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With the ever-growing digitalization and mobility of electric transportation, lithium-ion batteries are facing

performance and safety issues with the appearance of new materials and the advance of manufacturing

techniques. This paper presents a systematic review of burgeoning multi-scale modelling and design for

battery efficiency and safety management. The rise of cloud computing provides a tactical solution on

how to efficiently achieve the interactional management and control of power batteries based on the

battery system and traffic big data. The potential of selecting adaptive strategies in emerging digital

management is covered systematically from principles and modelling, to machine learning. Specifically,

multi-scale optimization is expounded in terms of materials, structures, manufacturing and grouping.

The progress on modelling, state estimation and management methods is summarized and discussed in

detail. Moreover, this review demonstrates the innovative progress of machine learning based data

analysis in battery research so far, laying the foundation for future cloud and digital battery management

to develop reliable onboard applications.
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1 Introduction

The automotive industry has experienced rapid development in
the past 100 years and brought great convenience to people's
lives.1 However, a global shi to electric vehicles (EVs) is
certainly the solution to address increasing environmental
concerns,2 with the development of high energy-density, low
cost and durable energy storage systems a key enabler. Early
battery technologies for EVs include lead-acid and nickel-metal
hydride chemistries, and technologies such as hydrogen fuel
cells and supercapacitors have also been explored.3 However,
lithium-ion batteries (LiBs) are the current technology of choice
for EVs. Here, common cathode chemistries include lithium
cobalt oxide (LCO), lithium manganese oxide (LMO), lithium
iron phosphate (LFP), lithium nickel cobalt aluminium oxide
(NCA) and lithium nickel–manganese–cobalt oxide (NMC),
which offer relatively high energy density, long lifespan and
high efficiency compared to other battery chemistries.

Due to the usage dependent degradation and instability of
LiBs, outside of certain operating windows, a real-time
embedded battery management system (BMS) is of vital
importance for maintaining safety and reliability.4 The key
objective of a BMS is to monitor key states, minimize degrada-
tion,5 balance cells6 and detect faults.7 Research and develop-
ment in LiBs have traditionally focused on electrode and
electrolyte development across multiple length scales,8 however
linking these insights into the design of BMSs remains an
urgent need.9 State of charge (SOC)10 is one of the key states and
indicates the remaining capacity in a cell, whereas state of
© 2023 The Author(s). Published by the Royal Society of Chemistry
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health (SOH) indicates the remaining useful lifetime of the
battery. In many cases, an accurate model of the battery is
needed to estimate these states and how they evolve with
common examples being the estimation of capacity, available
power,11 and remaining energy.12 Model exist at different levels
of complexity but multi-scale models13 provide a deeper insight
into battery performance allowing for more intelligent and
accurate performance prediction.

With the advent of the Internet-of-Things (IoT)14 era, the
potential to fuse recent developments into cloud-enabled BMSs
has the potential to create a new revolution in intelligent EV
management.15 In this scenario, the communication, compu-
tation and control, of the batteries, is distributed to the cloud
and physical devices mostly act as data collectors. This
enhances the scalability, cost-effectiveness, adaptability, and
exibility of the systems. Although the actual cloud-based
battery condition monitoring for energy storage systems has
been less applied, the potential benets of advancing the BMS
has wide acknowledgement.16 Cyber-physical systems (CPS),
which fuse real-time sensing data with advanced models,
therefore, is seen as the future of BMSs with core elements
including cloud data storage, intelligent analytics, advanced
control algorithms, and data visualization.10

Motivated by the potential of new digital solutions towards
advancing BMSs this paper is organized as follows. Section 2
presents a framework: the cyber hierarchy and interactional
network (CHAIN) proposed for data fusion with models and
intelligent control. In Section 3, key considerations for the
management of LiBs are discussed, starting from atomic
considerations and increasing up to pack and system-level
challenges. Modelling methods and state estimation tech-
niques are discussed along with the latest developments in
BMSs in Section 4. Section 5 reviews the articial intelligence
(AI) methodologies for data analysis that are being considered
for promising BMS application. Section 6, then focuses on
typical applications and innovative BMS developments and the
last section offers perspectives and highlights challenges for
further research in the eld of intelligent BMSs.
Fig. 1 CHAIN management framework.22
2 CHAIN: battery management
framework

With the coming of the data-driven era, IoT, big data, service-
oriented technology,17 and cloud computing,18 have presented
new pattern to do scientic research. Countries are simulta-
neously setting up data centres to accelerate the research
through cloud-managed data sets such as high-energy physics,
genomics, meteorology and ocean earthquakes.19

The traditional BMSs are severely restricted by onboard
computing power andmemory due to the relatively high costs of
soware and hardware.20 With the advent of IoT devices, it is
expected that data processing with high real-time requirements
can be moved to the cloud through wireless communication for
control strategies feedback by large calculated data-driven
approaches.21 The BMS at the vehicle-end focuses on collect-
ing sensor data and completing data communication and
© 2023 The Author(s). Published by the Royal Society of Chemistry
interaction with the cloud. With this in mind, Yang et al.22

provides the CHAIN framework, which consists of the distrib-
uted structure of vehicle-end and cyber-end as shown in Fig. 1.
By transferring the computing load of the vehicle-end BMS, we
can give play to the potential of cloud computing and storage,
and build a multi-scale model of the battery. And then, as
shown in Fig. 2, an overall framework utilizing an end-edge-
cloud architecture for a cloud-based BMS is proposed, with
the composition and function of each link described, which
leverages from the CHAIN framework.23 Data collected by the
sensor at the vehicle-end is encrypted and uploaded, which is
one of the emerging challenges for IoT enabled devices.24 Aer
cloud physical model fusion or machine learning calculation,
the updated decision results are fed back to the vehicle in real
time for performance optimization. Hierarchal management
including real-time monitoring, communication, analysis, and
decision serve the vehicle greater efficiency, safety and
predictability. The digitalized services are inseparable from the
collection, transmission, storage, computation and analysis of
scientic data, resulting in nal decision making.25 Alam
et al.230 presented a vehicular application for cloud-based CPS
containing three operational modes that have analytically
modelled the computation, communication and control prop-
erties and provides optimized control decisions based on
system-wide information collection.

With aggregated data in the cloud, physical models can
estimate immeasurable states to gain deeper insights towards
better decisions. The demands of collecting EV data creates an
unprecedented opportunity for novel information exchange
ways.26 Smart cars based on big data are an important strategic
direction for the transformation and progression of the auto-
motive industry and sustainable development. It is no doubt
that a precise mathematical model for LiB that applies to the
characteristics of big data is therefore needed.27 Successful
applications of this approach to real-world problems have
included: optimization of shared charging infrastructure28 and
shared EVs.29 Therefore, how to generate, combine and use data
RSC Adv., 2023, 13, 2036–2056 | 2037
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Fig. 2 A cloud to things framework, which consists of four subsystems: end, edge, cloud and knowledge.
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in CPSs for better vehicle durability requires intelligent analysis
implemented for online BMS.30 The relevant technology barriers
must be reduced tomake analytical tools more accessible and to
improve data and visualization literacy.31
3 Physical multi-scale research for
battery

With databases, the core task of an interactive system is model-
based analysis. A combination of mathematical descriptions of
the physical processes occurring in the battery and experi-
mental parameterization of the model constants is needed to
model the dynamic behaviour of the battery.32,33 To understand
how key information propagates between length scales, it is
necessary to describe key aspects of this from fundamental
materials, then to manufacturing and cell leveller performance,
and nally to the module and system considerations.
3.1 Materials

The operating principle of a LiB is underpinned by the redox
reactions and the electrochemical potential in the electrode
active materials.34 This involves the movement of ions and
electrons, which in turn allow for the storage/delivery of elec-
trical energy.35 The cations move between the anode and
cathode through the electrolyte, while electrons ow through
conductive agents and current collectors in the cell to the
external circuit where useful electrical work can be extracted.36

At present, widely adopted electrode materials exist for LiBs,
with different strengths and weaknesses as shown in Table 1.

Extensive research has been performed in recent years
covering the cost and performance of battery materials. The
2038 | RSC Adv., 2023, 13, 2036–2056
multi-physical and multi-scale in nature increase the
complexity for seeking promising materials, which can be
settled by model. As an example, it found that mechanical
failure of anode electrodes is highly strain-rate dependent with
the help of a computational model.37 Similarly, a multi-physics
and multi-scale model approach for analyzing Si–C composite
anodes can be used to optimize the effects of different Si
loadings, mechanical constraints and charging rate in terms of
electrochemical and mechanical performance.38 Other models,
such as parametric stochastic microstructure models, have
been used to investigate the inuence of microstructure. Here
good correlation was found between the virtually generated
cathodes and the morphological properties of the 3D tomo-
graphic image data, opening up the possibility of in silico
design.39 These microstructural models, highlight the impor-
tance of capturing geometric complexities and, thus, there has
been a general trend to improve the accuracy of physics-based
models by including the heterogeneity of the porous electrode
structure.40

In terms of safety, internal failures caused by loss of elec-
trode materials, structure deformation and dendrite growth are
also preventable through material design.41 Cathode particles
with carbon coatings have better electronic conductivity oen
exhibit high coulombic efficiency on LFP.42 Surely graphite is
stable relative to organic electrolytes when delithiated or at high
voltages relative to lithium. Thick electrodes focus on low
tortuosity structural designs for rapid charge transport and high
energy density, cell stability, and durability.43 So far, electrode
thickness is contradictory to the mechanical stability and elec-
trode conductivity.44

