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PIP4K2A is a type II lipid kinase that catalyzed the rate-limiting step of the conversion of

phosphatidylinositol-5-phosphate (PI5P) into phosphatidylinositol 4,5-bisphosphate (PI4,5P2). PIP4K2A

has been intricately linked to the inhibition of various types of tumors via reactive oxygen species-

mediated apoptosis, making it an important therapeutic target. In the quest of finding biologically active

substances with efficient PIP4K2A inhibitory activity, machine learning algorithms were used to

investigate the quantitative relationship between structures and inhibitory activities of 1,7-naphthyridine

analogues. Three machine learning algorithms (MLR, ANN, and SVM) were used to develop QSAR models

that can effectively predict the PIP4K2A inhibitory activity of a library of 1,7-naphthyridine analogues. The

cascaded feature selection method was performed by sequential application of GFA and MP5 algorithms

to identify a molecular descriptor subset that can best describe the PIP4K2A inhibitory activity of 1,7-

naphthyridine analogues. PIP4K2A inhibitory activities predicted by the ML models were strongly

correlated with the experimental values. The QSAR Modelling indicates that the best-performing ML

model was SVM with the RBF kernel function. The SVM model performed very well in predicting PIP4K2A

inhibitory activity of the 1,7-naphthyridine analogues with RTR and QEX values of 0.9845 and 0.8793

respectively. To further gain more structural insight into the origin of PIP4K2A inhibitory activity of 1,7-

naphthyridine analogues, molecular docking studies were performed. The results indicate that five

compounds; 15, 25, 13, 09, and 28 were found to have a high binding affinity with the receptor

molecules. Hydrogen bonding, pi–pi interaction, and pi–cation interactions were found to modulate the

binding interaction of the inhibitors. Although the SVM gives essentially a black-box model which cannot

be readily interpreted, using SVM in tandem with MLR and ANN provides a unique perspective in building

robust QSAR predictive models. The superior predictive performance of the ML models and the

explanatory power of MLR models were combined to provide a unique insight into the structure–activity

relationship of 1,7-naphthyridine inhibitors. This is relevant in that it provides information that can be

invaluable as guidelines for the design of novel PIP4K2A inhibitors.
1 Introduction

Cancer is the most problematic and difficult disease to cure in
the world, it is indeed one of the greatest public health chal-
lenges of our time.1 Over the last four decades, tremendous
resources have been directed towards research aimed at
searching for and developing effective drugs for cancer treat-
ment. Yet, it remains a formidable public health challenge.2 The
number of lives lost annually to cancer is quite signicant.
According to the American Cancer Society projections, in the
year 2022, cancer could be the primary cause of death for about
l Sciences, Ahmadu Bello University, P. M.

gmail.com; Fax: +234 6196 4053

tion (ESI) available. See DOI:

15
609 360 people in the United States alone.3 A similar disturbing
trend of people losing their lives because of cancer is observed
globally. According to a report by the National Cancer institute
(NCI), 9.9 million people have lost their life because of cancer
related diseases worldwide in 2020.4 Cancer is problematic
because it tends to alter the genes responsible for the normal
cellular functions, disturbing normal cellular activities.5 More-
over, cancer cells intrude and colonize normal cells in other
parts of the body, slowly taking over their functions.5,6 By
mimicking normal cells in the body, cancer cells evade the
body's immune system, making it difficult for the body to detect
and effectively neutralize them. Cancer cells need to proliferate
very rapidly to speedily colonize cells in other parts of the body.
This requires constant and abundant supply of nutrients. Given
that the level of nutrients in the body varies, adapting to the
body's constantly changing microenvironment is a key survival
© 2023 The Author(s). Published by the Royal Society of Chemistry
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trait for cancer cells. Therefore, cancer cells have developed
a very sophisticated and robust adaptive mechanism for effec-
tive regularization of their micro-environment.7

Over the years, researchers have targeted the mechanism by
which cancer cells adapt to their micro-environment.8–10

Phosphoinositide-3-kinase (PI3K) signal transduction pathway
is the most important pathway that controls the metabolic
adaptation of cancer cells.8 Hence, developing drugs that can
effectively disrupt the PI3K signal transduction pathway is of
primary interests to researchers.8 Rapid growth and prolifera-
tion of cancer cells is hampered by disrupting the PI3K signal
transduction pathway. This is achieved via hyperactivation of
AKT, and apoptosis caused by reactive oxygen species.9 The
conversion of phosphatidylinositol-5-phosphate (PI5P) into
phosphatidylinositol 4,5-bisphosphate (PI4,5P2), an important
step in PI3K signal transduction is catalysed by PIP4K2s, a type
II kinase inhibitor.10–14 Because of the number of important
cellular processes such as vesicle transport, adhesion, cell
proliferation, and apoptosis that depends on this conversion,
PIP4K2A have been inhibitors are intricately involved in many
biological processes that are responsible for malignant pheno-
type. furthermore, PIP4K2A has been reported to exhibit
a synthetic lethal interaction with the tumor suppressor gene
p53.14 PIP4K2A inhibitors are of enormous interest to
researchers because of the role they play in inhibiting tumour
growth and apoptosis in multiple types of cancers including
breast cancer,16 acute leukaemia,17 and glioblastoma.18

