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a polyvinyl butyral synthesis
process based on response surface methodology
and artificial neural network†

Wenwen Luan, Li Sun, Zuoxiang Zeng * and Weilan Xue

High quality polyvinyl butyral (PVB) can be used as the intermediate film of automobile and building glass

and the packaging film of photovoltaic cells. Therefore, it is necessary to optimize its synthesis process

to obtain suitable products with a high acetalization degree (AD) and small particle size (dp). In this work,

a deep eutectic solvent (DES) was selected as the catalyst, and response surface methodology (RSM) and

artificial neural network (ANN) were utilized to optimize the synthesis process of PVB. The concentration

of polyvinyl alcohol (A), the dosage of DES (B) and n-butanal (C), and the aging temperature (D) were

selected as process variables, and the comprehensive score (AD, dp and material and energy

consumption) was introduced as the response. The results showed that single-factors B, C, D, and the

interactions AB, BC and CD had significant effects on the comprehensive score, and the qualified PVB

products (AD > 81%, dp = 3–3.5 mm) were obtained under the optimal conditions obtained by RSM and

ANN models. ANN is a better and more precise optimization tool than RSM. Also, DES played a dual role

in catalysis and dispersion in the synthesis of PVB and showed good reusability, so it has great

application potential in PVB industrial production.
1. Introduction

Polyvinyl butyral (PVB) is an important synthetic resin, which
has the advantages of strong adhesion, great exibility, high UV
stability and optical transparency, and excellent impact and
weather resistance.1–3 PVB is usually used as interlayer material
for laminated glass in automobiles and buildings, due to its
strong adhesion to glass, excellent mechanical strength, and
optical clarity.4–6 Recently, PVB has gained wide attention
because of its great potential for applications in encapsulation
lm for solar cells,7,8 protective coating for metal substrates,9–11

and ultraltration membrane for wastewater treatment.12–14

The acetalization degree (AD) of PVB is one of the most
important parameters determining its application performance
such as mechanical and thermal properties, bond strength and
water resistance. To meet the mechanical and hydrophobic
property requirements for application, the AD value needs to
reach more than 78%.3 In addition, the particle size (dp) is also
an important parameter for PVB application, and it is closely
related to the purity, acetalization degree, and intermolecular
crosslinking of PVB products, all of which are strictly required
in ultraltration membranes, biomedical applications and
photovoltaic cells.15 The performance of PVB depends mainly
a University of Science and Technology,
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tion (ESI) available. See DOI:

3

on its synthesis process, which involves the acetal reaction of
polyvinyl alcohol (PVA) and n-butanal (BA) in the presence of an
acidic catalyst. Therefore, to meet the extreme demand of some
applications, the synthesis process of PVB becomes important
to produce high quality PVB products with high AD value, and
small and uniform particle sizes.

PVB resin is mainly produced by the precipitation method in
the industry, which involves two temperature-controlled stages:
the condensation stage (reaction at a low temperature) and the
aging stage (reaction at a high temperature).3,16 Precipitation
method is relatively mature, but there are still disadvantages
such as low degree of acetalization, easy agglomeration and
high energy consumption. In recent years, researchers have
been working to improve the PVB synthesis process by changing
the solvent system, improving the reaction device and using
new catalysts. Fernández et al.17 used N-methylpyrrolidone
(NMP) instead of water as a reaction medium to prepare PVB,
and products with different degrees of acetalization were
prepared in a homogeneous system. But this method requires
special solvents, and the separation and purication of the
product from the solvent are difficult. Lin et al.16 and Zhou et al.3

used membrane dispersion microreactors to synthesize PVB,
which had a strong mixing capacity, shortened reaction time
and reduced energy consumption. However, the production
cost of the microreactor is high, and PVB particles are easy to
block the channels, so it is difficult to industrially produce PVB
with the microreactor. Typically, a strong inorganic acid
(usually HCl or H2SO4) is used as the catalyst for PVB synthesis,
© 2023 The Author(s). Published by the Royal Society of Chemistry
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which has the disadvantages of corrosion of equipment,
agglomeration of PVB particles and uneven distribution of
acetalization degree. Researchers today are trying to develop
new catalysts to replace inorganic acids. In recent years, ionic
liquids (ILs) have become increasingly attractive as novel and
efficient catalysts because of their low vapor pressure, non-
ammability, and excellent chemical and thermal stability.18–20

