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zoles catalyzed by a new and
recoverable nanocatalyst of cobalt on modified
boehmite NPs with 1,3-bis(pyridin-3-ylmethyl)
thiourea†

Arida Jabbari, *a Parisa Moradi b and Bahman Tahmasbi b

In the first part of this work, boehmite nanoparticles (BNPs) were synthesized from aqueous solutions of

NaOH and Al(NO3)3$9H2O. Then, the BNPs surface was modified using 3-choloropropyltrimtoxysilane

(CPTMS) and then 1,3-bis(pyridin-3-ylmethyl)thiourea ((PYT)2) was anchored on the surface of the

modified BNPs (CPTMS@BNPs). In the final step, a complex of cobalt was stabilized on its surface (Co-

(PYT)2@BNPs). The final obtained nanoparticles were characterized by FT-IR spectra, TGA analysis, SEM

imaging, WDX analysis, EDS analysis, and XRD patterns. In the second part, Co-(PYT)2@BNPs were used

as a highly efficient, retrievable, stable, and organic–inorganic hybrid nanocatalyst for the formation of

organic heterocyclic compounds such as tetrazole derivatives. Co-(PYT)2@BNPs as a novel nanocatalyst

are stable and have a heterogeneous nature; therefore, they can be recovered and reused again for

several consecutive runs without any re-activation.
1 Introduction

In recent years, boehmite nanoparticles (BNPs) have attracted
interest from both practical and fundamental viewpoints.1,2 In
fact, boehmite is aluminum oxyhydroxide (g-AlOOH) and it is
the most stable phase of alumina aer gibbsite.3–6 Boehmite
consists of double sheets of oxygen octahedron with Al-atoms at
their centers.7–10 The boehmite sheets themselves are composed
of octahedral chains with a cubic orthorhombic unit cell.2,11

Also, BNPs are very stable and they are not moisture or air
sensitive.12,13 Therefore, BNPs can synthesized in aqueous
media without inert atmosphere by available materials such as
inexpensive aluminum salts.14 The physical and chemical
properties of boehmite are strongly dependent on the experi-
mental condition of its synthesis.13 For example, BNPs were
synthesized by different methods such as hydrolysis of
aluminum salts,2 precipitation in an aqueous solution from
aluminum salt solutions,15 hydrothermal procedures,2 solid
state decomposition of gibbsite,16 sol–gel procedures,17 and
solvothermal procedures.2 Boehmite contains high aggregation
of hydroxyl groups on its surface, that supply suable places for
modify of its surface with other functional groups such as
electrophilic or nucleophilic sites which are enable to
, Islamic Azad University, Qeshm, Iran.
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00
immobilization of suitable ligands or metal complexes.18–22

Therefore BNPs can be used as an excellent support for fabri-
cation of wide range of heterogeneous catalysts.2 BNPs were
utilized as support for stabilization of acidic,23 basic,24 metallic
catalysts25,26 and organo- or ionic22 supported catalysts. More
addition, boehmite nanoparticle have several unique attributes
such as good surface area, easy availability, non-toxicity,
chemical resistance, mechanical strength, thermal stability,
good conductivity, high hardness, low cost, excellent biocom-
patibility, high abrasive and corrosion resistance.1,2,22 However,
BNPs are also have some disadvantages, such as impurities
content (e.g. nitrate ions) that led to lower their crystallinity.
This impurities concentration may affect properties of the
surface property and pore structure of boehmite. In the other
hand, BNPs may converts into a g-Al2O3 in the high tempera-
tures, but this cannot effect on the catalysis application of BNPs
in organic reactions. Because organic reactions take place at
temperatures lower than the BNPs phase change. Therefore,
Boehmite nanomaterials have also attracted attention in
absorbent,27 coatings,28 ame retardant,29 optical material,30

ceramics,31 vaccine adjuvants,32 cosmetic products,2,33 pillared
clays and sweep-occulation for fresh water treatment.13

Consequently, we investigated a new complex of cobalt with 1,3-
bis(pyridin-3-ylmethyl)thiourea on boehmite nanoparticle (Co-
(PYT)2@BNPs) as a reusable nanocatalyst in the synthesis of
tetrazole derivatives. Because tetrazole compounds are an
important group of medicinal and organic compounds which
possess many uses in several elds such as coordination
chemistry, synthetic organic chemistry, drugs, medicinal
© 2023 The Author(s). Published by the Royal Society of Chemistry
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chemistry as surrogates for carboxylic acids, the photographic
industry, catalysis technology, and organometallic chemistry as
effective stabilizers of metallopeptide structures.34–41

2 Experimental
2.1 Materials and instruments

Solvents and chemical materials in this project bought from
Iranian companies, Aldrich, Merck or Fluka and used sans any
purication.