Chemists have always suspected that there is a nexus
between the structure of chemical compounds and their cor-
responding biological activity. The quantitative relationship
between chemical structure and biological activity was rst
investigated by Hansc and colleagues.19 In the seminal work,
they established an explicit correlation between the biological
activity of plant growth regulators and their structural features.
Understanding the quantitative relationship between structure
of molecules and their biological activity of chemical is useful
for predicting biological activities and toxicity of novel
compounds.20 Traditionally, simple linear regression was used
to perform Quantitative Structure Activity Relationship (QSAR)
to establish a mathematical relationship between structure of
molecules and their biological activities.21 Although the tradi-
tional QSAR approach has been used to produce useful quan-
titative models that are easily interpretable, it fails to capture
the complex non-linear relationship between molecular struc-
ture and biological activity.15 This is because in traditional
QSAR studies, structure–activity relationship is approximated to
be linear, which mostly is not the case. This makes the accuracy
with which traditional QSAR approach quite low. To make
accurate predictions of biological activities from descriptors
derived from structures of molecule, more sophisticated
learning algorithms are required.

Recently, Machine Learning Algorithms (MLAs) have been
used to make more accurate predictions of biological activities of
molecules as a function of their structural properties.22 Unlike the
traditional regression models, MLAs take into consideration the
complex and non-linear relationship that exists between molec-
ular structure and biological activity, producing more accurate
© 2023 The Author(s). Published by the Royal Society of Chemistry
models. Many MLAs have been reported to have excellent capa-
bilities for predicting biological activities ofmolecules.23However,
MLAs are notoriously difficult to interpret. This is a major limi-
tation, because it makes it difficult discern which physico-
chemical parameter is responsible for increased or decreased
biological activity.24 In this work, we used Multilinear Regression
(MLR) in tandem with two popular machine learning algorithms:
Articial Neural Network (ANN) and Support Vectors Machine
(SVM) to modelled PIP4K2A inhibitory activity of 1,7-napthyridine
analogues.1 The MLR provides an explicit mathematical rela-
tionship between the structure of these molecules and their
PIP4K2A inhibitory activity while ANN and SVM gives better
predictive performance. The combined strengths of the MLR and
ML methods were exploited in this study to investigate the
structure–activity relationships of 1,7-napthyridine inhibitors.
This approach has been used in the literature to build make
exhaustive QSAR investigations.39,40 Finally, we used molecular
docking studies to investigate the nature of the binding interac-
tions between PIP4K2A receptor and 1,7-naphthyridine
analogues.

2 Materials and methods

AQSARmodel is only useful when it can be used tomake accurate
and reliable predictions of the biological activity of an unknown
compound. Accurate and reliable QSAR models were developed
in this study in line with the OECD protocols.25 According to the
OECD, the dataset used must have a specied endpoint and
explicit learning algorithms must be used. Also, the domain of
applicability of the QSARmodels must be established. The OECD
protocols were carefully considered in this work. The robustness
and predictivity of the developed models were tested using
standard statistical protocols, and amechanistic interpretation of
the QSAR model was attempted. The underlying ligand–receptor
binding interactions of the compounds were investigated using
molecular docking. To facilitate the reproducibility of the
research work performed herein, the dataset used can be found in
the ESI section (Dataset S1†).

2.1 Dataset

We have curated forty-four compounds with the basic scaffold of
1,7-naphthyridine from the experimental work of Wortmann
et al.20 The activity of the compounds curated were based on
percentage inhibitory concentration (IC50), which represents the
minimum amount of the inhibitor required for 50% inhibition of
PIP4K2A in vitro. The IC50 values of the 1,7-naphthyridine
analogues measured using PIP4K2A ADP-Glo assay falls within
the range of 0.066 to 18.0 mM. The compounds were derived from
the framework of BAY-09 and its various derivatives obtained
using nucleophilic substitutions and Suzuki coupling reactions.20

To obtain uniform distribution of IC50 values of the PIP4K2A
inhibitors, logarithmic transformation of the IC50 values to base
10 was performed using the relationship shown eqn (1).

PIC50 = −log(IC50 × 10−6) (1)
RSC Adv., 2023, 13, 3402–3415 | 3403
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2.2 Geometry optimization

The lowest energy conformers of the 44 PIP4K2A inhibitors were
obtained by geometry optimization using a cascaded approach.26

However, before the optimization was performed, 2D structures of
the molecules were drawn using Chem Draw Ultra (version 12)
and the molecular geometries of molecules in 3D were generated
using Spartan 14. The 3D structures wererst optimized using the
semi-empirical method (AM1) to obtain low energy conformers.
And then, Density Functional Theory (DFT) at DFT/B3LYP/6-
311g(d) level of theory was employed to obtain the lowest energy
conformers used for further computational investigations. All
geometry optimization calculations were performed using
Spartan 14 soware in full, without any symmetry constriction.
The optimized structures were saved in Sdf format and then
exported to PADEL for molecular descriptor calculations.
2.3 Descriptor calculation

Molecular descriptors are vectoral representations of molecular
structures that can be mapped on to biological activities.25

Molecular descriptors were computed using PADEL soware
aer the dataset was pre-treated by removing salts and stan-
dardizing tautomer. Different topographical, physicochemical,
steric, geometrical, energetic, and electronic descriptors were
computed. And the descriptors obtained were pre-treated to
remove constant and redundant values that are not useful for
QSAR model development.
Table 1 Recommended values of statistical validation metrics

Symbol Name Value
2.4 Variable selection

Genetic Function Approximation (GFA) is an effective method of
identifying the relevant descriptors for building a robust QSAR
model.27 The GFA approach uses the MARS algorithm in
tandem with GA to produce a set of models that describes
a training dataset. Models that t the training data better than
the average were selected based on a scoring function as the
“parent” model, from which a “child” model was created. The
scoring function used in selecting models in GFA was the so-
called Friedman's Lack of Fit measure (LOF) (eqn (2)). Muta-
tion probability and smoothing parameters were set to 0.1 and
0.5, respectively.