Qin et al.21 successfully synthesized PVB using N-methyl-
imidazole sulfate ([HMIM]+HSO4

−) as an IL catalyst, and the AD
value of the product was up to 72%. Nevertheless, ILs are
expensive and difficult to biodegrade.22 Deep eutectic solvent
(DES) has been developed as a novel alternative to ILs.23,24 It is
synthesized by mixing a hydrogen bond acceptor (HBA)
(quaternary ammonium salts) and a hydrogen bond donor
(HBD) (carboxylic acids) at 60–80 °C,25–27 and is cheap, biode-
gradable, low toxic and reusable.28–30 Hence, DES as a catalyst
has potential applications in polymer chemistry and synthetic
organic chemistry.

Traditionally, surfactants are added to the reaction system to
disperse reactants and product molecules during PVB synthesis,
thus improving particle aggregation. However, too much
surfactant residue in PVB will cause it to turn yellow during high
temperature processing.31 Fortunately, DES also has good
dispersal ability and is widely used as an efficient dispersant for
the chemical synthesis of advanced nanomaterials.32–34 There-
fore, DES is expected to achieve a double goal of catalysis and
dispersion in the synthesis of PVB. Furthermore, DES has
excellent reusability performance, which is an important factor
for the possibility of its use in large-scale industrial
applications.

Response surface methodology (RSM) is a powerful tool for
optimizing process conditions.35–37 The Box–Behnken design
(BBD), a type of RSM design, can provide 3–7 factors and three
levels of experimental conditions. BBD has proven to be more
efficient than the other response surface designs and has been
widely used in the eld of chemical engineering due to its
benets such as fewer experiments, shorter time and lower
costs.38,39 Rathee et al.40 optimized the prepared phytosomes
formulations using a 3-factor, 3-level BBD, and the results
showed that the polyherbal phytosome preparation can be used
as an alternative to dosage form design and delivery.

Articial neural network (ANN) is a powerful data processing
technology based on mimicking the biological nervous systems.
Because of its advantages of mega-parallelism, high nonline-
arity, self-learning, tolerance to scattered data and fast pro-
cessing speed,41,42 ANN has been widely applied in many elds
such as prediction,43 classication,44 signal processing,45,46

image processing47,48 and chemical process control.49–51 ANN
trains experimental data by establishing relationships between
input and output variables to predict and optimize complex
processes.52,53 Haido54 established new empirical ANN models
to evaluate the performance of RC connections based on
a database of more than 200 experiments from the literature.
The results showed that the obtained ANN models are stable
and simple, and are suitable for the expected beam–column
joint structure design.
© 2023 The Author(s). Published by the Royal Society of Chemistry
RSM modeling consists of two steps, i.e., designing
experiments and establishing a model based on the experi-
mental results. ANN can derive models from available data
without prior design or adjustment.55 Their features help to
compare the models obtained by RSM and ANN and to
combine the advantages of both methods to better solve
complex problems.56,57 Toppo et al.57 used RSM and ANN
models to optimize the synthesis process conditions of gold
nanoparticles. The experiments were designed by RSM and
the obtained model was further optimized by ANN. Ezemagu
et al.56 optimized the process conditions for turbidity
removal from produced water using RSM and ANN
techniques.

In this study, DES formed by benzyltrimethylammonium
chloride (BAC) and p-toluene sulphonic acid (PTSA) was
selected as the catalyst for the synthesis of PVB, and the process
conditions were optimized using both RSM and ANN. The four
factors considered in this work are as follows: PVA concentra-
tion (wPVA), DES dosage (mDES/mPVA), n-butanal dosage (mBA/
mPVA) and aging temperature (Tage). The comprehensive score
considering acetalization degree, particle size and energy
consumption was introduced as the response. Validation
experiments were carried out to conrm the efficacy of RSM and
ANN models, and their prediction accuracy was compared.
Finally, recycling experiments were carried out to examine the
reusability of DES.
2. Materials and methods
2.1 Materials