In addition to the electrodes, the electrolyte responsible for
ionic transport, also signicantly affects the battery
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Comparison of electrodes' materials

Electrodes Materials Strengths Weaknesses

Cathode LCO 120–150 W h kg−1 Thermally unstable
High energy/power Lower cycle life

Limited load capabilities
LMO 105–120 W h kg−1 Low capacity

Enhanced thermal stability Limited cycle life
Low cost

NCA 80–220 W h kg−1 Safety issues
High specic energy/power Cost
Long cycle life

NMC 140–180 W h kg−1 Low stability
High specic energy/power Low specic energy
Low internal resistance

LFP 80–130 W h kg−1 Lower energy density
Inherently safe
Acceptable thermal stability
High current rating
Long cycle life

Anode Graphite/carbon-based High mechanical stability Low gravimetric capacity
Conductivity and Li-ion transport
Gravimetric capacity

LTO High charge/discharge rates Lower energy density
Inherently safe Cost
Long cycle life

Si Gravimetric/volumetric capacity High degree of mechanical expansion on charging
Chemical stability
Low cost
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performance. By means of a mathematical model, it is found
that poor lithium-ion mobility causes depleted zones regions in
electrodes as the porosity decreases or the length of the sepa-
rator increases.45 This transport phenomenon is also stress
coupled. In another work, a coupled ionic conduction-
deformation model for a solid polymer electrolyte was devel-
oped to investigate the effect of mechanical stresses induced by
the redistribution of ions. They found that externally applied
stresses can reduce the concentration gradient of ions across
the electrolyte thickness and prevent salt depletion at the elec-
trode–current collector interface.46

The separator is placed between the cathode and anode to
prevent physical contact with the electrodes while facilitating
free ionic transport and electronic isolation. The main charac-
teristics that affect the performance of the separator consist of
permeability, porosity, as well as chemical, mechanical and
thermal stability.47 Specically, mechanical behaviour and ionic
conductance of the separator under compression inuences the
battery thermal performance. In the literature, the separator
has been modelled as an open-cell foam to describe the
mechanical deformation under compressive loads and the
resulting ionic conductivity.48 Xu et al.49 developed a micro-
structure-based modelling method to predict the mechanical
behaviour of LiBs separators. The proposed method success-
fully captures the anisotropic behaviour of the separator under
tensile tests and provides insights into the microstructural
deformation, such as the growth of voids.

With the increasing abundance of test data, fresh avenues
based on big data is promising for battery modelling to
© 2023 The Author(s). Published by the Royal Society of Chemistry
optimize material properties. Sendek et al.,50 for instance, pre-
sented a new type of large-scale computational screening
approach for identifying promising candidate materials for
solid-state electrolytes for LiBs that is capable of screening all
known lithium-containing solids. The screening reduces the list
of candidate materials from 12 831 down to 21 structures that
show promise as electrolytes, few of which have been examined
experimentally. With large databases, data screening can be
conducted to obtain high conductivity, robust, and low-cost
materials for batteries.
3.2 Manufacturing

The cost and performance of the battery are inseparable from
the manufacturing process. Raw materials are the most expen-
sive component, while the second one is electrode
manufacturing, which affects performance metrics such as
energy density.51 The incentive for improving electrode
manufacturing lies largely in the ability to signicantly
increases the volume ratio of active materials, resulting in
higher energy density and lower cost.52

The electrode manufacturing process is shown in Fig. 3. The
active material, conductive additive, binder and other compo-
nents are mixed in a solvent. The capacity and energy, electronic
conductivity and mechanical integrity of the electrode are
determined by these ingredients. The mass ratios between the
ingredients must be such that the optimal combination of
properties is attained.53 Moreover, the selection of the solvent
will determine which binders are suitable and whether addi-
tional additives will be required.54 The resulting suspension,
RSC Adv., 2023, 13, 2036–2056 | 2039
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Fig. 3 The electrode manufacturing process.
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which is referred to as the electrode slurry, is then coated onto
a metal foil.55 In the laboratory, comparatively primitive
equipment coating such as the doctor blade is usually used to
achieve the coating, while the slot-die coater is used at the
industrial level. Surface coating can improve the interface
properties, cycle-life, rate performance and stability of cathode
materials for LiBs.56 Aer the coating is dried, it will be
compressed down to the desired thickness in the next pressing
step. The remaining stages are electrode slitting, winding,
packaging, contacting, electrolyte lling, and cell sealing.

The manufacturing process modelling is also effective
means to improve battery performance. Chouchane et al.57 re-
ported a novel computational simulation of NMC electrode
performance for different compositions, which explicitly
consider the three-dimensional of the active material. The
impact of slight variations in the electrode manufacturing
model can link electrode properties such as variations in
thickness, electrode density and active material weight fraction
with the performance of battery modules made from these
cells.58 Optimum whole-cell design in terms of simultaneous
optimization of electrode thicknesses, volume fractions of
porosity and total solids and specic cell mass are designed for
enhancing total charging times.59

In the production of LiBs, electrode production, cell
production and cell conditioning contribute similarly to the
total manufacturing cost. For the cost models, there is
a particular need to predict new technologies (Li–air, Li–S, etc.)
based on technical parameters, e.g. using process-based cost
modelling techniques.60 Compared with conventional 2D
planar structures, hierarchical 3D structures61 can yield shorter
diffusion pathways and lower resistance during the ion-
transport process, as well as providing increased energy
density by creating porous structures with larger surface areas
that can improve electrode reaction and ion transfer while
efficiently using the limited space in a compact battery.62 By
tuning synthesis conditions (e.g. temperature and atmosphere),
nano-materials with desirable structures and properties can be
obtained, leading to various usage areas for energy storage and
conversion applications (e.g. batteries, supercapacitors and
catalysts).63

To monitor internal temperature for safety purposes, multi-
point thin-lm sensors have been integrated into the LiBs
electrodes, that retain a stable capacity with high coulombic
efficiency over 100 cycles.64 In the case of battery combustion
2040 | RSC Adv., 2023, 13, 2036–2056
and explosions, the highly ammable liquid electrolyte serves
as the “fuel”. Thus, the separators and liquid electrolytes are
two key components that need improvements.65
3.3 Cell

The cell is the smallest unit in BMS research to predict and
control the overall cycling performance of the module and pack.
This section will briey introduce the principle of cell model-
ling. For more details, please refer to Section 4.

LiBs electrodes are usually made from large amounts of
active material and conductive material particles. In the
assembly, the active substance and conducting agent particles
constitute a porous solid network, while the liquid electrolyte
occupies the internal pore space. Porous electrode theory allows
for a detailed description of the electrochemical processes
occurring in the battery which determines its performance. On
this account, Newman et al.66 proposed a multi-domain elec-
trode model in which the electrode area is divided into two
phases: a solid phase to represent the active material, and
a liquid electrolyte phase. The main advantage of the porous
electrode is that it has a large electrochemically active surface
area which facilitates high power performance.67 The current
and reaction distributions through the depth of the electrode
are strongly inuenced by the type of activation polarization
and by mass transport of the reacting ionic species, in addition
to the effective conductivities of the two phases.68 The main
advantage of the porous electrode is that it has a large electro-
chemically active surface area which facilitates high power
performance.67 The current and reaction distributions through
the depth of the electrode are strongly inuenced by the type of
activation polarization and by mass transport of the reacting
ionic species, in addition to the effective conductivities of the
two phases.68

The gap between macroscopic (operating conditions) and
microscopic (aging mechanism) can be well bridged by the
proper models. Constitutive models are widely used to account
for complex chemical and physical processes taking place
inside the battery, such as side reactions. It was found that the
side reactions lead to the deposit forming the overgrowth of
solid-electrolyte interphase (SEI) on the graphite and produce
an apparent deposited layer (lithium plating) on the anode
particle surface.69 To characterize electrode behaviours by
mechanical–electrochemical factors and establish constitutive
models for electrodes can be utilized as degradation represen-
tatives to explicitly quantify the aging effects.70

High currents increase the probability of metallic lithium
microstructures forming, raising safety concerns due to
(internal short circuit) ISC and subsequent catastrophic
failure.71 In addition to forming metallic structures, lithium is
known to react in environments containing electrolytes and
solvents, irreversibly forming lithium-organic salt deposits. It
remains of fundamental interest to directly image the growth
processes involved to understand their formation and prevent
it. Arora et al.72 rstly described the conditions for lithium
deposition during overcharge. They extended Doyle's model73

with a side reaction described by a Butler–Volmer equation on
© 2023 The Author(s). Published by the Royal Society of Chemistry
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the negative electrode and investigated lithium deposition
under various operating conditions, with various cell designs
and charging protocols. The cell capacity loss is mostly due to
the loss of lithium (LLI).74 Indicators for plating were collected
by electrical stripping measurements as well as optical and laser
microscopy measurements on fully charged disassembled cells.
A novel method of using voltage plateau end-point gradients
enables the measurement of lower levels of lithium stripping
and plating.75 While all cells that show indications of plating in
the electrical measurements also showed indications of plating
in the optical analysis, the reverse conclusion is not valid.76 It is
widely believed that Li plating can be detected and quantied by
using a minimum in differential voltage signal. Whereas, the
model proposed by O'Kane predicts that the minimum is
a shied and more abrupted that cannot be used to quantify
stripping.77 Baker et al. proposed a Li activity model wherein the
activity of plated lithium differs from the activity of bulk Li.78

Besides, tab design correlates to Li-plating at high-rate
constant-current charging.79