LOF ¼ SSE

�
1� cþ dp

M

�2

(2)

where, M represents the number of in the training set, p is the
total number of molecular descriptors in all models, SSE
represents sum of square errors, and c is the number of
descriptors in the selected model. Feature selection was also
carried out using the MP5 algorithm to further rene the
dataset prior to model development to avoid overtting/
training. Molecular descriptors that are included in the top 7
models generated by the GFA were selected for model MLA
model development.
R2 Coefficient of determination $0.6
P (95%) Condence interval at 95% condence limit <0.05
QCV

2 Cross validation coefficient $0.5
REX

2 Coefficient of determination of external set $0.5
NEX Minimum number of external sets $5.0
2.5 Dataset division and scaling

The dataset curated were partitioned into training and valida-
tion sets using the Kennard-Stone Algorithm.28 The training set
3404 | RSC Adv., 2023, 13, 3402–3415
constituting 70% of the dataset was used for model develop-
ment and hyperparameter optimization, while the test set,
consisting 30% of the curated data set was used for external
validation of the various QSAR models. Furthermore, stan-
dardization of molecular descriptors was performed to allow for
comparability between the independent variables. The inde-
pendent variables (molecular descriptors) were scaled to zero
mean and unit variance using the relationship shown in eqn (3).

xstdn
i ¼ xi � xi

si

(3)

where xstdni represents standardized ith descriptor, xi denotes
the descriptors values of interest, �xi represent the mean value of
ith descriptor while si represent the standard deviation of the
ith descriptor.
2.6 Model validation

For a QSARmodel to be useful, it must be able to make accurate
prediction of the biological activity of compounds that are not
present in the modelling set, within the model's domain of
applicability.32 This ability is indicated by the reliability and
predictability of the QSAR model, computed using rigorous
statistical validation procedure. Tropsha29 proposed
a minimum recommended value of reliability and predictability
validation criteria as shown in Table 1. Models that full these
criteria are robust.

2.6.1 Internal validation. The performance of the models
developed were validated using 2 statistical validation criteria;
Pearson's correlation coefficient (R) and root mean square error
(RMSE). R (eqn (4)) is a commonly used metric in QSAR
modelling that indicates the extent of the relationship between
two variables of interest.30 Its values range from −1 to +1
indicative of a negative and positive correlation between the two
variables respectively. The RMSE (eqn (5)) was used to evaluate
the relative error of the predictive models.

R ¼
PN
i¼1

�
yexp � yexp

��
ypred � ypred

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

�
yexp � yexp

�2s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

�
ypred � ypred

�2s (4)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
I¼1

�
yexp � ypred

�2
vuut (5)

where N, yexp and ypred denotes sample size, experimental value
and predicted value respectively.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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2.6.2 Leave-one-out cross-validation. Further validation of
the QSAR models developed was performed using leave-one-out
cross-validation technique (LOO-CV), which entails leaving
a single data sample and the testing set and utilizing the
remaining N − 1 samples as the training set.34 The process is
repeatedN times by leaving out a different sample as testing set so
that all the samples have equal probability of being le out. The
LOO-CV technique was adopted in order make economical use of
the nite data available for model development in this study.37

2.6.3 External validation. The most commonly used metric
for external validation, the cross-validation coefficient (REX

2)
was used in this study.31 The (REX

2) was calculated using the
relationship (eqn (6)).

REX
2 ¼ 1�

P�
Yexp � Ypred

�2
P�

Yexp � Ymntrng

�2 (6)

where the predicted and experimental activity for the test set
were represented by Ypred and Yexp respectively, the mean of the
modelling set's dependent variables is represented by Ymntrng.
The predictive ability of the model was further evaluated by
computing Mean Absolute Error (MAE) shown in eqn (7) and
RMSE shown in eqn (5).

MAE ¼ 1

n
�
X��Ypred � Yexp

�� (7)

2.7 Applicability domain

The biological activity of compounds that fall outside the
Applicability Domain (AD) of a model cannot be reliably pre-
dicted using the model.29 AD analysis was employed to deter-
mine outliers and inuential molecules in the data set and also
to affirm the model's reliability. The most commonly used
method for AD analysis is based on leverage computation as
described by grammatic.30 The leverage value allows for the
identication of a compound, whether it is within or outside the
domain of applicability. Leverage values of all the compounds
are calculated using eqn (8)

Hi = xi(X
TX)−kXi

T (i = K, ., P) (8)

where xi is the training compound matrix I, X is n× k descriptor
matrix of training compounds, and XT denote the transpose of
matrix X. The warning leverage was calculated using the rela-
tionship shown in eqn (9). In practical terms, the leverage
values together with William's plot were used to evaluate AD of
QSAR models.