PVA (MW 24 000–24 500 g mol−1, hydrolysis degree of 99.0%)
and ethanol (99.5%) were supplied by Shanghai Macklin
Biochemical Co., Ltd. n-Butanal (99.5%) was got from
Shanghai Mairuier Chemical Technology Co., Ltd. Benzyl-
trimethylammonium chloride (BAC, 98.0%) was got from
Shanghai Di Bo Chemical Co., Ltd. p-Toluenesulfonic acid
monohydrate (PTSA, 99.0%) was got from Shanghai Aladdin
Biochemical Technology Co., Ltd. Sodium dodecyl sulfonate
(SDS, 97.0%) and sodium hydroxide (NaOH, 98.0%) was
supplied by Sinopharm Chemical Reagent Co., Ltd. Hydro-
chloric acid (HCl, 36–38%) and hydroxylamine hydrochlo-
ride (98.5%) were bought from Shanghai Titan Scientic Co.,
Ltd.
2.2 Synthesis of PVB

The detailed reaction mechanism of PVB synthesis is shown
in Fig. 1, and it is described as follows. First, n-butanal is
protonated under acidic conditions, and the protonated
n-butanal then reacts with the hydroxyl group on the PVA
molecule to form a protonated hemiacetal group. Next, the
protonated hemiacetal loses one H2O molecule and reacts
with the neighboring hydroxyl group to form an acetal
group. Finally, H+ leaves and the acetal reaction is
complete.58 The synthetic procedure of PVB is similar to that
of our previous publication,59 and it is described in detail in
ESI.†
RSC Adv., 2023, 13, 7682–7693 | 7683
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Fig. 1 Reaction mechanism of PVB synthesis.
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2.3 Preparation and selection of DES

The preparation procedure of DES has been described in detail
in our previous study,58 and it can be found in ESI.† Experi-
ments of selecting catalyst were carried out, and results showed
that DES (BAC–PTSA) prepared by BAC and PTSA with a molar
ratio of 1 exhibited the best catalysis effect for PVB synthesis.
The detailed results and the characterization of DES are shown
in ESI.†

2.4 Evaluation of the catalytic performance of DES

To evaluate the catalytic performance of DES, BAC–PTSA and
HCl were used as the catalyst to synthesize PVB, and the dosage
of the catalyst was determined by the pH of the system (adjusted
to ∼1.5). For these two catalysts, the dosage of SDS (mSDS/mPVA)
is 0.01 and 0.03, respectively, and the samples obtained are
named PVB–DES and PVB–HCl, respectively. The AD values of
the samples were determined to be almost identical (∼80%).
The SEM images of the two samples are shown in Fig. 2.
Interestingly, despite themuch lower amount of surfactant, PVB
products with the smaller particle size were obtained with the
presence of DES. Specically, the dp was measured to be ∼6.6
mm (PVB–HCl) and ∼4.2 mm (PVB–DES) respectively. The results
indicated that DES played a dual role in catalysis and dispersion
in the synthesis of PVB, and it was selected as the catalyst to
synthesize PVB in this study.

2.5 Determination of acetalization degree of PVB

The AD value of PVB is determined by the hydroxylamine
hydrochloride method,59,60 which is dened as the mass ratio of
Fig. 2 SEM images of PVB samples: (a) PVB–HCl and (b) PVB–DES.

7684 | RSC Adv., 2023, 13, 7682–7693
acetal groups to the total mass of the molecular chain, and it
can be calculated by eqn (1):

ADð%Þ ¼ 0:142� ðV � V0Þ � C

m
� 100 (1)

where V and V0 (mL) are the volumes of NaOH solution
consumed by PVB and the blank group, respectively; C (mol L−1)
is the concentration of NaOH solution; m (g) is the amount of
PVB sample, and 0.142 is a constant related to the molecular
weight of an acetal unit.

