ESI Section S2.‡

(3) Counting the functional group–functional group dis-
tance frequency

The histogram shows the frequency of every pair distance
that exists in the pore, Fig. 4 is an example of the Tet2Di4 histo-
gram. The sum of the frequencies of the whole histogram
equals the number of FG–FG pairs, and the number of FG–FG
pairs is equal to:

Npairs ¼ CðnFG; 2Þ � nLinkersCð4; 2Þ
¼ Cð16; 2Þ � 4Cð4; 2Þ ¼ 96:

By iterating through all pairs, the distance and the fre-
quency of the pair is computed. When considering all the
possible isomers, the histogram of FG–FG distance frequency
will have larger y-values but the same distribution, with the
scale of: 1 : 0.0625 × 4n linker. The foundation for the same dis-
tribution is because each FG position has the same occurrence

Fig. 3 (a) Crystal structure of LUXVAB54 with 4-connected (Tet) and
2-connected (Di) building blocks highlighted in blue and green respect-
ively. (b) Linkers extracted from LUXVAB and connected to an arbitrary
node placed at the COM of the 4-connected building block. (c) Example
of a pore structure, Tet2Di4, constructed with an arbitrary (metal or
organic) node of radius ≈ 5 Å and a benzene linker.

Fig. 4 Example of the fingerprint histogram, Tet2Di4, showing the fre-
quency of every possible FG–FG distance. Each distance is colour-
coded according to whether both FG are inside the pore (blue), outside
of the pore (red), or one inside and one outside (violet), as described in
Table 1.
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in the isomer enumeration. In one isomer, the probability of
occurrence of every FG position on one linker is 0.25.
Therefore, the occurrence of an FG–FG pair is 0.25 × 0.25
which equals 0.0625.

(4) Generation of FG–FG distance histogram
The FG–FG distance frequencies are plotted as histograms

with three colour coding, representing the relative positions of
the functional groups with respect to the pore, as shown in
Fig. 5. The orientation of the linker puts the functional group
into two distinct positions, either pointing inside, “In” or
outside, “Out” of the pore of interest. As the “In–In” pair is of
most relevance to a molecule binding inside the pore, we have
separated and labelled each distance with different colours.

3 Results and discussion

The histograms of 14 pore shapes are presented in the ESI
Section S5‡ and the raw counts for both mono-functionalized
bdc and pbdc linkers is included in the ESI‡ as a spreadsheet.
One pore shape, Tet42Di

8, is excluded as no crystal structures of
this topology are yet reported. Two different size of linkers are
used (Fig. 6). The first one is the linker bdc and the second
one is the pbdc linker. In the case of the pbdc linker two non-
interconvertible types of mono-functionalization are possible –

the four outer positions or the inner four positions. All three
histograms for each topology are presented in ESI Section S5.‡
For prediction of bulk properties, we contend that these histo-
grams represent the “average” or likely environment that a
guest molecule may encounter, however the FG–FG distances
for each individual isomer may be presented in the same way,
and we show this in ESI Section S6.‡

3.1 Histograms for selected pore structures

3.1.1 Tet2Di4. The Tet2Di4 pore topology has point group
D4h. The FG pair distance histogram fingerprint of the pore

using bdc and pbdc linkers is presented in Fig. 7. The blue
bars in both histograms shows the distances inside the pore,
and can be used to determine the size of the pore. The longest
distance is approximately the cross section of the void space.
Expanding the linker to pbdc, would enlarge the Tet2Di4 pore,
from d = 6.0 Å to 9.0 Å.

3.1.2 Tri4Di6. The Tri4Di6 pore topology has point group
Td, with the total number of isomers arising from functionali-
zation is 176. The FG pair distance histogram fingerprint of
the pore using bdc and pbdc linkers is presented in Fig. 8.

Table 1 The three colour coding used to label the FG–FG distances

Colour FG pair position

Blue In–In
Violet In–Out
Red Out–Out

Fig. 6 The three linkers used for constructing the pore structure, bdc
(a) and pbdc with outer (b) and inner (c) functionalization.