The particle morphology and particle diameters of synthe-
sized catalyst studied via FESEM-TESCAN MIRA III Scanning-
Electron-Microscope (SEM) from Czechia. In addition, FESEM-
TESCAN MIRA III used for type, content and number of
elements (via WDX and SEM-EDS analysis) of the nanocatalyst.
XRD diffraction of the nanocatalyst recorded by a PW1730
device madding Philips Company of Netherlands. IR spectra
recorded using KBr pills in a VRTEX 70 model Bruker IR spec-
trometer. TGA diagram of the nanocatalyst recorded by a SDT
Q600 V20.9 Build 20 Thermal Analysis device under air atmo-
sphere in the temperature range of 30–800 °C. NMR spectra of
the tetrazoles registered via Bruker-DRX-400 spectrometer.

2.2 Synthesis of 1,3-bis(pyridin-3-ylmethyl)thiourea ((PYT)2)
ligand (3)

In a round-bottomed ask, 3-(aminomethyl)pyridine (1, 10
mmol) added to CS2 (5 mmol) in H2O and stirred at room
temperature for 7 h (Scheme 1). The reaction progress consec-
utively checked by TLC (EtOAc: n-hexane, 1 : 2). Since this
reaction is exothermic, the temperature increases during the
reaction and so this temperature is sufficient for release H2S
(conrmed by smell and blackening of lead acetate paper). Aer
performance of the reaction, the water-insoluble product
ltered, and then recrystallized from hot water and ethanol (1 :
1 v/v).

The structure of (PYT)2 ligand was characterized by 1H NMR
and FT-IR spectroscopies:

2.2.1 1,3-bis(pyridin-3-ylmethyl)thiourea ((PYT)2).
1H NMR

(400 MHz, DMSO-d6): dH = 5.50 (s, 2H), 8.46–8.44 (d, J = 8 Hz,
2H), 8.22 (br, 2H), 7.69–7.66 (d, J= 12 Hz, 2H), 7.37–7.33 (d of d,
J = 8 Hz, J = 4 Hz, 2H), 4.69 (s, 4H) ppm.

IR (KBr) cm−1: 3272, 3184, 3000, 2923, 2853, 2359, 1913,
1529, 1473, 1422, 1298, 1237, 1193, 1101, 1027, 973, 918, 805,
770, 708, 616, 535.

2.3 Synthesis of the catalyst

50 mL of aqueous solution of sodium hydroxide (6.490 g) was
added to 30 mL of aqueous solution of aluminum nitrate (20 g)
as drop to drop under vigorous stirring. The resulting milky
Scheme 1 Synthesis of (PYT)2 ligand (3).

© 2023 The Author(s). Published by the Royal Society of Chemistry
mixture was transferred in the ultrasonic bath (for 3 h at room
temperature). The resulted BNPs was ltered and washed by
distilled water. The obtained BNPs were kept in the oven at 220 °
C for 4 h. Then, BNPs were modied by (3-chloropropyl)trie-
thoxysilane (CPTMS) to preparation of CPTMS@BNPs. The
CPTMS@BNPs formed matching to reported method in litera-
ture.41,42 As reported, the BNPs (1.5 g) dispersed in normal
hexane, and then CPTMS (2 mL) injected and the mixture stir-
red for 24 h under reux conditions that the modied BNPs by
CPTMS (CPTMS@BNPs) were produced. The prepared
CPTMS@BNPs were ltered, washed by ethanol (EtOH) and
dried at room temperature. In order to immobilization of (PYT)2
ligand (3) on CPTMS@BNPs, 1 g of CPTMS@BNPs reuxed with
(PYT)2 in toluene for 40 h. Aer then, obtained (PYT)2@BNPs
isolated via ltration, washed by DMSO and EtOH, aerward
dried at 60 °C. Finally, (PYT)2@BNPs (1 g) was dispersed in
EtOH, and then Co(NO3)2$6H2O injected to the obtained
mixture and then stirred for 24 h under reux conditions. The
resulting catalyst (Co-(PYT)2@BNPs) ltered, washed and dried
at 60 °C (Scheme 2).
2.4 General procedure for the synthesis of tetrazoles
catalyzed by Co-(PYT)2@BNPs