ħ* = 3(p + 1)/n (9)

where n is the number of compounds in the training set, and p
is the number of descriptors in the model.
2.8 QSAR model development

Three different learning algorithms; Multilinear Regression
(MLR), Support Vector Machines (SVM), and Articial Neural
Networks (ANN) were used for QSAR model development in this
© 2023 The Author(s). Published by the Royal Society of Chemistry
study. The performance of each of these models in predicting
PIP4K2A inhibitory activity of 1,7-naphthyridine analogues was
evaluated Using Pearson's correlation coefficient (R), and cross-
validated R squared, and root mean square error (RMSE). All
calculations were carried out using Weka machine learning
suite.

2.8.1 Support vector machines (SVM). Since its initial
formulation by Vapnik, SVM have been increasingly utilized for
various machine learning applications due to its attractive
features and promising empirical performance.31 SVM uses
kernel mapping to transform nonlinear data sets into a high-
dimensional feature space for linear classication and regres-
sion purposes. There are many variations of SVMs based on the
type of kernel used such linear, polynomial, radial basis, and
sigmoid kernel functions. Linear SVMs are suited for modelling
linearly separable dataset, while non-linear SVMs are used in
regression problems. A good introduction to SVM can be found
in ref. 36.

2.8.2 Articial neural network (ANN). Inspired by the
workings the human brain, the ANN networks are used to
approximate functions by translating a large number of inputs
into a target output. A typical ANN consists of a series of layers
(input, hidden and output) each of which comprises of neurons.
The neurons accept input values from a proceeding layer, and
maps the input onto a non-linear function. The output of this
non-linear function is used as input for the next layer in the ANN,
this process recurs until it reaches the last layer, where the output
is predicted. The values of the independent variables (molecular
descriptors) were relayed directly to the nodes of the input layer.
Neurons in the hidden layers contains a sigmoidal function that
transforms the output signal into binary form (0 and 1). A
detailed account of ANN has been published elsewhere.33

2.8.3 Hyperparameter optimization. Prior to ML model
development, hyperparameter optimization was performed to
obtain optimal hyperparameters that gives the best model
results on the dataset. The training set, consisting of 70% of the
dataset was used for hyperparameter tuning for both ANN and
SVM algorithms. The optimal values of hyperparameters for ANN
including; number of nodes in the hidden layer, learning epoch,
learning rate, and momentum were obtained using rened local
search algorithm as implemented in Autoweka.38 Similarly,
optimal hyperparameters for SVM including; complexity
parameter C, gamma g, and epsilon (3) were obtained using
rened search algorithm as implemented in Autoweka. The SVM
hyperparameter optimization was performed in two stages. First,
global optimization was carried out to investigate the best kernel
function for modelling PIP4K2A inhibitory activity of 1,7-naph-
thyridine inhibitors. The second stage of the optimization
process involved ne tuning the SVM hyperparameters using the
best kernel function obtained in the rst stage. Final SVMmodel
was build using the set of hyperparameters obtained in the
second stage of the optimization process.
2.9 Molecular docking studies

Co-crystallized PIP4K2A receptor (PDB 6YM3) with BAY 091
ligand was obtained from the protein data bank. The receptor
RSC Adv., 2023, 13, 3402–3415 | 3405
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was prepared by assigning hydrogen bonds, removing water
molecules, converting selemethionines to methionine, creating
disulphide bonds, and lling missing side chains using the
protein preparation wizard of the Schrödinger suite. The
receptor protein was minimized using OPLS4 forceelds as
implemented in the Schrodinger soware. Ligand preparation
was carried out using the Ligprep module of the soware. The
same forceeld used for protein preparation was utilized for
ligand preparations to obtain reliable results. Aer the ligand
and protein preparations, a grid le was prepared using the grid
generation tool of the glide module. Molecular docking was
performed using the grid le generated using the extra-
precision docking protocol as implemented on the glide
module of the Schrodinger soware. Before molecular docking,
the docking protocol was validated by re-docking the PIP4K2A
co-crystal ligand and protein.35
Fig. 1 Scatter plot of the experimental PIP4K2A inhibitory activity and
values predicted using MLR.
3 Results and discussion
3.1 QSAR using multilinear regression (MLR)

Feature selection performed using Genetic Function Approxi-
mation (GFA) le seven independent variables that describe the
data set. The GFA algorithm selected; ATSC7p, MATS8c,
MATS6i, SpMin2_Bhv, SpMin5_Bhe, SpMax8_Bhi, and Kier3 to
be the most relevant descriptors for describing PIP4K2A
inhibitory activity of the 1,7-naphthyridine analogues. QSAR
model generated using MLR (eqn (10)) shows good predictive
performance with RTR and QCV values of 0.9088 and 0.7662,
respectively (Table 2). The reliability of the model was further
indicated by the values of Leave-One-Out Cross-Validation
(LOO-CV) parameters of QCV, RMSECV and MAECV values of
0.7860, 0.1301, and 0.2276. Furthermore, ability of the model to
predict inhibitory activity for external dataset that was not
involved in training set was evaluated by computing the values
of QEX, RMSEEX, and MAEEX as shown in Table 2. The results
indicate that the QEX, RMSEEX, and MAEEX values of the model
falls within acceptable range for an acceptable model (Table 1).
Indicating that the MLR model developed was robust and can
be reliably used to predict PIP4K2A inhibitory activity for an
independent dataset.35