Fig. 7 Histogram of FG–FG distance in pore Tet2Di4, constructed from
a node with radius ≈ 5 Å for (a) the bdc linker and (b) the pbdc linker,
outer positions and (c) the pbdc linker, inner positions.

Fig. 5 Two possible functional group positions: pointing into the pore
shown as blue circles, and outside the pore shown as red circles.
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Expanding the linker to pbdc, would enlarge the Tri4Di6 pore,
from d = 6.8 Å to 11.8 Å.

3.1.3 Tet6Di12. The Tet6Di12 pore topology has point group
Oh. The FG pair distance histogram fingerprint of the pore
using bdc and pbdc linkers is presented in Fig. 9. When
expanding the linker to pbdc, the cross-section increases from
d = 10.1 Å to 15.8 Å.

3.2 Effect of linker size

Generally changing the size of the linker to a longer linker will
enlarge the void space of the pore. The histogram will consist
of the same components, only the positions of each bar will be
shifted. Each individual FG–FG distance is affected to a
different extent by enlarging the pore (i.e. isotropic expansion
of the pore does not result in even expansion of all FG–FG dis-
tances). Fig. 10a shows Tet6Di12 using linker bdc, and Fig. 10b
shows Tet6Di12 using linker pbdc, the pair distances shown in
green lines are the same for the two pores, however the yellow
line is shifted from 6.3 Å to 10.7 Å.

As a consequence of these distances scaling by different
proportions, it is possible that several FG–FG distances may
merge (i.e. overlap in the histogram), or conversely, one FG–FG
distance may split into several distinct distances. In this work,

these effects are not seen, because the pore structures con-
structed using the stk program53 maintain the point group of
the shape, thus although a substitution of a longer linker is
performed, the nodes adjust to a size where the resulting struc-
ture always has the same aspect ratio. In practice, however, we
expect that FG–FG distances may merge or split. An example of
where this would be expected to occur is in the Tri42Di

6 pore

Fig. 9 Histogram of FG–FG distance in pore Tet6Di12, constructed from
a node with radius ≈ 5 Å for (a) the bdc linker and (b) the pbdc linker,
outer positions and (c) the pbdc linker, inner positions.

Fig. 10 Comparison of histograms for Tet6Di12 pore with linker expan-
sion, (a) linker using bdc building unit, (b) pbdc building unit. The struc-
ture expands in different proportions in different directions.

Fig. 8 Histogram of FG–FG distance in pore Tri4Di6, constructed from a
node with radius ≈ 5 Å for (a) the bdc linker and (b) the pbdc linker,
outer positions and (c) the pbdc linker, inner positions.
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topology, when the pore structure is constructed from a fixed
size node and a variable size linker. Fig. 11a shows the pore
structure using the bdc linker, the green and the red line are at
the same distance. When the linker is substituted with pbdc,
the red line will expand, while the green line will remain the
same, as shown in Fig. 11b. Thus the corresponding bar in the
histogram will split into two.

3.3 Effect of linker rotation

Even “rigid” MOFs possess some degree of flexibility where the
organic linker can rotate about the linker axis. Consequently,
the distances for every pair can deviate from the original, sym-
metric position. To consider the effect of such linker rotation,
we rotate each linker through ±30°, keeping the centre of
rotation (i.e. the centre of the linker along the connector axis)
fixed. For each FG–FG distance in the original descriptor, we
rotate each of the two linkers through the ±30° range in 1°

increments (i.e. a double loop) and record the minimum and
maximum distance that can be attained. Table 2 lists the
minima and maxima for each FG–FG distance in the Tet2Di4,
the Tri4Di6 (tetrahedral), Tet6Di12 (octahedral) pores are pro-
vided in the ESI Section S7.‡ The inclusion of linker rotation
to the histograms in Fig. 12 and 13 assume no rotation
barrier, addition of a rotation barrier would restrict the tails of
each peak.