[3 + 2] cycloaddition of NaN3 with organic nitrile derivatives was
used for the formation of tetrazoles in the attendance of Co-
(PYT)2@BNPs as nanocatalyst. In this regard, NaN3 (1.4 mmol)
and nitrile (1 mmol) stirred in the attendance of Co-(PYT)2@-
BNPs (50 mg) in PEG-400 (2 mL) at 120 °C. In the end of the
reaction (which checked by TLC), the mixture cooled and was
dilute by H2O and ethyl acetate. Co-(PYT)2@BNPs nanocatalyst
isolated via simple ltration. Then, HCl (10 mL, 4 N) added and
tetrazoles extracted in ethyl acetate. The ethyl acetate solvent
dried by anhydrous sodium sulfate and then evaporated
(Scheme 3).
2.5 Spectral data

2.5.1 5-Phenyl-1H-tetrazole. 1H NMR (400 MHz, DMSO-d6):
dH = 16.89 (br, 1H), 8.06–8.03 (d of d, J = 8 Hz, J = 4 Hz, 2H),
7.63–7.58 (m, 3H) ppm.

2.5.2 5-(3-nitrophenyl)-1H-tetrazole. 1H NMR (400 MHz,
DMSO-d6): dH = 17.39 (br, 1H), 8.85–84 (t, J = 4 Hz, 1H), 8.50–
8.47 (d of t, J = 12 Hz, J = 4 Hz, 1H), 8.45–8.41 (d of q, J(d) =
8 Hz, J(q)= 4 Hz, 1H), 7.94–7.89 (t, J= 12 Hz, 1H) ppm. 13C NMR
(400 MHz, DMSO-d6): dH = 153.9, 147.1, 131.9, 130.0, 125.2,
124.3, 120.3 ppm. IR (KBr) cm−1: 3439, 3092, 2923, 2856, 2700,
1734, 1620, 1527, 1464, 1374, 1161, 1070, 991, 864, 816, 728,
665, 449.

2.5.3 2-(1H-tetrazol-5-yl)phenol. 1H NMR (400 MHz, DMSO-
d6): dH = 7.99–7.96 (d of d, J = 12 Hz, J = 4 Hz, 1H), 7.42–7.37 (t
of d, J= 12 Hz, 1H), 7.07–7.04 (d, J= 12 Hz, 1H), 7.02–6.96 (t, J=
12 Hz, 1H) ppm. 13C NMR (400 MHz, DMSO-d6): dC = 155.3,
151.8, 132.5, 128.9, 119.7, 116.3, 110.6 ppm. IR (KBr) cm−1:3253,
3058, 2941, 2708, 2565, 1892, 1735, 1610, 1546, 1476, 1393,
1358, 1294, 1230, 1150, 1114, 1067, 808, 742, 681, 538, 465.
RSC Adv., 2023, 13, 8890–8900 | 8891
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Scheme 2 Synthesis of Co-(PYT)2@BNPs.

Scheme 3 Synthesis of tetrazoles in the attendance of Co-
(PYT)2@BNPs.

Fig. 1 SEM images of Co-(PYT)2@BNPs.
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3 Results and discussion
3.1 Characterization of the catalyst

At rst step, functionalized BNPs by (3-chloropropyl)trime-
thoxysilane (CPTMS) was produced based on new reported
strategy.41,42 Subsequently, a new complex of cobalt was fabri-
cated on the surface of functionalized BNPs (Co-(PYT)2@BNPs).
The catalytic activity of Co-(PYT)2@BNPs was conrmed in the
synthesis of tetrazoles. This nanocatalyst was characterized
© 2023 The Author(s). Published by the Royal Society of Chemistry
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using Scanning Electron Microscope (SEM), X-ray diffraction
(XRD), Fourier transform infrared spectroscopy (FT-IR), wave-
length dispersive X-ray spectroscopy (WDX), energy dispersive
X-ray spectroscopy (EDS), and thermogravimetric analysis (TGA)
techniques.