Y = −0.186 × ATSC7p + 14.720 × MATS8c + 15.123

× MATS6i − 60.697 × SpMin2_Bhv + 32.911

× SpMin5_Bhe − 3.880 × SpMax8_Bhi − 0.858

× Kier3 + 102.735 (10)
Table 2 Validation parameters used for external validation of the QSAR

Algorithm

Training set LOO-CV se

RTR RMSETR MAETR QCV

MLR 0.9088 0.3017 0.2301 0.7860
ANN 0.9615 0.2405 0.1882 0.7784
SVM 0.9845 0.2049 0.0973 0.8802

3406 | RSC Adv., 2023, 13, 3402–3415
To further enhance the model's performance, the MP5
algorithm was utilized for feature selection to further scrutinize
the resultant descriptors generated by the GFA feature selection.
This resulted in the removal of 2 molecular descriptors
(ATSC7p, and SpMax8_Bhi), resulting in only ve descriptors in
the nal MLR model (eqn (11)). The nal MLR also had good
predictive performance with RTr and RMSETr values of 0.7008
and 0.4377, respectively.

Y = 2.7613 × MATS8c + 4.0225 × MATS6i − 34.8628

× SpMin2_Bhv + 7.5081 × SpMin5_Bhe − 0.3842

× Kier3 + 70.0556 (11)

The closeness of the experimental data point and the values
predicated by MLR aer MP5 feature selection can be seen in
the scatter plot shown in Fig. 1.

The applicability domain of the QSAR model developed
using MLR was computed using the William plot (Fig. 2). Four
compounds (26, 46, 1, and 15) found to have leverages higher
than the warning leverage (0.75), were deemed to be structurally
different from the remaining inuential compounds. However,
most of the compounds fall within the domain of applicability
of the MLR model developed.

The rst three descriptors (ATSC7p, MATS8c, MATS6i) that
appear in the nal MLR model (eqn (11)) were 1D autocorrela-
tion descriptors, followed by two burden modied eigenvalue
descriptors (SpMin2_Bhv, SpMin5_Bhe) and one kappa shape
indices descriptor (Kier3). Autocorrelation descriptors describe
the relationship between a given molecular property and the
models

t External set

RMSECV MAECV QEX RMSEEX MAEEX

0.1301 0.2276 0.7662 0.4557 0.2531
0.1524 0.1354 0.7581 0.3423 0.2098
0.1368 0.5336 0.8793 0.1464 0.108

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Williams plot of QSAR model using MLR.
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topology of a molecule. ATSC7p is a centered Moreau-Broto
descriptor of lag 7 weighted by atomic polarizabilities which
shows the tendency of a molecule to generate induced dipole
when subjected to an external electric eld. As observed in eqn
(11), there is a negative correlation between ATSC7p and
PIP4K2A inhibitory activity which suggests that inhibitors with
lower polarizabilities would have higher PIP4K2A inhibitory
activity. MATS8c and MATS6i are Moran autocorrelation
descriptors of lag 8 and 6, weighted by charges and rst ioni-
zation potential respectively. Both MATS8c and MATS6i are
exhibiting a positive correlation with PIP4K2A inhibitory activity
indicating that increasing the values of these physicochemical
parameters will have a positive effect on the compound's
inhibitory activity. The rst three descriptors (ATSC7p, MATS8c,
MATS6i) that appear in the nal MLR model (eqn (11)) were 1D
autocorrelation descriptors, followed by two burden modied
eigenvalue descriptors (SpMin2_Bhv, SpMin5_Bhe) and one
kappa shape indices descriptor (Kier3). Autocorrelation
descriptors describe the relationship between a given molecular
property and the topology of a molecule. ATSC7p is a centered
Moreau-Broto descriptor of lag 7 weighted by atomic polariz-
abilities which shows the tendency of a molecule to generate
induced dipole when subjected to an external electric eld. As
observed in eqn (11), there is a negative correlation between
ATSC7p and PIP4K2A inhibitory activity which suggests that
inhibitors with lower polarizabilities would have higher
PIP4K2A inhibitory activity. MATS8c and MATS6i are Moran
autocorrelation descriptors of lag 8 and 6, weighted by charges
and rst ionization potential respectively. Both MATS8c and
MATS6i are exhibiting a positive correlation with PIP4K2A
inhibitory activity indicating that increasing the values of these
physicochemical parameters will have a positive effect on the
compound's inhibitory activity.

The second sets of molecular descriptors present in the MLR
model were the so-called burden modied eigenvalue
© 2023 The Author(s). Published by the Royal Society of Chemistry
descriptors (SpMin2_Bhv, SpMin5_Bhe). These descriptors also
describe molecular topology, but they are derived from eigen-
values of adjacency matrix. Compounds with groups that
increases the physico–chemical parameter associated with
SpMin2_Bhv will have lower inhibitory activity against PIP4K2A
as indicated by the negative sign of the correlation coefficient
(eqn (11)). SpMin5_Bhe correlates positively with PIP4K2A
inhibitory activity of 1,7-naphthyridine inhibitors. Thus,
increasing the value of this physicochemical parameter will
have a positive effect on PIP4K2A. Kier3 is a kappa space index
molecular descriptor which describes various aspect of molec-
ular shape. The descriptor had negative correlation with
PIP4K2A inhibitory activity (eqn (11)). Interestingly, the MP5
algorithms selects at least one descriptor from each class,
indicating that descriptors selected by MP5 algorithm are
representative of the entire descriptor class. They contain the
most relevant information related to PIP4K2A inhibitory activity
of the compounds. Therefore, the descriptors that appear in eqn
(11) were used for developing other QSAR models using ANN
and SVM.
3.2 QSAR using articial neural network (ANN)