2.6 Characterization of PVB

The samples of PVA and PVB were characterized by Fourier
transition infrared spectroscopy (FTIR, Thermo Fisher
Scientic Nicolet iS10, USA) on the specimens made through
KBr. The glass transition temperature (Tg) was measured by
a differential scanning calorimeter (DSC1, Mettler Toledo
Switzerland) under a nitrogen atmosphere. Thermogravi-
metric analysis (TGA, NETZSCH STA 449F5 simultaneous
thermal analyzer) was utilized to measure the thermal
stability of PVB products, and the test was carried out at
a heating rate of 10 °C min−1 from 25 °C to 700 °C under an
air atmosphere. Gel permeation chromatography (GPC,
Waters 1515, USA) was used to determine the molecular
weight of PVB, and the values were calculated by the cali-
bration curve of polystyrene standards. A scanning electron
microscope (SEM, S-3400N, Hitachi) was utilized to image
PVB particles and measure the particle size. UV spectropho-
tometer (UV-1800, Shimadzu) was used to determine the
concentration of n-butanal.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Experimental design and results of RSM

Run

Factors and coded levels

Comprehensive
score

A
(%)

B
(g g−1)

C
(g g−1)

D
(°C)

1 0 0 −1 1 76.87
2 −1 0 0 −1 89.61
3 0 0 0 0 90.80
4 0 −1 1 0 81.05
5 0 0 1 −1 86.10
6 0 −1 0 −1 87.32
7 1 0 1 0 84.69
8 0 0 −1 −1 87.70
9 1 0 0 −1 87.61
10 0 1 −1 0 81.70
11 0 1 0 1 83.59
12 0 −1 −1 0 82.17
13 0 1 1 0 87.52
14 0 0 0 0 91.01
15 1 −1 0 0 84.16
16 0 0 0 0 91.49
17 1 1 0 0 85.85
18 −1 0 −1 0 79.87
19 0 0 0 0 91.09
20 0 −1 0 1 79.89
21 −1 −1 0 0 81.32
22 −1 0 0 1 81.85
23 0 0 1 1 83.95
24 −1 1 0 0 88.55
25 0 0 0 0 91.59
26 1 0 0 1 80.93
27 0 1 0 −1 90.26
28 −1 0 1 0 85.65
29 1 0 −1 0 81.70

Table 1 The codes of four factors and their three levels

Factors Unit

Coded and actual levels

−1 0 +1

A wPVA % 4 7 10
B mDES/mPVA g g−1 0.1 0.2 0.3
C mBA/mPVA g g−1 0.60 0.75 0.90
D Tage °C 50 60 70
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2.7 RSM modeling

2.7.1 Determination of the range of four factors in the RSM
design. Before the RSM experiments, single-factor experiments
were carried out to investigate the effects of four factors (wPVA,
mDES/mPVA, mDES/mPVA, Tage) on the reaction. Based on this, the
variation range of them in the RSM experiment design was
determined as follows:

(1) PVA concentration (wPVA): when the wPVA value is too high
(>10%), the molecular chains of PVA cannot stretch freely,
which is unfavorable to the reaction of hydroxyl groups with n-
butanal. However, too small wPVA value (<4%) leads to too low
equipment utilization. Therefore, the suitable range of wPVA is
4–10%.

(2) DES dosage (mDES/mPVA): if the catalyst dosage is lower
than 0.1, the reaction rate would be very slow. When the value of
mDES/mPVA is higher than 0.3, the concentration of protonated n-
butanal will reach the threshold value, and the reaction rate no
longer increases with increasing DES dosage. Therefore, the
suitable range of mDES/mPVA is 0.1–0.3.

(3) n-Butanal dosage (mBA/mPVA): the AD value of PVB
increases with the increase of mBA/mPVA until mBA/mPVA is 0.9,
and then tends to be stable. On the other hand, when mBA/mPVA

< 0.6, the reaction rate is too low. So, the suitable range of mBA/
mPVA is 0.6–0.9.

(4) Aging temperature (Tage): if Tage is lower than 50 °C, the
AD value will be lower than 76%; however, when Tage > 70 °C, the
dp value of the product will increase signicantly. So, the suit-
able range of Tage is 50–70 °C.

The above four factors were selected as input variables in
RSM and each variable was set at three levels: low (−1), medium
(0), and high (+1) as shown in Table 1.