Many researchers have argued that the most important LiBs
degradation mechanisms are the passivation layer on the
graphite electrode. The cycled cell is likely to experience an
initially faster rate of SEI growth compared to the cell held at
constant potential due to the exposure of the electrode to the
electrolyte as a result of cracks caused by cycling.80 Moreover,
dendrite growth stretches the SEI and changes the curvature of
the SEI layer, affecting the SEI evolution. Accordingly, SEI
growth changes the resistance and reaction current, evolving
dendrite morphology.81 During the initial charging, an electric
double layer forms at the electrode/electrolyte interface due to
the self-assembly of solvent molecules before any interphase
chemistry occurs.82 Liu developed a coupled dendrite and SEI
growth model that has been used to investigate the impact of
applied current density, SEI resistivity and SEI defects/
inhomogeneity on dendrite formation and growth. SEI grows
more quickly during charge than discharge due to the differ-
ence in electron ux through the SEI layer and the temperature
change during cycling. A non-destructive method based on the
electromotive force derivative analyses identies the degrada-
tion mechanisms of the individual electrodes.84 Both the SEI
formation at the anode and anode degradation have been
experimentally conrmed. Horstmann et al.85 and Single et al.86

draw an overview of multi-scale models for SEI growth. Das et al.
proposed a detailed kinetically limited SEI growth model with
spatially resolved concentrations.87 But most authors use
a kinetically limited SEI growth model using a Tafel equation,
with the exchange current density as a tting constant.
3.4 Module and system

The cell-scale research mainly focuses on performance, while
the module and system pay attention to management applica-
tions in EVs. There have been many approaches proposed for
the management of single cells, the control of module and pack
are less investigated and usually relies on simplied methods.

The current distributions variations, voltage imbalance,
interconnection resistances and thermal gradients in packs,
© 2023 The Author(s). Published by the Royal Society of Chemistry
which leads to impaired performance of the whole energy-
storage system. Temperature gradient during cycling led to
differing degradation rates, whereas the colder cells showed
aggravated aging behaviour.88 In addition, interconnect resis-
tances in parallel can cause the current heterogeneity that can
be further inuenced by the cell temperature.89 Different lami-
nate design schemes will result in different hazard patterns. A
larger layer number will delay the thermal runaway of the
battery, but increase the seriousness of thermal hazard.90 To
reduce the computational cost, a sensitivity-based model
predictive control formulation is proposed that makes optimal
model-based control suitable for real-time implementation on
a battery pack composed of dozens of cells.91

The adaption of different joining technologies greatly inu-
ences the central characteristics of the packs in terms of battery
performance, capacity and lifetime. The most common joining
techniques are ultrasonic welding, wire bonding, force tting,
soldering, laser beam welding, and resistance welding, as well
as friction stir welding, tungsten inert gas welding, joining by
forming and adhesive bonding.92
4 Digital management for battery

The development of communication transmission technology
and the research of internet applications have promoted the
collaborative integration of the cyber-end and vehicle-end for an
interconnected, self-recongurable BMS involving clouded
communication and computing integrated, as shown in Fig. 4.
The BMSs in the vehicle-end collect enormous datasets for
various battery materials, grouping styles throughout real-time
monitoring, encrypt and upload to the cyber-end simulta-
neously. The cyber-BMS has lifecycle management methods for
states state estimation, safety and fault prognosis and thermal
management.
4.1 Battery modelling

Over the last decades, lots of efforts have been taken to work on
models for state prediction and performance optimization. The
common categories of models are equivalent circuit model93

and electrochemical models.94 There are also some multi-
physics coupling models such as the electro–thermal–mechan-
ical coupling model. The thermal issues have usually been
coupled with models parameters focusing on performance
degradation even thermal runaway due to dynamic loading.95

4.1.1 Equivalent circuit model. As the semi-mechanical
grey-box model, ECM abstracts away the electrochemical
nature of the battery and represent it solely as electrical
components. ECMs replicate the volt-ampere dynamics of the
battery by composed of several resistors, capacitors and War-
burg elements in series and parallel.96 All the circuit compo-
nents are expressed as explicit functions of the state and input
variables, which are parameterized by tting the cell voltage
response with the algorithm.97 Owing to easily calculation and
analysis, they are widely employed for module and system
modelling closely to the real complex working condition in BMS
simulation and applications.98
RSC Adv., 2023, 13, 2036–2056 | 2041
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Fig. 4 The framework of interconnected and self-reconfigurable BMS.
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On account of the strong nonlinear relationship between
OCV and SOC, the OCV–SOC tting and modelling is needed.99

ECM considering thermal is also common to capture the heat
propagation from the cells through the entire pack and to the
environment.100 To study the physic–chemical properties and
the causes of the change withmodel parameters over the battery
lifetime, ECMs allows the characterization of electrochemical
systems in the frequency domain, which is one of the most
accurate techniques for decoupling the dynamics in frequency
and spatial domain studying and diagnosis of electrochemical
behaviour.101 By means of electrochemical impedance spec-
troscopy (EIS),102 frequency-dependent impedance uctuations
can be monitored during charging and discharging sequences
of the battery according to the resonant frequency of the
circuit.103 The individual contribution quantication for
different loss mechanisms can be identied by their parameter
dependencies in the frequency domain.104

4.1.2 Electrochemical model. Electrochemical models
simulate the LiBs' internal characteristics and reactions
according to chemical/electrochemical kinetics and transport
equations, which consist of a set of coupled partial differential
equations, explaining how the potential is produced and
affected by the electrochemical reactions taking place in the
battery.

In pseudo-two-dimensional (P2D), the lithium trans-
portations from the anode through the separator into the
cathode are modelled macroscopically based on the concen-
trated solution theory. While the kinetics of lithium diffusion
inside the cathode particles are simplied along the radius
direction for the symmetry of the spherical particles.105 As
shown in Fig. 5, (1) the solid-state Li+ ions concentration cs in
the electrodes is derived from Fick's law of diffusion for
spherical particles; (2) the liquid-phase Li+ ions concentration ce
in the electrolyte and the separator is based on the conservation
of Li+ ions; (3) the solid-state potential Fs in the electrodes is
derived from Ohm's law; (4) the liquid-phase potential Fe in the
electrolyte and the separator is calculated using Kirchhoff's and
2042 | RSC Adv., 2023, 13, 2036–2056
Ohm's laws; (5) the pore wall ux of Li+ ions J in the electrodes is
described by the Butler–Volmer kinetics equation.

By modifying two boundary conditions of the original P2D
model, the effective electrical conductivity of the separator is
a crucial parameter describing the micro ISC severity, as well as
fault diagnosis and battery design.106 The original electro-
chemical model can be reformulated by lumped parameters to
produce a full-order model with the number of parameters
reduced from 36 down to 24, which making system identica-
tion possible.107 However, the complexity makes more need of
memory and computational effort, which goes against the fast
computation and real-time implementation for BMS. As a solu-
tion, reduced-order models predict the cell response with
varying degrees of delity and model complexity by discretiza-
tion techniques that can be applied to retain only the most
signicant dynamics of the full order model. The proper
orthogonal decomposition and discrete empirical interpolation
method for model order reduction are convenient for real-time
applications.108

To reduce the computational times, a simplied version,
single particle model (SPM)109 has two basic assumptions: rst,
Fig. 5 Schematic of SPM and P2D model.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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each electrode is modelled as two spherical particles in which
intercalation and de-intercalation phenomena occur. Second,
the variations in the electrolyte concentration and the potential
are ignored. SPM could also be simplied using the three-
parameter polynomial approximation method and the
volume-average integration method. Then, a parabolic prole is
utilized to approximate the concentration within each spherical
particle of both electrodes. Advanced SPM with electrolyte
physics comprehensively coupling between mechanical and
chemical battery degradation presented accurate and fast SOH
estimation for BMS.110

Except for the material properties of the battery electrodes,
the inuences of the micro-scale morphological features on the
local lithium concentration distribution, electric potential and
macroscopic discharge performance can be simulated by the
lattice Boltzmann method,111 which is more convenient in
geometry and more efficient in the calculation to solve the
governing equations and predict the ion and electron transport
within porous electrodes.112

Though the battery processes are described in detail in
electrochemical models, making them the most accurate of
battery models, the computational complexity is also increased
accordingly. It may take hours to simulate a charge–discharge
cycle of a detailed battery model if no model reduction
approach is used to treat the battery equations.