The dataset consisting of 5 molecular descriptors that appeared
in eqn (11) was utilized to investigate performance of ANN in
predicting PIP4K2A inhibitory activity. Prior to developing
a neural network, the data was standardized to obtain compa-
rable independent variables.22 Detailed optimization of ANN
hyperparameters performed using grid search algorithm
(Appendix 2†) indicate that the optimal values of number of
nodes in hidden layer, learning epochs, learning rate and
momentum were 3, 100, 0.1, and 0.3, respectively (Table 3).
These values were used build an ANN model for predicting
PIP4K2A inhibitory activity of 1,7-naphthyridine analogues.
Correlation coefficient was used as a metric to determine the
RSC Adv., 2023, 13, 3402–3415 | 3407
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Fig. 3 Scatter plot of the experimental PIP4K2A inhibitory activity and
values predicted using ANN.
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optimal number of nodes in the hidden layer. The value of the
correlation coefficient increases as the number of nodes in the
hidden layer increased until the optimum value was attained.
The optimum value of the number of nodes in the hidden layer
was 3 nodes with correlation coefficient of 0.9468 and RMSE
value of 0.2638 respectively. This gives a neural network with 7
input variables, 3 hidden node and 1 output node, resulting in
a 7-3-1 network topology. The optimal learning epoch was found
to be 100 with correlation coefficient of 0.88814 and RMSE value
of 0.37888 respectively.

The result of the optimization of learning rate and
momentum is represented in form of 2D contour plot (Appendix
2†). Contour plot is a useful way of representing 3D dimensional
data in cartesian coordinate. The learning rate and momentum
varies as a function of correlation coefficient.32 The lower le
quadrant of the plot, with darker shade of red indicate the area
with the optimal values of momentum and learning rate with
higher correlation coefficients. Conversely, the upper right
quadrant represents the region of learning rate and momentum
with the lowest values of correlation coefficients. The region of
optimal values includes learning rate and momentum in the
range of 0.0 to 0.4 and 0.0 to 0.6 respectively. The optimal
learning rate and momentum were found to be 0.1 and 0.3
respectively with correlation coefficient of 0.892 and RMSE
value of 0.34418.

The ANN model developed at optimal values of ANN
parameters have RTR and RMSETR values of 0.9615 and 0.7581
respectively. This indicate that the model was robust, and it can
be reliably used to make accurate predictions of PIP4K2A
inhibitory activities. The statistical metrics obtained from cross-
validation of the ANN model provide further indication of its
reliability. The quality of the QSARmodel to predict PIP4K2A for
external dataset was further investigated by computing QEX,
RSMEEX and MAEEX as shown in Table 2. The results indicate
themodel the reliably predict external dataset with QEX, RMSEEX
and MAEEX values of 0.7581, 0.3423, and 0.2098 which fall
within the range of values for acceptable model. A plot of the
experimental inhibitory activities of 1,7-naphthyridine
analogues and values predicted using ANN are shown in Fig. 3.
The nearness of the experimental and ANN predicted inhibitory
activities indicate high predictive performance of the ANN
model.

The domain of applicability of the ANN model computed
using the leverage approach indicate that can be described
using the model because they fall within fall within the domain
of applicability. However, four compounds (26, 46, 1, and 15)
Table 3 Optimal parameters for ANN model development

ANN parameter Optimal values

Traini

RTR

Node in hidden layer 3.00 0.946
Learning epochs 100 0.889
Learning rate 0.10 0.9559
Momentum 0.30

3408 | RSC Adv., 2023, 13, 3402–3415
had leverages greater than the warning leverage as indicated by
the Williamson plot (Fig. 4). Interestingly, the same compounds
identied as outliers by the MLR model also appeared as
outliers in the applicability domain analysis of the ANN model.
3.3 QSAR using support vector machines (SVM)

The predictive capability of SVM algorithm depends on the
kernel function used in developing the model and the values of
SVM hyperparameters (C, 3 and g).36 Three kernel functions
including; polynomial, Pearson Universal Kernel (PUK) and
Radial Basis Function (RBF) kernels were optimized using
global grid search to obtain the best kernel for modelling
PIP4K2A inhibitory activity of 1,7-naphthyridine inhibitors. The
results of the global optimization are illustrated in Fig. 5 (Table
in Appendix II†). The results of the global optimization of the
complexity parameter C for the polynomial kernel (Appendix
II†) as a function of RMSE, indicate that increasing the C value
from −20 to 0 do not show any appreciable change in the RMSE
values. However, as the C value goes beyond 0, the RMSE starts
to decrease and the lowest RMSE value was obtained at C value
of 5.0, implying that lower values of C are better. The optimal C
value was found to be 5 corresponding to the lowest possible
RMSE value of 0.35 for the polynomial kernel (Appendix II†). It
was established from the global search that RBF is the best
kernel function for predicting PIP4K2A inhibitory activity of 1,7-
ng LOO-CV set

RMSETR QCV RMSECV

0.264 0.72745 0.62029
0.378 0.70148 0.60176

9 0.27154 0.78348 0.37018

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Williams plot of QSAR model using ANN.