The shape, morphology, and diameters size of Co-(PYT)2@-
BNPs studied by FESEM-TESCAN MIRA III Scanning Electron
Microscope (SEM) devoice. The SEM images of Co-(PYT)2@-
BNPs illustrated in Fig. 1. As indicate, the particles of Co-
(PYT)2@BNPs formed in uniform spherical shapes and quite
homogeneous diameter less than 70 nm.
Fig. 2 EDS diagram of Co-(PYT)2@BNPs.

Fig. 3 Elemental mapping of (a) aluminum, (b) silicon, (c) oxygen, (d) carb
Co-(PYT)2@BNPs.

© 2023 The Author(s). Published by the Royal Society of Chemistry
The obtained results from energy-dispersive X-ray spec-
troscopy (EDS) analysis of Co-(PYT)2@BNPs are summarized
in Fig. 2. As shown, Co-(PYT)2@BNPs is organize from
aluminum, oxygen, silicon, nitrogen, carbon, sulfur and
cobalt elements. As accepted, the intensity peaks of Al and O
elements is sharped than other elements which are formed
skeleton of BNPs. Also, the presence of Si, C, N, S and Co
elements indicate the successful stabilization of the cobalt
complex on BNPs. Also, wavelength dispersive X-ray spec-
troscopy (WDX) analysis (Fig. 3) illustrate homogeneous
distribution of aluminum, oxygen, silicon, nitrogen, carbon,
on, (e) sulfur, (f) nitrogen, (g) cobalt and (h) combine of all elements for

RSC Adv., 2023, 13, 8890–8900 | 8893
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sulfur and cobalt elements in the structure of Co-
(PYT)2@BNPs.

TGA analysis can used to determine amount of organic and
inorganic content in an organic–inorganic composite samples
and also can employed to calculate the thermal stability of
materials. Therefore, TGA analysis of Co-(PYT)2@BNPs was
performed from 25 °C to 800 °C within increasing temperature
rate of 10 °C min−1 under air atmosphere (Fig. 4). In TGA
diagram of Co-(PYT)2@BNPs, a small weight losses (8% of
weight) up to 150 °C is corresponded to the evaporation of
solvents.43 As shown, any weight loss was not indicate up to
250 °C except evaporation of solvents which showed excellent
thermal stability of Co-(PYT)2@BNPs. Therefore Co-(PYT)2@-
BNPs can be used as catalyst under hard conditions in wide
range of organic reactions. TGA analysis of Co-(PYT)2@BNPs
Fig. 4 TGA diagram of Co-(PYT)2@BNPs.

Fig. 5 Normal XRD pattern of Co-(PYT)2@BNPs.

8894 | RSC Adv., 2023, 13, 8890–8900
illustrated a considerable mass loss (35% of weight) between
250–650 °C which due to the decomposition of immobilized
organic layers on the surface of modied BNPs.44

X-ray diffraction (XRD) pattern of Co-(PYT)2@BNPs is ob-
tained with Cu Ka radiation (l = 0.154 nm). As shown in
Fig. 5, the XRD pattern of Co-(PYT)2@BNPs shows several
peaks of 2q = 14.69 (0 2 0), 27.89 (1 2 0), 40.34° (0 3 1), 46.84°
(1 3 1), 49.89° (0 5 1), 53.99° (2 0 0), 56.54° (1 5 1), 58.59° (0 8
0), 63.74° (2 3 1), 65.64° (0 0 2), 67.74° (1 7 1), and 72.89° (2 5
1) that conrm BNPs is stable in orthorhombic unit cell2,4

aer stabilization of cobalt complex. The intensity of all
peaks was decreased than BNPs due to the chemical modi-
cations of BNPs.33 Also, a broad peak of 2q from 15° to 25°
related to the amorphous SiO2.45 Also, XRD pattern of Co-
(PYT)2@BNPs showed four peaks at 2q = 15.79° (1 1 0), 32.44°
© 2023 The Author(s). Published by the Royal Society of Chemistry
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(2 2 0), 54.19° (1 4 1) and 63.14° (5 0 3) which can be related to
Cobalt(II) species.33