2.7.2 Indicators for evaluating experimental results. In this
work, RSM and ANN were used to optimize the synthesis
process conditions of PVB, and the experimental results were
evaluated by the comprehensive score which includes the AD
value of PVB (weight 70%), the dp value of PVB (weight 20%) and
material and energy consumption (weight 10%). The formula
for calculating the comprehensive score (Y) is as follows:

Y ¼
 
0:7� ADi

ADmax

þ 0:2�
�
dp
�
min�

dp
�
i

þ 0:1� Emin

Ei

!
� 100 (2)

where ADmax is the maximum value of AD, (dp)min is the
minimum value of particle size and Emin is the minimum value
of material and energy consumption.
© 2023 The Author(s). Published by the Royal Society of Chemistry
2.7.3 RSM experimental design. Twenty-nine experimental
runs designed by RSM based on a four-factor-three-level BBD
are shown in Table 2. A quadratic polynomial equation was used
to analyze the relationship between the response and inde-
pendent variables as follows:

Y= b0 + b1A + b2B + b3C + b4D + b11A
2 + b22B

2 + b33C
2 + b44D

2

+b12AB + b13AC + b14AD + b23BC + b24BD + b34CD (3)

where Y is the response variable (comprehensive score), and A,
B, C and D are the process factors in the model. b0 is the
constant coefficient; b1, b2, b3 and b4 are the main coefficient
that determines the effect of factors on the response; b11, b22,
b33 and b44 are the quadratic coefficients; b12, b13, b14, b23, b24
and b34 are the interactive coefficients between different factors.
2.8 ANN modeling

In ANN, a back propagation (BP) was used, which is a multi-
layer feedforward neural network trained by the error back-
propagation learning algorithm and has strong stability. The
basic structure of the BP ANN model consists of input, hidden,
and output layers, and the node of each layer in the ANN model
was determined as follows.
RSC Adv., 2023, 13, 7682–7693 | 7685
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(1) Input layer: the input layer includes four variables that
affect the quality of PVB product: PVA concentration, DES
dosage, n-butanal dosage and aging temperature.

(2) Output layer: the output layer includes one node, which is
the comprehensive score as an evaluation indicator.

(3) Hidden layer: the number of hidden layer nodes can
directly affect the performance of the ANN model. The deter-
mination of hidden layer nodes includes two steps. First,
a reasonable range of the number of nodes in the hidden layer is
inferred using an empirical formula. Then the number of nodes
was increased from small to large, and the trial-and-error
approach was used to nally determine the optimal number.
One common empirical formula is shown in eqn (4):61

r = 2n + 1 (4)

where r is the number of nodes in the hidden layer and n is the
number of input nodes.

In this study, Levenberg–Marquardt was selected as the
training algorithm because of its fast convergence speed. The
mean squared error (MSE) and the correlation coefficient (R2)
were used to estimate the performance of the network. The ANN
model and related parameter variations are determined based
on the minimum of the MSE. The data obtained from the RSM
design will be used to constitute the architecture of ANN and
randomly divided into three subsets: 70% for training, 15% for
validation and 15% for testing. The maximum number of
training epochs is set to 1000 and the nal error is less than
0.0001.
Fig. 3 Characterization of PVB (PVB sample obtained in run 3rd): (a) FTIR
-DTG -DSC curves of PVB; (d) GPC profile of PVB.

7686 | RSC Adv., 2023, 13, 7682–7693
2.9 Assessing t and accuracy of RSM and ANN models

The prediction accuracy of ANN and RSM models can be eval-
uated by comparing the predicted responses with the experi-
mental responses. Correlation coefficient (R2), root mean
square error (RMSE) and absolute average deviation (AAD%)
were oen used to determine the accuracy of the models as
follows:62–64

R2 ¼

�PN
i¼1

�
Yi;exp � Yi;exp

��
Yi;pred � Yi;pred

��2

PN
i¼1

�
Yi;exp � Yi;exp

�2�
Yi;pred � Yi;pred

�2 (5)

RMSE ¼
 
1

N

XN
i¼1

�
Yi;pred � Yi;exp

�2!1
2

(6)

AAD% ¼ 1

N

 XN
i¼1

��Yi;exp � Yi;pred

��
Yi;exp

!
� 100% (7)

where N is the number of experimental points, Yi,exp, Yi,pred,
�Yi,exp, �