4.1.3 Thermal coupled model. The thermal component of
the battery model is essential because the battery major weak-
ness is sensitivity to the temperature that their safety and aging
strongly depend on.113 LiBs heat generation is one of the major
phenomena occurs in the battery during cell operating condi-
tion that is during charge transport, chemical reaction,
discharge and it causes serious temperature changes,114 espe-
cially the thermal runaway for the condition of a low SOC.115 An
efficient thermal model on the understanding the battery build
composition dictates the proper selection of expressions that
governs the operation of cell such energy balance equations,
heat generation equation and boundary condition equation.116

Aer Bernardi et al. declared the rst thermal model for an
electrochemical cell, the Bernardi–Newman theory was built on
an electrochemical description of diffusion dynamics, charge
transfer kinetics and thermodynamics of a battery which can
predict the thermal or electrical response. This has been called
electrochemical-thermal modelling, which coupled with elec-
trochemical kinetics, charge conservation, mass transport and
heat transfer to construct the thermal model within the battery.
The parameters generally include the reaction rate, and entropy
change, ionic conductivity in the electrolyte and the diffusion
coefficient in the electrode and electrolyte.117 The integrated
electro-thermal model is capable of predicting the thermal
behaviour and estimating the voltages and temperatures under
uncertainties based only on its current and ambient
conditions.118

The thermal models are typically described based on the
degree of their dimensionality. The zero-dimensional or lum-
ped thermal model treat the cell as a lumped mass,119 while the
3D thermal modelling with the multi-scale and multi-domain
framework is demonstrated to be a powerful method to
© 2023 The Author(s). Published by the Royal Society of Chemistry
quantitatively predict thermal behaviours and aid the design of
cooling systems for LiBs pack.120 The thermal-dependent model
has the advantage in the real-time prediction of temperature,
analysis of large battery pack and development of control
strategy.121 The relationship between the cell energy density and
the ease of implementation for the thermal management
system is quantied for the rst time through varying the cell
thickness.122

Since the molar volume of the solid phase active material of
the battery will change with the lithium intercalation, the
concentration gradient will cause certain stress in the mate-
rial.123 The mechanical stress experienced by anode, cathode
and separator results in thickness and porosity changes in each
layer which in turn inuences electrochemical behaviour and
increase ionic or electronic resistance due to the failure of
structural integrity.124 Liu et al. rst summarized evolutionary
processes under mechanical abuse conditions to classify four
processes: mechanical deformation phase, ISC phase, thermal
runaway phase, and explosion/re phase.125 Laresgoiti's model
for surface cracking gives a constant degradation trend because
the stress is not affected by previous crack growth.126 Evolution
of temperature and porosity dependent transport properties can
be tracked during deformation and layers with higher
mechanical strength will suffer low porosity reduction and less
susceptible degradation in transport properties.127
4.2 State estimation on a multi-time scale

The current uctuations and temperature changes under
driving conditions threaten electrochemical reactions in the
battery. The data measured by the sensor on the BMS, such as
temperature, voltage, and current, can only reect the external
characteristics of the battery system and is not enough to
characterize the real-time state inside the battery. In order to
avoid the potential safety hazards and ensure reliable operation
of the battery system, BMS is expected to be characterized by
high accuracy and strong robustness state estimation, which is
a research hotspot for nearly a decade.

State estimation is a method to estimate the unknown state
of dynamic system based on external measurable data. The data
obtained by measuring the input and output of the system can
only reect the external characteristics of the system, while the
dynamic performance of the system needs state variables to
describe, such as residual power and health. Therefore, state
estimation is of great signicance for understanding and
controlling systems. Accurately estimating the battery state of
charge and health can realize reasonable utilization of energy,
prevent overcharge, discharge and other safety problems, and
extend the service life of the battery. Accurate prediction of the
battery performance subsequently allows for efficient digital
cloud management systems to be developed.128 On account of
increasingly stringent regulations on safety and performance,
battery state estimation features salient cyber-physical design
and multi-disciplinary nature by means of the multithread
condition monitoring and estimation algorithms.129,130 As
shown in Fig. 6, the measurement of basic parameters includes
temperature, voltage and current of battery, to regulate safety
RSC Adv., 2023, 13, 2036–2056 | 2043
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Fig. 6 The main functions of the BMS state estimation algorithm framework.
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alarm and avoid potential over-charging/discharging, as well as
charging, equalization, state estimation and thermal manage-
ment. The battery system of electric vehicles is usually consists
of thousands of single cells in series and parallel. The electro-
chemical reactions in charging and discharging process are
complex and affected bymany factors. The narrow area in which
LiBs operate with safety and reliability necessitates effective
control and management.

4.2.1 SOC estimation. The SOC was put forward by the
United States Advanced Battery Consortium (USABC), which
gives the remaining capacity of the battery relative to the
maximum available capacity that can be released.131 It is pre-
sented as a percentage and cannot be directly measured.

At present, there are four main categories of SOC estimation
methods proposed by researchers. The discharge test method is
the most reliable, simple and accurate, but it can only be used
in the laboratory and needs a given discharging rate. Look-up
tables132 are forthright and accessible, enabling SOC estima-
tion by a consistent one-to-one match between OCV or imped-
ance and the SOC. But the precise table requires enough resting
time for the reliability of the internal electrochemistry, which is
not suitable for online and precise estimation of SOC.133

Moreover, OCV is different from terminal voltage and will dri
with the service life of batteries.134 Experiments show that the
OCV aer discharging and charging at the same SOC always has
a voltage interval. Ampere-hour integral method is the most
prevalent in applications. In addition to the accuracy of the
initial SOC, cumulative deviations of capacity will inevitably
occur from measured current integration. Moreover, the oper-
ating conditions of the battery including temperature and aging
have a great inuence on the coulomb efficiency, similarly
increasing the cumulative effect of SOC error.

The most studied and promising applications are the ECM-
based methods to establish the battery state equations based
on the rst- or second- order model, which can usually be
loosely clustered into lters,135 observers, and learning algo-
rithms. The lters (e.g., EKF,136 UKF137) achieve the optimal
2044 | RSC Adv., 2023, 13, 2036–2056
estimation by adjusting the parameters, avoiding the error
accumulation of ampere-hour integral and sensitivity to the
error of initial SOC.138 However, the calculation burden and
error is inevitable in the linearization process.139 The observer
(e.g., the Luenberger, H-innity) method can improve SOC
estimation accuracy and robustness, but the performance of the
method is easily destroyed by system noise. An adaptive H-
innity lter can cope with the uncertainty of model errors
and prior noise evaluation.140 Owing to the intricate electro-
chemical behaviour under complex conditions, model selection
and parameter acquisition needs the compromise amongst
simplicity and accuracy.141 The error can be less than 5%
considering the extreme temperatures and dynamic condi-
tions.142 Considering OCV aging,143 hysteresis,98 noise adap-
tive,144 etc. will be more effective in improving accuracy under
1%. For statistical data-driven approaches, please refer to
Section 5.

There are three main technological challenges to the prog-
ress of SOC estimation.145 The rst is the multi-scale nature of
the LiB structure which is nonlinear for modelling accurately, as
mentioned in Section 3. Not to mention parameters changes as
the battery ages. Second, the internal environment is uctu-
ating and unpredictable under the dynamic operating condi-
tions (e.g., driving style and charging behaviour) impacting on
temperature, C-rate, and SoC range. Finally, the cell heteroge-
neity directly reduces the performance of the LiB pack system.146

Most of the estimation measures designed for cell are inap-
propriate on large-scale modules or pack. Therefore, advanced
SoC methods are desiderata required to solve these challenges.

4.2.2 SOH prediction. LiBs irrevocably suffer from perfor-
mance degradation over time (calendar aging) and use (cycle
aging) resulting from internal side reactions such as changes of
crystal structure, morphology, elemental composition, and
electrochemical properties.147 A wide variety of stresses
contribute to degradation including temperature, SOC,
charging/discharging rate and depth of charge. Calendar and
periodic aging of the battery system throughout the vehicle's
© 2023 The Author(s). Published by the Royal Society of Chemistry
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lifecycle, resulting in reduced performance and range. There-
fore, the study of battery aging can be as small as the atomic-
level microscopic on the physical scale and as large as the
macroscopic scale of the power and endurance needs of electric
vehicles. Both the analysis of the degradation and the estima-
tion of SOH have developed into research hotspots and insep-
arable from each other. The success of SOH prediction depends
on how well the aging processes and their reasons are under-
stood and mathematically translated from measured data, as
well as a degradationmodel that contributes with key know-how
in the design of any application integrating energy storage
system (ESS) devices based on LiBs.148

SOH refers to the ratio of the present characterization
parameters (e.g., capacity, impedance) to that of which when
they are not used.149 There are generally two denitions to
quantify battery SOH shown in eqn (1) and (2). Eqn (1) indicates
battery energy capability, which is oen applied to EVs, PV and
ESS where energy storage capacity outweighs power capability.
Eqn (2) presents power capability, which is more advantageous
in hybrid electric vehicle (HEV) applications.

SOHE ¼ Ccurrent

Cfresh

� 100% (1)

SOHP ¼ REOL � Rcurrent

REOL � Rfresh

� 100% (2)

where Ccurrent and Rcurrent are the maximum available capacity
and internal resistance during aging, Cfresh and Rfresh are the
nominal capacity and internal resistance when the battery is in
the initial state of cycling, respectively. REOL is the internal
resistance at the end of life (EOL).

The discharge voltage descends faster and the discharge
time becomes shorter with aging.150 In addition to the different
pathways both cycle aging and calendar aging, uneven degra-
dation phenomena were observed.151 The basic step is the
conduct of test matrices for aging correlation considering
calendar aging mode, cycling aging mode, and mixed aging
modes.152

With the real-time measurable data, the estimation of the
capacity loss and resistance increase can be performed by
algebraic expressions of the model in BMS.153,154 For example, by
extracting curve features from the data prole, differential
voltage analysis (DVA),155 incremental capacity analysis (ICA)156

and differential thermal voltammetry (DTV)157 can determine
the loss of lithium inventory (LLI) and loss of active material
(LLA) to compare the lithiation and delithiation capacity for
fresh and aged electrodes or cells.158 The voltage–capacity
model-based features of interest extracting optimized the IC
tting accuracy, robustness to aging and the computing cost,
allowing real-time applications.159 A universal approach named
the level evaluation analysis is proposed for calculating differ-
entiations in data to derivate different types of differential
curves (ICA/DVA/DTV).160 Due to measurement noise, by cross-
validation, the robust cubic smoothing spline method on
producing IC curves is superior over typical lters that require
tuning on window size usually by trial & error.161 These
methods, which extract features to obtain health indicators for
© 2023 The Author(s). Published by the Royal Society of Chemistry
state estimation, have a prediction error of basically less than
5% for health prediction at cell level.