The FT-IR spectrum of CPTMS@BNPs, (b) (PYT)2@BNPs,
and (c) Co-(PYT)2@BNPs shown in Fig. 6. Bands vibration at low
wavenumbers <750 cm−1 in the FT-IR spectra related to the
vibrations of the Al–O bonds.4 O–H and N–H bands appeared
above 3000 cm−1 in the FT-IR spectra.46 In addition, the
stretching vibrations of Si–O identied in region 805 cm−1 and
1075 cm−1 of FT-IR spectra.41,47 In addition, stretching vibra-
tions of the C]N groups have appeared in the 1635 cm−1

region.4,48
3.2 Catalytic studying of the catalyst

Aer characterization of Co-(PYT)2@BNPs, it was used as effi-
cient, recyclable and biocompatible nanocatalyst in the
synthesis of tetrazole heterocyclic compounds. The best
Fig. 6 FT-IR spectra of (a) CPTMS@BNPs, (b) (PYT)2@BNPs, and (c)
Co-(PYT)2@BNPs.

Table 1 Optimizing the best conditions for the synthesis of tetrazoles in

Entry
Amount of the catalyst
(mg) Solvent NaN3 (m

1 — PEG 1.4
2 40 PEG 1.4
3 50 PEG 1.4
4 50 PEG 1.3
5 50 DMSO 1.4
6 50 H2O 1.4
7 50 PEG 1.4

a Isolated yield within 120 min. b No reaction.

© 2023 The Author(s). Published by the Royal Society of Chemistry
reaction conditions obtained through [3 + 2] cycloaddition of
NaN3 and benzonitrile as model reaction (Table 1). The model
reaction did not taken place in the absent of Co-(PYT)2@BNPs
nanocatalyst (Table 1, entry 1). While, the presentence of Co-
(PYT)2@BNPs is required for the synthesis of 5-substituted 1H-
tetrazole heterocyclic compounds. As expected, the model
reaction occurs with the addition of catalyst and it faster pro-
ceeded by increasing in amount of Co-(PYT)2@BNPs catalyst. As
shown, the model reaction completed within acceptable time
when the amount of catalyst increased up to 50 mg (Table 1,
entry 3). Among of several solvents (such as H2O, DMSO and
PEG-400) which are examined, PEG-400 was provided the best
results in term of reaction time and isolated yield of the pure
product (Table 1, entry 3). Also, the effect of equivalent amount
of NaN3 to benzonitrile and temperature on the model reaction
was studied, which the best results were obtained with
1.4 mmol of NaN3 per 1 mmol of benzonitrile at 120 °C (Table 1,
entry 3).

The scope of catalytic application of Co-(PYT)2@BNPs
nanocatalyst was extended in the [3 + 2] cycloaddition of NaN3

and other benzonitrile derivatives (Table 2). In this regard,
several benzonitrile compounds with an electron-withdrawing
or electron-donating groups on para- meta- or ortho-position
of aromatic ring were examined under optimized reaction
conditions in hand. As shown in Table 2, all corresponding
heterocyclic tetrazoles were produced in good yields. Also,
phthalonitrile was employed as nitrile substrate which has two
similar cyano groups on 1,2 position of its aromatic ring (Table
2, entry 4). As shown in Table 2 (entry 4), this methodology was
provided only monoaddition which may be related to steric
hindrance or selectivity of this catalyst. Also [1,1′-biphenyl]-4-
carbonitrile (4-phenyl benzonitrile) was synthesized based on
recently reported literature49 and it was investigated in the [3 +
2] cycloaddition reaction with NaN3 (Table 2, entry 11).

Based on reported authentic methodologies about synthesis
of tetrazoles in the presence of immobilized transition metal
catalysts,46,54 a mechanism cycle for the synthesis of tetrazoles
in the presence of Co-(PYT)2@BNPs catalyst offered in
Scheme 4.