Fig. 5 Comparing validation metric of SVM models developed using different kernel functions.
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naphthyridine analogues with RTR, and RMSE values of 0.9737
and 0.2774 respectively (Appendix II†).

Further hyperparameter tuning was performed using the
RBF kernel to obtained more rened hyperparameter to be used
for nal SVM model development. The hyperparameters, C and
g were optimized concurrently as shown in (Appendix II†).

The 3D response plot (Appendix II†) for optimization of
complexity parameter and gamma shows how the hyper-
parameters varies as a function of RMSE. It can be deduced from
the plot that optimal values of C were in the region of 15–20, the
© 2023 The Author(s). Published by the Royal Society of Chemistry
region with lowest RMSE values (0.2–0.52) as indicated by the
colour code in the right side of the plot. On the other hand, the
lower RMSE were obtained at negative values of gamma. The
optimal values of C and g were 17 and 19 respectively (Table 4).

The nal SVM model developed using RBF kernel at opti-
mized SVM parameters shows good predictability with values of
RTr and RMSETr as 0.984 and 0.1464 respectively. Scatter plot of
PIP4K2A inhibitory activity of 1,7-naphthyridine analogues
predicted by the SVM model versus their experimental activity
are shown in Fig. 6.
RSC Adv., 2023, 13, 3402–3415 | 3409
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Table 4 Summary of SVM hyperparameters using RBF kernel and their
predictive performances

Optimal parameters Training set LOO-CV set

3 C g RTR RMSETR QCV RMSECV

0.001 17 19 0.9673 0.2341 0.9563 0.2563

Fig. 6 Scatter plot of the experimental PIP4K2A inhibitory activity and v

Fig. 7 Williams plot of QSAR model using AN.

3410 | RSC Adv., 2023, 13, 3402–3415
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Applicability domain analysis of the QSAR model developed
using SVMwas also performed using the leverage approach. The
Williamson plot (Fig. 7) of studentized residual versus leverages
indicate that most of the compounds falls within the domain of
applicability of the model with only three compounds having
leverages greater than the warning leverage.
alues predicted using SVM.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Superimposed co-crystallized ligand pose and computed ligand pose.
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3.4 Molecular docking studies

Molecular docking studies was performed to investigate the
nature of the non-covalent bond interaction between the
PIP4K2A receptor (pdb id = 6YM3) and 1,7-naphthyridine
inhibitors. However, before the molecular docking studies, the
reliability of the docking protocol was validated by redocking
the co-crystallized ligand. The root mean squared deviation
(RMSD) of the spatial position of atoms between the original
orientation (co-crystallized) and computed (using the glide
docking protocol) was found to be in the range of acceptable of
0–2 Å.34 The RSMD of the superimposed structures (Fig. 8) of the
co-crystallized ligand and computed ligand poses was found to
be 0.433 Å, indicating that the docking protocol used was reli-
able enough to investigate the non-covalent bond interaction
between the 1,7-naphthyridine inhibitors and PIP4K2A
receptor.

The non-covalent interactions between PIP4K2A receptor
and 1,7-naphthyridine analogues were investigated using ve
Fig. 9 3D visualization of the interaction of compound 15 on the
active site of PIP4K2A.

© 2023 The Author(s). Published by the Royal Society of Chemistry
compounds (15, 25, 13, 09, and 28) with the highest docking
score. The compound with the highest docking score
(compound 15) was observed to have interacted with PIP4K2A
receptor through hydrogen bond interaction, pi–pi stacking,
and pi–cation interactions (Fig. 9). Conventional hydrogen
bond was observed between the carboxylate group of the 1,7-
naphthyridine inhibitor and Lys209 and Thr232 at a distance of
1.83 Å and 1.79 Å respectively. Another conventional hydrogen
bond interaction was observed between the nitrogen of the
naphthyridine ring and Val199 at a distance of 2.05 Å. In
addition to the conventional hydrogen bonds, two pi-
interactions were also observed. This includes a pi–cation
interaction between electron rich diphenyl group and cationic
side chain of Lys145 at distance of 5.69 Å and a pi–pi interaction
observed between the electron decient naphthyridine ring and
Phe200 at 5.42 Å.
Fig. 10 3D visualization of the interaction of compound 25 on the
active site of PIP4K2A.

RSC Adv., 2023, 13, 3402–3415 | 3411
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Fig. 11 3D visualization of the interaction of compound 13 on the
active site of PIP4K2A.

Fig. 12 3D visualization of the interaction of compound 09 on the
active site of PIP4K2A.

Fig. 13 3D visualization of the interaction of compound 28 on the
active site of PIP4K2A.
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The interactions observed between PIP4K2A receptor and
compound 25 were similar to the interactions observed in
compound 15 as shown in Fig. 10. However, the conventional
hydrogen bond was formed between the carbonyl group of
amide moiety and Lys209 at a distance of 1.88 Å. Another
hydrogen bond was also observed between Phd359 and the
nitrogen of the secondary amine in 1,7-naphthyridine at
a distance of 2.11 Å.

In addition to the pi–pi and pi-stacking interactions
observed previously in compounds 15 and 25, a unique
hydrogen bond interaction was observed between the cationic
side chain of Lys209 and the carbonyl oxygen attached to the
pyrrole ring substituent of compound 13 (Fig. 11) at a distance
of 1.84 Å.