Compared to the SOC, it tends to assign a higher inuence of
the temperature variations on the capacity loss.162 To estimate
the effect of the current rate on battery aging, maintain
a constant room temperature using climatic chambers is still
controversial.163 To link capacity rates to electrode properties,
a semiempirical model is used for electrodes fabricated from
several materials at various thicknesses.164 Except for constant
current conditions, dynamic proles can be taken towards the
online implementation of the model.165 SOH prediction still
requires various technical support, such as BMS, electrical,
electronics, telecommunications, microcontroller technology,
etc.
4.3 Cyber management

The novel BMS framework seeks to understand the underlying
mechanism of CPSs as well as make predictions concerning
their state trajectories based on the discovered models.

4.3.1 Model-driven engineering (MDE). MDE is a kind of
soware approach based on three primary activities i.e.
modelling, model transformation and verication. It incorpo-
rates the features of reusability and portability. Such sophisti-
cated features are highly supportive and aligned with the
implementation requirements of cloud computing. Conse-
quently, MDE is considered an effective and attractive devel-
opment approach for cloud computing.

To full different tasks for state estimation and different
management strategies, these data are conversed to hierar-
chical structures by a certain methodology which refers to
transfer protocols and the proper data processing methods,
such as data cleaning, screening, fusion, feature extraction, and
clustering, achieving hierarchical computing and control
methods.22 Based on sensing data from the vehicles, a serial of
desired models can be established and trained, guiding battery
design and optimization process.

Intelligent algorithms and communication technologies are
driving the products manufacturing industry toward the big
data era. With the physical reproduction process of the cloud
data model, the systematic guidance of optimization iteration
for the product can be achieved in two different ways. One is to
guide the design rules for higher performance, safer, and more
environmentally friendly materials. The other is that the
conventional product design process is limited to the individ-
ual's professional knowledge, while researchers can optimize
the processing technology of products by taking advantage of
the product usage data collected on the cloud.

4.3.2 Diagnoses and prognostics health management
(PHM). Progress on the diagnosis of battery degradation has
had a substantial effect on the development of EVs. The design
of large and complex battery systems require an improved
understanding of batteries during operation to diagnose prob-
lems and predict performance in real-time. Similarly, the ability
to take an unknown cell, and diagnose how it has degraded
based upon an understanding of the fundamental degradation
mechanisms have been researched for years. However, when
RSC Adv., 2023, 13, 2036–2056 | 2045
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encountering the issues of capacity fade, thermal inuence, and
energy density changing, most oen these models neglect the
impact of degradation and are not able to aid in understanding
the interactions between components. Chu et al. performed
real-time diagnostics of LiBs without contact or cell teardown
and extracted material properties from external measurements
of voltage and temperature.166 Anseán et al. presented a mech-
anistic investigation that generates a complete degradation
mapping coupled with aging features to attain accurate diag-
nosis and prognosis.167

Internal failure including loss of electrode materials, struc-
ture deformation and dendrite growth usually incubates from
atomic/molecular level and progressively aggravates along with
lithiation. It is reported that the variations of voltage and
resistance are ahead of the gas release when battery safety
declined more sharply.168 It is suggested that ICA and imped-
ance estimation can be used to detect overcharging cycling
online.169 Excessive heat generation and transfer are easy to
melt the separator and lead to cell failure.170 To identify battery
faults, a method based on the empirical mode decomposition
and sample entropy is proposed under various operating
conditions.171

Many LiBs is bound to degrade, eventually leading to severe
disposal problem that may pose detrimental impacts on envi-
ronment and energy conservation. The PHMmethod is urgently
demanding for batteries.172 To meet energy and cost targets,
improvements of PHM through the whole battery value recy-
cling are needed. As shown in Fig. 7, CHAIN is presented to
ensure the security and stability of battery full-lifespan, which is
an effective tool to optimize battery performances and develop
next-generation of energy storages by bringing the virtual
thoughts into reality before fabrication.
Fig. 7 The prognostics and health management of battery.22

2046 | RSC Adv., 2023, 13, 2036–2056
PHM is a monitoring and predicting system, which can
detect battery failure and predict RUL in time employing model-
based, data-driven, and hybrid prognostics. The core of PHM is
the accurate prediction and reliable analysis of the target
batteries. Model-based prognostics demands a balance between
the accuracy of valuation results and the complexity of electro-
chemical mechanisms which require to be updated regularly by
incorporating historical data and real-time operation data,
while the data-driven approach can be combined with historical
database parameter corrections which are more universal, yet
more dependent on data accuracy and the calculation speed.
The cloud servers of CHAIN process a variety of estimation
methods. Therefore, users can choose one or more of them
based on computational accuracy requirements and calculation
conditions to obtain the desired results. Repurposing degraded
LiBs in second use applications holds the potential to reduce
rst-cost impediments of EVs.173 Mathews et al. used a semi-
empirical data-based model of NMC degradation for EV
manufacturers to reach break-even and protability for second-
life battery costs that are <60% of the new battery.174 It has been
discovered that the channel choice of capacity allocation and
battery recycling is determined by the battery prices of the
upstream EV manufacturer and the external supplier.175
5 Intelligent analysis by machine
learning

The ‘safety envelope’ of temperature and current of the battery
system delineates the boundaries of loading conditions of EVs.
Reliable operation requires continuous monitoring of sensors
and analytical decisions of the BMS. The issue is how to extract
the critical parameters leading to battery aging and failure from
the growing cumulative data. Due to the complexity of massive
© 2023 The Author(s). Published by the Royal Society of Chemistry
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data process and analysis, the computer-aided decision-making
by ML and the intelligent methodology is of crucial importance
when considering the construction of digital clouded BMS. For
data extraction and collection, ML algorithms are numerous
and increasing rapidly every year. Briey, ML algorithms can be
divided into supervised, unsupervised, semi-supervised and
reinforced according to the learning mode. It can also be cate-
gorized into classication, regression and clustering based on
the learning task. There is no xed classication criteria, that is,
some newer algorithms have more than two characteristics at
the same time. This article reviews the ML-dependent algo-
rithms and their characteristics involved in existing BMS liter-
ature and listed in Fig. 8, which is not intended to enumerate
and classify all machine learning algorithms here. The semi-
supervised and supervised learning cover the most state esti-
mation and life prediction applications, as well as attempts at
increasing popularity of reinforcement learning and ensemble
learning algorithms in recent years.

The promoted classications of data analysis method can be
divided into the unsupervised learning, supervised learning,
reinforcement learning and ensemble learning.176 The ML
investigations on energy storage and conversion materials have
rapidly increased that has been widely promoted on LiBs owing
to the innovation classication or characteristic extraction. In
recent years, mathematical models have attracted attention
combined with data-driven techniques. These models can make
predictions without prior knowledge of the system, and have
high accuracy with low computational cost. Currently, the data-
driven methodologies are generally originated from
Fig. 8 The characteristics of machine learning-dependent algorithms in

© 2023 The Author(s). Published by the Royal Society of Chemistry
mathematical statistics. Although some methods are
outstanding for dealing with the issue of batteries, hardly
considerations about the physical principles are adopted for
enhancing the algorithms. Therefore, it is worthy to associate
the physical model with the data-driven method as the classical
researches could benet the algorithms as the extremely crucial
prior technique.177 Coupling the neural networks with physical
principles are presented as the potential research direction.

Due to exibility and nonlinear matching ability, ML
methods are among the most popular data-driven techniques
for both health estimation and prediction.30 Data-driven
mathematical models are becoming one of the most prom-
inent approaches to battery health estimation and prediction
for real applications as they do not involve complex physical
models. There is a strong linear relation between knee-onset,
knee-point and end-of-life capacity evolution, that can be pre-
dicted by ML techniques.179 Peter et al.180 proposed a charging
optimization approach based on ML. The cycle life of LiBs was
maximized by the optimization of parameter space with
a specied charging step and duration. Specic, the experi-
mental data of the rst few cycles were applied to predict the
nal cycle life which reduced the time consumption per
experiment. Subsequently, the Bayesian optimization algorithm
was adopted to detect the parameter space of charging protocols
which simplied the experimental procedures. Chen et al.181

focused on materials development where ML has been
successfully applied, and reviewed the fundamental procedures
to promote further developments in the eld of energy storage
and conversion.
volved in BMS applications.178
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5.1 Unsupervised learning

Unsupervised learning is essentially a statistical device that
uncovers underlying structures in unlabeled data. The main-
stream unsupervised learning methods are clustering and
dimensionality reduction. As one of the important subjects of
ML, clustering-based classication concentrates on the data-
base. The normal clustering method adopted for construction
includes K-means clustering, K-medoids clustering and Clarans
clustering, and all method could show satisfactory perfor-
mance.182 The research on combining data mining techniques
with machine learning methods for fault diagnosis and safety
management of complex power systems is also promising. By
analysing anomalies hidden under external measurements and
calculating the failure frequency of each battery pack, the
clustering algorithm can identify the fault type and locate the
faulty unit in time.183 You et al. proposed a data-driven frame-
work by applying the K-means clustering algorithm to trace the
SOH of batteries that are cycled dynamically according to
various driving patterns.184 The driving cycles are velocity/
power–time curves and always used for vehicle testing to
determine the emission or energy consumption. Owing to the
representation of the local traffic conditions, the development
of driving cycles is based on the kinematic fragments sampling
from the local vehicles. And clustering is adopted to classify the
samples fundamental on the characteristics of each kinematic
fragment. Some urban cities have constructed the local driving
cycles based on the clustering, including China (Beijing,185

Xi'an,186 Shenyang187) and India.
5.2 Supervised learning

During the training process of supervised learning algorithms,
a pattern can be established from the training dataset, such as
a functional relationship or a learning model, and new
instances can be inferred based on this pattern. The algorithm
requires specic inputs/outputs, and rst needs to decide which
data to use as an example. The main algorithms include clas-
sication, regression, Bayesian method, neural networks and
deep learning.