3.4 Covariance of topology histograms

We investigated the covariance contained in each individual
FG pair distance histogram by performing Principal
Component Analysis (PCA). A reasonable separation between
each topology is shown. This degree of separation is satisfac-
tory considering that the topologies would be projected into
non-linear space when inserted into a machine-learning algor-
ithm. The first PCA is performed on all topologies Fig. 14a and
the first two principal components explain 78.66% of the var-
iance. Three topologies are shown clearly to be separated by
size, these are Tri20Di30, Tet16Di32 and Tet24Di48. Closer inspec-
tion of Fig. 14a, reveals a fourth large cage topology, Tet8Di16

that also separates from the smaller cages. Fig. 14b shows a

Fig. 11 Tri42Di
6 linker expansion, (a) linker using bdc building unit, (b)

pbdc building unit. The structure may expand to a different extent in
one or more directions, and even in the case of isotropic expansion,
FG–FG distances will be scaled by different factors.

Table 2 Shortest and maximum FG–FG distance in Tet2Di4

Fig. 12 Tet2Di4 histogram, showing the frequency of every FG–FG dis-
tances, bold and dark bars show the FG–FG distances at its symmetric
position, light bars are FG–FG distances when considering linker rotation
between −30° < θ < 30°.

Fig. 13 Tri4Di6 histogram, showing the frequency of every FG–FG dis-
tances, bold and dark bars show the FG–FG distance at its symmetric
position, light bars are FG–FG distance when considering linker rotation
in between −30° < θ < 30°.
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second PCA computed, excluding the four large cage topolo-
gies, in this case, 42.30% of the variance is explained by the
first two principal components. Noting that in these two ana-
lyses, the clearest separation is of the largest topologies, we
undertook PCA on only topologies of similar size, as indicated
by the number of linkers, these are shown in Fig. 14c–f, for
3–4, 6, 9–10 and 12 linkers respectively. These plots show clear
grouping of each topology and the top two principal com-
ponents explain 43.20%, 39.85%, 55.03% and 66.39% of the
variance for Fig. 14c–f respectively.

3.5 Kernel density estimation (KDE)

Histograms, as presented, are sensitive to the choice of bin
size. To employ our descriptor for machine learning, we
smoothed each histogram using KDE with a Gaussian kernel
and bandwidth of 0.1. The KDEs for each pore topology are
shown in ESI Section S8.‡

4 Implementation in machine
learning

UiO-66 is potentially used to bind pharmaceutical molecules as
either a drug delivery agent or adsorbent for filtering pharma-
ceutical waste from water. For either of these cases, a strong
binding energy of the target molecule to the MOF is an indicator
for good adsorption performance. We demonstrate our FG pair
distance descriptor’s applicability to predict the binding energy of
the common drug, propranolol to NH2-UiO-66.

4.1 Dataset preparation

The octahedral pore of UiO-66 (equivalent to topology
Tet6Di12) is prepared for the input structure of the machine
learning. The octahedral cage has 354 024 unique isomers as
listed in Table S1,‡ but in this demonstration we have chosen
3223 representative isomers. The 3223 isomers are selected
based on geometric features which are explained in detail in
ESI Section S10.‡

A propranolol molecule is placed inside each cage isomer.
However, since the propranolol could bind to different parts of
the cage, we prepared a set of ten different propranolol posi-
tions for each cage isomer, generated randomly using the
Kick3 program.56 The cages (with propranolol molecule inside)
are relaxed to their stable position using GFN-xTB, and
binding energies are computed. Detailed explanation about
dataset collection can be found in ESI Section S11.‡

4.2 Machine learning using our functional group pair
distance descriptor

A neural network was trained to predict the propranolol
binding energy using the dataset above. Input features were
obtained by discretizing the histograms of in–in FG–FG dis-
tances after applying Kernel Density Estimation (KDE), result-
ing in 68 discrete bins. The neural network consisted of a
single hidden layer comprising 6 nodes, trained using the
scikit-learn Python package using the L-BFGS algorithm.

The dataset is then divided into 80 : 20 ratio for training
data and testing data. The input of the machine learning is the
cage isomer functional group pair distance histogram and the
response value f (x) of each cage isomer is the average binding
energy. After training the 80% data on the neural network, the
remaining 20% of the data are tested on the trained model.
Finally, the binding energy of test data is compared, binding
energy from machine learning versus binding energy from
GFN-xTB calculation as shown in Fig. 15a. We achieved a good
prediction rate of machine learning using our descriptor with
RMSE of 11.81 kJ mol−1 and R2 equal to 0.67.