Compound 09 was also observed to have interacted with the
receptor via pi–pi and pi–cation interactions as compound 15,
25 and 13. However, compound 09 also formed two conven-
tional and one carbon hydrogen bond interactions with Gly131,
Lys209 and Val199. One of the conventional hydrogen bond
interaction was formed between the carbonyl group of
compounds 09 with Gly131 amino acid residue at a distance of
2.45 Å. Lys209 formed a hydrogen bond interaction with the
secondary amine attached to the carbonyl group of compound
09 at distance of 2.79 Å. Finally, a carbon hydrogen bond
interaction was observed between Val199 amino acid residue
and the nitrogen of the electron decient naphthyridine ring.
The non-covalent interactions observed between compound 09
and PIP4K2A protein residue are shown in Fig. 12.

The binding mode of compound 28 involved two conven-
tional hydrogen bonds, single pi–pi interaction, and a pi–cation
interaction. The nitrogen atoms of the amide group and that of
the electron decient naphthyridine ring formed a conventional
hydrogen bond with Gly123 and Val199 at a distance of 1.65 Å
and 2.01 Å respectively. Moreover, a pi–pi interaction was
observed between Phe200 and the electron decient naphthyr-
idine ring at a distance of 5.37 Å and a pi–cation interaction
between the electron rich phenyl group and side chain of Lys145
3412 | RSC Adv., 2023, 13, 3402–3415
at a distance of 5.65 Å. The 3D interaction between compound
28 and PIP4K2A residue is shown in Fig. 13.

To further investigate the nature of the protein–ligand
interactions, protein–ligand interaction ngerprints (PLIFs)
diagram was generated for the ligands with the highest docking
score as shown in Fig. 14. The barcodes in the y-axis corre-
sponds to the ligands and the x-axis represents the amino acid
residues for which the ngerprints were generated. Each bar-
code is a graphical representation of the protein–ligand inter-
action ngerprint of PIP4K2A inhibitor.

The columns indicate amino acid residues that has at least
one interaction with the ligands. Coloured cells indicate the
interactions made by ligands with a corresponding intersecting
amino acid residue. The histogram on the top of the diagram
indicate the frequency of interaction made by a particular
amino acid residue. It can be deduced from the diagram that
Asn124, Ala128, and Phe178 have the least frequent interaction
with the ligands. The amino acid residues that interact more
frequently with the ligands include; Val199, Asn198, Asp151,
Phe 134, Gly131 and Ala132. Compound 28 shows the least
interaction with the amino acid residues of PIP4K2A as
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 14 Barcode representation of protein–ligand interaction fingerprint matrix of PIP4K2A inhibitors.

Fig. 15 Relationship between protein–ligand contact similarity and
docking scores of PIP4K2A inhibitors.
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indicated by the number of white cells in the PLIFs diagram.
This is followed by Compound 13 and 15. Interestingly,
although compound 15 has the highest docking score
(−11.187 kJ mol−1), it is among the compounds that show
minimal interaction with amino acid residues. In contrast, the
highest interaction was seen in compound 09
(−10.869 kJ mol−1) as indicated by the number of coloured cells
in the PLIF diagram.
© 2023 The Author(s). Published by the Royal Society of Chemistry
A plot of docking score against protein-contact to co-crystal
ligand is shown in Fig. 15. The co-crystallized ligand (glide
docking score =−10.771 kJ mol−1 and Tanimoto similarity = 1)
was used as the reference compound (in red).

Compounds with higher docking score and Tanimoto simi-
larity index value closer to co-crystallized ligand were regarded
as potential hit compounds. These compounds located upper
right corner of the graph (Fig. 15) have similar binding pose
with the reference compound. Although, some compounds
might have favoured docking score values, their low Tanimoto
similarity value indicates that their binding mode to the ligand
is different from the reference compound.
4 Conclusion

Two machine learning algorithms (ANN and SVM) were used in
tandem with MLR to perform QSAR investigation of 1,7-naph-
thyridine analogues as potent PIP4K2A inhibitors. The non-
covalent binding interactions of the compounds was investi-
gated using molecular docking analysis. The robustness and
predicative capability of the QSAR models developed was
ascertained using standard statistical validation parameters.
The results of this investigation demonstrate that machine
learning algorithms can be used with traditional QSAR
approach to provide a unique insight into quantitative structure
activity relations studies. The accurate predictive performances
of MLAs were complemented by the highly interpretable but
less accurate MLR algorithms. This allows for a robust under-
standing of the structure property relationships of 1,7-nap-
thyridine analogues. In terms predictive performances, this
RSC Adv., 2023, 13, 3402–3415 | 3413
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study demonstrates that SVM model developed using RBF
kernel function has the highest predictive capability followed by
ANN and then MLR with QEX values of 0.8793, 0.7581, 0.7662
respectively. The molecular docking studies demonstrate that
the 1,7-naphthyridine analogues formed various non-bonding
interactions with PIP4K2A receptor protein. The compounds
with highest inhibitory activity formed conventional hydrogen
bonding, pi–pi and pi–cation interaction with various amino
acid residues of PIP4K2A receptor. The methodology used in
this research can serve as a template for insightful QSAR
investigations by combining high predictive performance of
MLAs and interpretability of traditional QSAR approach.
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