The representative use is classication, to allocate labels for
the samples in the database based on the characteristics.
Different from clustering, the supporting vector machine (SVM)
is one of the supervised learnings based on a generalized linear
classier.188 The samples are gathered in a high dimensional
space and classied if projected into lower dimensional space
with a hyperplane. Therefore, the pivotal factor of SVM is to
determine the maximum-margin hyperplane according to the
learning from the database.189 Currently, SVM can be achieved
by researching the kernel method, and the robustness and
stableness due to the regularization to avoid the structural
risk.190 The representative application for SVM is to classify the
batteries and search for the battery with worse consistency.191

The batteries in the same packs may be inconsistent due to the
distribution of temperature and current, resulting in the
imprecise estimation of battery SOC. To enhance the accuracy,
tracking the batteries with worse consistency in the pack is an
effective method. However, the effect of polarization makes it
2048 | RSC Adv., 2023, 13, 2036–2056
hard to identify the targeted battery. Therefore, the SVM is
taken advantages of for outstanding classication of batteries.
Some researches indicate that SVM and the improvements have
satisfactory performance and might be widely promoted for the
future clouded BMS.

Other applications have been researched. Feng et al. intro-
duced the method for SOH and a maximum error of 2% could
be achieved.182 Methods including logistic regression and rele-
vance vector machine192 are also used for application on LiBs.
The main courses are concentrating on state estimation. For
instance, the SOH represents the current capacity of the
batteries, inuencing the driving range and safety. And the ML
methods are adopted to achieve high precision of SOH esti-
mation and prediction.193

Bayesian algorithm is based on probability theory and
statistics knowledge to complete classication, which requires
the efficient sample data that independent of each other.194 It
has the characteristics of high classication accuracy and fast
speed. Hierarchical Bayesian models (HBMs) provide rapid
prediction of LFP performance under high-rate charging.195

Attia et al. predicted the nal cycle life with the help of Bayesian
optimization algorithm and cycle data from previous cycles,
provided future charging parameters and optimized charging
strategies.196

5.2.1 Neural network. Neural networks are an algorithm
used for supervised learning, which can automatically learn
useful knowledge from the data without an accurate mathe-
matical model. Various scenarios are found as the fast promo-
tion of neural network (NN), and there have been enough
variants that could be used in clouded BMS.

Back propagation (BP) is the basic NN that can be used for
distributed parallel information processing. The essential issue
for BP is gradient descending, and the training of BP relies on
the method for back propagation of error. Several hidden layers
are composed and each layer is with a weight that represents the
relationship between inlets and outlet. BP networks are widely
promoted in system identication, and the main application in
batteries is SOC estimation. The SOC estimation is summarized
as a maximum posterior estimation, where the state is associ-
ated with the previous ones. The BP networks can describe the
connection between the input current and the output SOC. The
main idea for achievement is to supply enough database to train
the BP network for tacking the probability conditions. Although
the algorithms can achieve a satisfactory result based on the
training database, the generalization might be imprecise if the
input is out of the training database. Other applications
including the identication of models are under-
researched.197,198

Elman neural networks are representative dynamic recurrent
NN, which emphasizes the ability for tackling the time-varying
system. The specialization of Elman neural networks is that
an extra layer, namely the bearing layer, is applied to the orig-
inal NNs and the lagging effect can be achieved. The bearing
layer has the ability for memorizing the information of former
layers, makes it possible to address the sensitivity between the
continuous training database. While similarly with BP
networks, the Elman neural networks still rely on the gradient
© 2023 The Author(s). Published by the Royal Society of Chemistry
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descending method, indicating that the methodology may have
difficulty for convergence. Though the popular application for
SOH estimation still makes it to be a powerful tool, and the
stability and robustness are rather better than the previous
methods. Some researchers have been carried out to utilize the
Elman neural networks for state estimation, including
SOH,199,200 and the result analysis illustrates a better perfor-
mance. The main advantage of the NN model is that it is suit-
able for all types of batteries, but it requires sufficient training
data samples and time-consuming training period.

5.2.2 Deep learning. Deep learning is an innovative eld
that originated from neural network and has attracted much
attentions to deal with the issue of image identication and
data mining. At present, deep learning algorithms are widely
used in many elds, for example, electric load forecasting,
traffic speed prediction, and fault diagnosis systems, which
makes it possible for applying in batteries. Compared to the NN
algorithm, the deep learning algorithm could effectively simu-
late highly nonlinear mapping between the input and output.
Therefore, it can accurately model the battery under a multi-
variable environment and dynamic conditions.

Recurrent neural network (RNN)201 has been extensively
utilized to diagnose and prognosis LiBs, as it has demonstrated
superior performance. It is also applied to the recognition of
driving patterns and applied to energy management optimiza-
tion.202 A gated recurrent unit recurrent neural network (GRU-
RNN) based momentum optimized SOC estimation algorithm
is investigated to promote the SOC convergence speed and
prevent overtting.203 The framework of a multi-scale model
that couples a deep NN with a partial differential equation
solver can provide an understanding of the relationship
between the pore-scale electrode structure reaction and device-
scale electrochemical reaction uniformity.204 For the rst time,
a feed-forward articial neural network (ANN) has been used to
estimate the SOC of calendar-aged lithium-ion pouch cells.205

For instance, a variant long-short-term memory (LSTM) NN
prognostic framework shared by multiple batteries is well-
trained separately for the prediction of SOH and remaining
useful life (RUL).206 A deep learning-based capacity estimation
method that incorporates the concepts of transfer learning and
ensemble learning avoiding the costly and time-consuming
data production process.207

Due to the original RNNs has trouble convergence relying on
the gradient descending method, RNNs may encounter the
trouble of vanishing gradient or over-large gradient according to
the disability for long-term memory, failing networks training.
As improvements, some memory units are introduced to ach-
ieve the memory between continuous layers with some
controlling gates, resulting in the enhanced ability for long-
term memory, leading to the better performance of dealing
with the sequent database. Due to the degradation of batteries
is strongly associated with the historical path, the batteries state
always has the potential relations between the continuous
samples. The normal neural networks do not perform well for
taking the advantages of sequence in time, and some essential
information could be obliged. Researches introduced the LSTM
to utilize the information hidden in the database as much, and
© 2023 The Author(s). Published by the Royal Society of Chemistry
a satisfactory performance could be achieved within sufficient
training.208 Bian et al. introduced a SOC estimation based on
LSTM and the adaptability for different batteries are valid.209

Hong et al. proposed a joint-prediction strategy using LSTM and
multiple linear regression algorithms and takes into account
weather and drivers' driving behaviours during real vehicular
operating has excellent practical application effects.210 LSTM
recurrent neural network performs accurate synchronous multi-
parameter prediction for battery systems.211

Distinguished from the normal NN, DNNs have a better
performance for simulating the nonlinear system and could
save more sources. DNNs could be considered as the improve-
ments for NNs, and more hidden layers (generally more than 2
layers) are utilized to imitate the brain way of thinking. DNNs
are popular to deal with the RUL issues, and more application
scenarios are under research.212 Ren et al.213 proposed an inte-
grated DNN to predict RUL and the method is validated based
on the database of NASA. Other applications can be taken into
consideration, such as the diagnosis of LiBs. Cadini et al.7

introduced data-driven particle lters to achieve lifetime prog-
nosis and diagnosis, and Khaleghi et al.214 introduced a real-
time health diagnosis method based on data-driven.
5.3 Reinforcement learning

The learning-based BMS benets from the development of
machine learning. The supervised learning treats the optimal
control result as the label data and employs the neural network
to t themapping relationship between the state and the action.
While the reinforcement learning (RL) takes the iterative trial-
and-error method by the data conversion between the envi-
ronment and the agent to search for the optimal control
strategy.215 It reects a mapping between the random state and
the optimal action, which can guarantee adaptability.216 The
network could learn how to take the actions based on the
rewards by RL, and then maximize the notion of cumulative
rewards to search for the best solution.217 Due to the model-free
and self-learning performance, RL has been widely promoted
for BMS, especially energy management. Other issues including
SOC estimation could be researched based on RL.218

The issue of energy management can be abstract as the
strategy for batteries to release more energy for driving, and it
could be similar to the problem of optimization. The issue is
crucial for future intelligent driving coupled with connected
vehicles, and various researches have been carried out. Zhou
et al.219 introduced an energy management method based on
RL, and the simulation results indicate that at least 7.8% of
energy could be saved.

Several pieces of research have been carried out and they
might extend the method to achieve the improvement for
clouded BMS. Tian et al.220 proposed a method coupling LSTM
and cubature Kalman lter for SOC estimation, and amaximum
error of 4% could be observed. And Kim et al.221 introduced
a method based on deep Bayesian harmony search for model
identication. Song et al.20 proposed a method coupling SVM
and unscented Kalman lter to co-estimate SOC and SOH.
RSC Adv., 2023, 13, 2036–2056 | 2049
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6 Hybrid applications based on fusion
schemes

In EVs, onboard BMS is responsible for monitoring the battery's
basic conditions such as voltage, current and temperature.
Empirical methods can be easily used onboard. However, the
obvious disadvantage is their dependence on empirical knowl-
edge, which is unlikely to encompass all the complex conditions
and some of the pre-unknown working conditions of batteries.