In addition, we explore the combination of additional
descriptors that capture the functional group density distri-
bution into the input feature vector. These descriptors include
the representations of functional groups in groups up to three
bodies (detailed explanation in ESI Section S10‡). Upon com-
bining these descriptors, the input feature matrix expands to
include 77 elements. The machine learning approach demon-

Fig. 14 Principal Component Analysis (PCA) performed on all topology
histograms, (a) PCA on all 14 topologies, (b) PCA performed on 10 topol-
ogies excluding the largest four topologies (Tri20Di30, Tet8Di16, Tet16Di32

and Tet24Di48). PCA performed on similar size topologies with (c) 3–4
linkers, (d) 6 linkers, (e) 9–10 linkers and (f ) 12 linkers.
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strated improvements with an RMSE of 9.43 kJ mol−1 and R2

equal to 0.74, as shown in Fig. 15b.

4.3 Machine learning using other common descriptors

We compared the performance of machine learning models
trained using two popular geometrical feature descriptors
widely utilized for calculating absorption properties: void
volume and window size of each cage. The volume and
window size of the octahedral cage isomers were calculated
using pywindow.57 The input features of the machine learning
model consisted of a 9-dimensional vector matrix, with one
element representing the intrinsic void volume and the
remaining 8 elements allocated for the circular diameter of
each window.

The two conventional descriptors do not give a satisfactory
outcome with our dataset, Fig. 16, with an RMSE of 14.34 kJ

mol−1 and an R2 value of 0.60. This limitation arises from
their inability to capture important features, distinguish
between different functional group arrangements within the
same MOF topology. For example, void volumes do not discern
significant differences between MOFs with the same number
of functional groups inside the cage, even when the arrange-
ment of the functional group differs. By accounting for differ-
ences between functional group arrangements within MOF
cages, our descriptors help to overcome these limitations.

5 Conclusion

The enumeration of all possible functional group arrange-
ments and the identification of the unique isomers in 14 pore
shapes has been performed, the number is related to the con-
formational entropy of the pore shape.

The number of possible isomers increases exponentially as
the number of linker fragments comprising the pore grows.
For example, the UiO-6x structure (fcu net) contains eight
tetrahedral (Tri4Di6) and four octahedral (Tet6Di12) pores per
unit cell. A mono-functionalized Tri4Di6 pore has 176 distinct
isomers, while a similarly mono-functionalized octahedral,
Tet6Di12, pore has 354 024 distinct isomers, leading to a truly
staggering number of distinct structures. Yet, the chemical
environment ‘seen’ by a guest adsorbate molecule in the pore
of such a cage structure may be relatively simpler, as any given
molecule is likely to only interact with a limited number of
functional groups. We therefore characterise each pore
environment by the pair distances between functional groups
and the frequency of these distances over all possible pore
isomers.

An efficient method to identify and count unique structures
is also presented, which enables efficient generation of

Fig. 16 DFTB vs. machine learning binding energies of propranolol in
Oh cage of NH2-UiO-66 isomers using two conventional geometrical
descriptors, void volume and window size.

Fig. 15 DFTB vs. Machine learning binding energies of propranolol in
Oh cage of NH2-UiO-66 isomers (a) using our functional group pair dis-
tance descriptor (b) and in addition, using up to three body functional
group distribution.
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machine learning descriptors containing information about
chemical environment provided by functionalized linkers,
which is important for the calculation of absorption pro-
perties. We show that our histograms capture the distinct
nature of each cage topology and we propose our histograms
represent useful identifiers for the pore environments in
MFMs that can be used to determine the adsorption of large
and complex molecules in these pore environments. The
descriptor is low-dimensional and easily computable and is
therefore a useful representation of the pore environment for
machine learning. We successfully used the descriptor to
predict the binding of propranolol in the octahedral pore of
NH2-UiO-66. The utility and ease of computation suggests that
the descriptor could be extended to account for multiple func-
tional groups (e.g. describing multivariate MOFs).
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