3.3 Reusability of the catalyst

As mentioned, Co-(PYT)2@BNPs catalyst is stable and it has
heterogeneity nature. Therefore the reusability and
the presence of Co-(PYT)2@BNPs nanocatalyst

mol) Time (min)
Temperature
(°C) Yield (%)a

150 120 N. R.b

310 120 85
100 120 98
120 120 80
100 120 81
100 Reux 20
100 100 49

RSC Adv., 2023, 13, 8890–8900 | 8895
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Table 2 Synthesis of 5-substituted 1H-tetrazole derivatives catalyzed by Co-(PYT)2@BNPs nanocatalyst

Entry Nitrile Product Time (min) Yield (%)a Melting point Reference

1 120 98 214–215 36

2 180 94 223–226 41

3 200 95 179–181 36

4 50 93 210–211 41

5 190 96 261–262 36

6 405 98 217–220 40

7 50 93 229–231 40

9 360 95 149–151 44

10 16 h 89 247–249 50 and 51

11 46 h 71 245–248 52 and 53

a Isolated yield.

8896 | RSC Adv., 2023, 13, 8890–8900 © 2023 The Author(s). Published by the Royal Society of Chemistry
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Scheme 4 Expected mechanism for the synthesis of tetrazoles in the presence of Co-(PYT)2@BNPs nanocatalyst.
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retrievability of Co-(PYT)2@BNPs nanocatalyst were investi-
gated in the [3 + 2] cycloaddition of benzonitrile and NaN3 for
the synthesis of 5-phenyl-1H-tetrazole. As shown in Fig. 7, Co-
(PYT)2@BNPs catalyst can be recovered and reused up to 6 runs
without any further activation.
Table 3 Comparison results of Co-(PYT)2@BNPs nanocatalyst with
other catalysts for synthesis of 5-phenyl-1H-tetrazole

Entry Catalyst Time (h)
Yield
(%) Ref.

1 CoY zeolite 14 90 37
2 Cu–Zn alloy nanopowder 10 95 55
3.4 Comparison of the catalyst

The efficiency and advantages of Co-(PYT)2@BNPs catalyst
than previous reported catalysts were compared in the [3 + 2]
cycloaddition of benzonitrile with sodium azide in the pres-
ence of Co-(PYT)2@BNPs and previous catalysts (Table 3). As
shown, Co-(PYT)2@BNPs catalyst afford 98% of 5-phenyl-1H-
tetrazole product in 2 h which is better than previous reported
catalysts in terms of time and yields. Also, some of previous
catalysts have several disadvantages, limitations or drawbacks
Fig. 7 The reusability of Co-(PYT)2@BNPs in the synthesis of 5-
phenyl-1H-tetrazole.

© 2023 The Author(s). Published by the Royal Society of Chemistry
such as low yield of the products, long reaction times, expen-
sive catalysts, non-environmental conditions, non or difficult
separation of the catalysts and utilize hazard solvents. While,
in this work, the synthesis of tetrazoles was introduced in the
presence of Co-(PYT)2@BNPs as reusable catalyst in green
solvent such as PEG, in short reaction time with acceptable
yield.
3 B(C6F5)3 8 94 56
4 Fe3O4@SiO2/Salen Cu(II) 7 90 57
5 Fe3O4/ZnS HNSs 24 81.1 58
6 Pd-isatin-boehmite 8 94 59
7 Mesoporous ZnS 36 86 60
8 AgNO3 5 83 61
9 CuFe2O4 12 82 62
10 Nano ZnO/Co3O4 12 90 63
11 Pd-SMTU@boehmite 2.5 95 64
12 Cu-TBA@biochar 7 98 41
13 L-cysteine-Pd@MCM-41 3 98 65
14 Ni-MP(AMP)2@Fe-biochar 3.8 92 34
15 Cu(II)-adenine-MCM-41 5 92 66
16 Pd-Arg@boehmite 7 97 36
17 Cu-DABP@Fe3O4/MCM-41 2 99 46
18 Fe3O4@boehmite NPs 4 97 67
19 Co-(PYT)2@BNPs 2 98 This work
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4 Conclusions

In Conclusion, we synthesized a new stabilized complex of
cobalt on modied boehmite NPs by 1,3-bis(pyridin-3-ylmethyl)
thiourea (Co-(PYT)2@BNPs) as highly practical, retrievable,
stable, and maintainable organic–inorganic hybrid nano-
catalyst. Co-(PYT)2@BNPs was characterized by various tech-
niques such as XRD, TGA, SEM, EDS, WDX and FT-IR. Catalytic
activity of this catalyst was studied in the formation of organic
heterocyclic compounds such as tetrazole derivatives. Co-
(PYT)2@BNPs display high activity, stability and recyclability in
the synthesis of tetrazoles.
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