The control-oriented applications on vehicles are necessary
by means of computationally efficient models. Undoubtedly, it
appears very important to improve the calculation efficiency for
real-time applications. The integrated 5-state model is compu-
tationally efficient for vehicle applications and provides esti-
mates of the critical battery states. From a soware perspective,
onboard diagnosis using lookup tables with selected features of
interest of the incremental capacity curves can be implemented
before its deployment.222 When the vehicle is running or
charging, the BMS will regulate the temperature of the batteries,
so it is most important to be aware of high battery temperatures
when the vehicle is parked.223 The charging pattern transits
from constant DC to AC and adopts optimization and adaptive
estimation algorithms, which have improved charging perfor-
mances and provided valuable experiences for further study.224

Onboard state estimation algorithms that should be able to
be implemented onboard real buses, using commercial, inex-
pensive measuring hardware are favourable for obtaining
valuable feedback to recalibrate. Research has shown the
viability of acceptance of deep learning-based prognostics in
future battery management systems.225 Furthermore, the SOX
needs to be estimated by specic algorithms as it cannot be
directly measured during battery operation.226 Therefore, in
cases in which the model has trained onboard, the accuracy and
real-time of the algorithm may also affect the performance of
the model.227 However, it is recommended that, when the LiBs
are used on vehicles, yearly recalibration is made, to keep the
algorithm in touch with the actual state of life.

It is noted that the higher efficiency methodology is more
suitable for onboard estimation devices that require computa-
tionally efficient estimation techniques. Owing to the
complexity of onboard implementation, low computation
algorithms like Kalman lter are capable of solid surface
concentration and phase potential estimation, if possible,
would provide a more elegant onboard solution. For limited
BMS memory space, it is presented the frequency division
model of the battery pack to reconstruct the voltage distortion
recorded with the lower recording frequency.228 In addition,
what is required is driver behaviour analysis, and personal
energy analysis models to provide users with private driving
forecasts and recommendations. For example, the best
charging method, the remaining battery mileage reminder,
battery life prediction.

The existing cloud management platformmostly has a three-
tier platform structure of the enterprise, local and national.
First, data acquisition and fusion for state and GPS are
completed on the vehicle, which is visible to the enterprises.
2050 | RSC Adv., 2023, 13, 2036–2056
Then, these data will be transmitted to the national platform for
specic management. The data includes but not limited to drive
motor, extreme value, alarm, vehicle position, engine, temper-
ature and voltage of cells. The analysis of data characteristics
related to battery mechanism is necessary considering the best
suitable method of data mining. Herein, several representative
methodologies and their preferable applications are presented.
If the automotive industry has the application of cloud
management technology, then with the combination of big data
and internet of things technology, driverless cars can enter
people's lives. Sharing and management of traffic data provide
solutions for smart transportation soon. Achieving driverless or
automatic driving is just around the corner.

The imminent coupling of the transport sector with the
electricity sector and the possibilities of grid integrated energy
storages are creating new potentials and challenges.229

The manufacturing industry mentioned above, the earliest
application of digital hygiene technology: using industrial big
data to improve the manufacturing level, including product
fault diagnosis and prediction, analysis of process ow,
improvement of production process, optimization of produc-
tion process energy consumption, industrial supply chain
analysis and optimization, production planning and
scheduling.

Several studies focus on the fundamental risks and issues
associated with battery safety and reliability. Industry chal-
lenges with elding safe and reliable batteries are increasing as
new cell designs are introduced into advanced energy storage
applications requiring higher specic energies, fast charging,
and lower-cost alternatives. Likewise, improvements in cell and
battery safety design without compromising performance
continues to be a major focus for researchers, manufacturers,
and users across all sectors of the energy storage marketplace. A
better understanding of battery failure mechanisms will further
enable regulatory agency approval and public acceptance of
early deployment of advanced battery energy storage systems for
high-reliability applications.

The authors believe that digital twins technology have the
potential for module and system modelling and EV applica-
tions. With digital twins, building complex and accurate battery
system models in the cloud can be implemented, which is
briey called cloud modelling. Since the cloud provides enough
memory and computational effort, there is no need to consider
the limitations of model complexity. Cloud modelling may
implement the whole life cycle simulation and modication of
the battery, helping the BMS to manage and control the battery
better.

7 Conclusions

Interactional management is vigorously developing in EV elds
as a re-new and highly effective framework for battery monitor
and management. CHAIN presented in Section 2 is the typical
one of the many possible manifestations. Inspired by the
multiple scale framework, a comprehensive review of the
development of battery management is introduced and dis-
cussed from different spatial dimensions (material to the
© 2023 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2ra06004c


Review RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
Ja

nu
ar

y 
20

23
. D

ow
nl

oa
de

d 
on

 2
/1

8/
20

25
 1

1:
21

:5
1 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
system), dynamic dimensions (microsecond to year), and time
dimensions (past to future). The review comprises four aspects:

(1) For high energy density, excellent performance and
safety, the comprehensive research of LiBs at multi-scale is
essential from the electrode to pack. This paper focuses more
on the recent developments in this eld.

(2) Modelling and state estimation is given considering
multiple domains include battery electrical, thermal, aging, and
further coupled domains. The whole process of model devel-
opment is traced based on the modelling philosophy, utility,
and application.

(3) Intelligence is the most distinctive features of next-
generation management. This review highlighted the attempts
of AI methods on battery data analysis. Intelligent methods
offer novel tools to tackle mass data computing on the cloud.
The innovative theory for data mining that might be promoted
in the future is still introduced for providing the probable
advanced research direction.

(4) This paper presented the cutting-edge battery manage-
ment technologies in achieving satisfactory safety and long
service life for EV applications. With the help of data
computing, the cloud-based training and serving to localized
devices are an optimal combination for accuracy and time-
efficient. The need to develop reliable onboard applications
enabling interactional management is highlighted as well as
data-driven technologies for battery health diagnostics and
prognostics. Scientic literature covering the above topics is
analyzed, and each approach is discussed in view of its advan-
tages and pitfalls.

In summary, considerably advanced attempts exist in the
literature including but not limited to onboard dynamic
condition for computationally tractable models in a wide variety
of tasks and applications. Although many valuable applications
can be performed based on intelligent management, there are
still some engineering and scientic challenges faced for
current technologies, devices during generalization and appli-
cation. The main challenges are as follows:

(1) Data: all walks of life including nance, automotive,
catering, telecommunications, energy, entertainment, etc., have
integrated the traces of big data. Data is an essential precon-
dition for the timely and accurate judgement of the battery. The
measurable physical quantities for batteries are limited to
voltage, current, and temperature. Firstly, the novel sensing
technology will generate higher dimensions data and bring
tremendous innovation for battery modelling, state estimation,
and management strategies. Secondly, the communication
system, method, apparatus and digital interface for data
transmission need an upgrade to meet timeliness and correct-
ness. Finally, security issues such as authentication, data
segregation, and encryption are considered as the top concerns
in cloud computing. Information security and privacy also shall
be taken into consideration.

(2) Algorithm: with the proliferation of massive and diverse
scientic data, the ability of machines to intelligently process
and use data needs to be improved. The new generation of
technologies such as ML and AI will play an increasingly
important role. Determining how to generate and use converged
© 2023 The Author(s). Published by the Royal Society of Chemistry
cyber-physical data to better serve battery lifecycle, to drive cell/
pack design, manufacturing, and service to be more efficient,
smart, and sustainable is emphasized and investigated based
on our pre-existing study on big data in BMS. Data processing
technology barriers must be reduced to make analytical tools
more accessible and to improve data and visualization literacy,
especially the generality of the algorithm.

(3) Application: the development opportunities and chal-
lenges of cloud-based technology based on digital twins coexist.
The current advanced AI algorithms, such as lters, observers
and ML, are still difficult to apply online due to the limited
computing capability of the vehicle-mounted controller. With
the increasing complicating algorithms and battery models
designed for lifetime, safety, and performance, the manage-
ment system needs a more detailed and clear division of tasks
for interactional distributed management. Therefore, an effi-
cient and intelligent computing framework will bring great
changes to next-generation battery management technology.
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B. Amante Garćıa, J. Environ. Manage., 2019, 245, 432–446.

174 I. Mathews, B. Xu, W. He, V. Barreto, T. Buonassisi and
I. M. Peters, Appl. Energy, 2020, 269, 115127.

175 M. Zhu, Z. Liu, J. Li and S. X. Zhu, Eur. J. Oper. Res, 2020,
283, 365–379.

176 J. Meng, L. Cai, D. I. Stroe, J. Ma, G. Luo and R. Teodorescu,
Energy, 2020, 206, 118140.

177 W. Li, J. Zhu, Y. Xia, M. B. Gorji and T. Wierzbicki, Joule,
2019, 3, 2703–2715.

178 I. Antonopoulos, V. Robu, B. Couraud, D. Kirli, S. Norbu,
A. Kiprakis, D. Flynn, S. Elizondo-Gonzalez and
S. Wattam, Renewable Sustainable Energy Rev., 2020, 130,
109899.

179 P. Fermı́n-Cueto, E. McTurk, M. Allerhand, E. Medina-
Lopez, M. F. Anjos, J. Sylvester and G. dos Reis, Energy AI,
2020, 1, 100006.

180 K. Peter and A. Jossen, J. Energy Storage, 2016, 6, 125–141.
181 A. Chen, X. Zhang and Z. Zhou, InfoMat, 2020, 2, 553–576.
182 X. Feng, C. Weng, X. He, X. Han, L. Lu, D. Ren and

M. Ouyang, IEEE Trans. Veh. Technol., 2019, 68, 8583–8592.
183 Q. Xue, G. Li, Y. Zhang, S. Shen, Z. Chen and Y. Liu, J. Power

Sources, 2021, 482, 228964.
184 G. won You, S. Park and D. Oh, Appl. Energy, 2016, 176, 92–

103.
185 H. Gong, Y. Zou, Q. Yang, J. Fan, F. Sun and D. Goehlich,

Energy, 2018, 150, 901–912.
186 X. Zhao, X. Zhao, Q. Yu, Y. Ye and M. Yu, Transp. Res. D:

Transp. Environ., 2020, 81, 102279.
187 Z. Chen, Q. Zhang, J. Lu and J. Bi, Energy, 2019, 186, 115766.
188 Q. Song, S. Wang, W. Xu, Y. Shao and C. Fernandez, Int. J.

Electrochem. Sci., 2021, 16, 1–15.
189 E. Vanem, C. B. Salucci, A. Bakdi and Ø. Å. Shei Alnes, J.

Energy Storage, 2021, 43, 103158.
190 W. Guo and M. He, Appl. So Comput., 2022, 124, 108967.
191 C. Lin, J. Xu and X. Mei, Energy Storage Mater., 2023, 54, 85–

97.
192 P. Guo, Z. Cheng and L. Yang, J. Power Sources, 2019, 412,

442–450.
193 P. Tagade, K. S. Hariharan, S. Ramachandran,

A. Khandelwal, A. Naha, S. M. Kolake and S. H. Han, J.
Power Sources, 2020, 445, 227281.

194 Z. Yun, W. Qin and W. Shi, J. Energy Storage, 2022, 52,
104916.

195 B. Jiang, W. E. Gent, F. Mohr, S. Das, M. D. Berliner,
M. Forsuelo, H. Zhao, P. M. Attia, A. Grover,
P. K. Herring, M. Z. Bazant, S. J. Harris, S. Ermon,
W. C. Chueh and R. D. Braatz, Joule, 2021, 5, 3187–3203.
© 2023 The Author(s). Published by the Royal Society of Chemistry
196 P. M. Attia, A. Grover, N. Jin, K. A. Severson, T. M. Markov,
Y. H. Liao, M. H. Chen, B. Cheong, N. Perkins, Z. Yang,
P. K. Herring, M. Aykol, S. J. Harris, R. D. Braatz,
S. Ermon and W. C. Chueh, Nature, 2020, 578, 397–402.

197 H. Chun, J. Kim and S. Han, IFAC-PapersOnLine, 2019, 52(4),
129–134.

198 F. Feng, S. Teng, K. Liu, J. Xie, Y. Xie, B. Liu and K. Li, J.
Power Sources, 2020, 455, 227935.

199 F. Yang, W. Li, C. Li and Q. Miao, Energy, 2019, 175, 66–75.
200 W. Li, L. Du, W. Fan and Y. Zhu, Int. J. Hydrogen Energy,

2019, 44(23), 12270–12276.
201 Y. Toughzaoui, S. B. Toosi, H. Chaoui, H. Louahlia,

R. Petrone, S. Le Masson and H. Gualous, J. Energy
Storage, 2022, 51, 104520.

202 X. Lin and J. Zhang, J. Energy Storage, 2022, 46, 103890.
203 M. Jiao, D. Wang and J. Qiu, J. Power Sources, 2020, 459,

228051.
204 J. Bao, V. Murugesan, C. J. Kamp, Y. Shao, L. Yan and

W. Wang, Adv. Theory Simul., 2020, 3, 1–13.
205 A. G. Kashkooli, H. Fathiannasab, Z. Mao and Z. Chen, J.

Electrochem. Soc., 2019, 166, A605–A615.
206 P. Li, Z. Zhang, Q. Xiong, B. Ding, J. Hou, D. Luo, Y. Rong

and S. Li, J. Power Sources, 2020, 459, 228069.
207 S. Shen, M. Sadoughi, M. Li, Z. Wang and C. Hu, Appl.

Energy, 2020, 260, 114296.
208 X. Li, L. Zhang, Z. Wang and P. Dong, J. Energy Storage,

2019, 21, 510–518.
209 C. Bian, H. He and S. Yang, Energy, 2020, 191, 116538.
210 J. Hong, Z. Wang, W. Chen, L. Y. Wang and C. Qu, J. Energy

Storage, 2020, 30, 101459.
211 J. Hong, Z. Wang, W. Chen and Y. Yao, Appl. Energy, 2019,

254, 113648.
212 E. Chemali, P. J. Kollmeyer, M. Preindl and A. Emadi, J.

Power Sources, 2018, 400, 242–255.
213 L. Ren, L. Zhao, S. Hong, S. Zhao, H. Wang and L. Zhang,

IEEE Access, 2018, 6, 50587–50598.
214 S. Khaleghi, Y. Firouz, J. Van Mierlo and P. Van den

Bossche, Appl. Energy, 2019, 255, 113813.
215 A. H. Ganesh and B. Xu, Renewable Sustainable Energy Rev.,

2022, 154, 111833.
216 J. Chen, H. Shu, X. Tang, T. Liu and W. Wang, Energy, 2022,

239, 122123.
217 X. Han, H. He, J. Wu, J. Peng and Y. Li, Appl. Energy, 2019,

254, 113708.
218 M. Kim, K. Kim, J. Kim, J. Yu and S. Han, IFAC-

PapersOnLine, 2018, 51, 404–408.
219 Q. Zhou, J. Li, B. Shuai, H. Williams, Y. He, Z. Li, H. Xu and

F. Yan, Appl. Energy, 2019, 255, 113755.
220 Y. Tian, R. Lai, X. Li, L. Xiang and J. Tian, Appl. Energy, 2020,

265, 114789.
221 M. Kim, H. Chun, J. Kim, K. Kim, J. Yu, T. Kim and S. Han,

Appl. Energy, 2019, 254, 113644.
222 D. Ansean, V. M. Garcia, M. Gonzalez, C. Blanco-Viejo,

J. C. Viera, Y. F. Pulido and L. Sanchez, IEEE Trans. Ind.
Appl., 2019, 55, 2992–3002.

223 M. Woody, M. Arbabzadeh, G. M. Lewis, G. A. Keoleian and
A. Stefanopoulou, J. Energy Storage, 2020, 28, 101231.
RSC Adv., 2023, 13, 2036–2056 | 2055

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2ra06004c


RSC Advances Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
Ja

nu
ar

y 
20

23
. D

ow
nl

oa
de

d 
on

 2
/1

8/
20

25
 1

1:
21

:5
1 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
224 Q. Lin, J. Wang, R. Xiong, W. Shen and H. He, Energy, 2019,
183, 220–234.

225 W. Li, N. Sengupta, P. Dechent, D. Howey, A. Annaswamy
and D. U. Sauer, J. Power Sources, 2021, 482, 228863.

226 R. Xiong, L. Li and J. Tian, J. Power Sources, 2018, 405, 18–
29.

227 M. Lucu, E. Martinez-Laserna, I. Gandiaga and
H. Camblong, J. Power Sources, 2018, 401, 85–101.
2056 | RSC Adv., 2023, 13, 2036–2056
228 L. Zhou, L. He, Y. Zheng, X. Lai, M. Ouyang and L. Lu, J.
Energy Storage, 2020, 28, 101252.

229 D. Kucevic, B. Tepe, M. Möller, P. Dotzauer, B. Schachler,
A. Jossen and H. Hesse, Open Energy Modelling Workshop
2020, 2020, vol. 4072.

230 K. M. Alam and A. El Saddik, IEEE Access, 2017, 5, 2050–
2062.
© 2023 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2ra06004c

	Towards interactional management for power batteries of electric vehicles
	Towards interactional management for power batteries of electric vehicles
	Towards interactional management for power batteries of electric vehicles
	Towards interactional management for power batteries of electric vehicles
	Towards interactional management for power batteries of electric vehicles
	Towards interactional management for power batteries of electric vehicles
	Towards interactional management for power batteries of electric vehicles
	Towards interactional management for power batteries of electric vehicles

	Towards interactional management for power batteries of electric vehicles
	Towards interactional management for power batteries of electric vehicles
	Towards interactional management for power batteries of electric vehicles
	Towards interactional management for power batteries of electric vehicles
	Towards interactional management for power batteries of electric vehicles
	Towards interactional management for power batteries of electric vehicles
	Towards interactional management for power batteries of electric vehicles
	Towards interactional management for power batteries of electric vehicles
	Towards interactional management for power batteries of electric vehicles
	Towards interactional management for power batteries of electric vehicles
	Towards interactional management for power batteries of electric vehicles

	Towards interactional management for power batteries of electric vehicles
	Towards interactional management for power batteries of electric vehicles
	Towards interactional management for power batteries of electric vehicles
	Towards interactional management for power batteries of electric vehicles
	Towards interactional management for power batteries of electric vehicles
	Towards interactional management for power batteries of electric vehicles

	Towards interactional management for power batteries of electric vehicles
	Towards interactional management for power batteries of electric vehicles
	Towards interactional management for power batteries of electric vehicles
	Towards interactional management for power batteries of electric vehicles
	Towards interactional management for power batteries of electric vehicles


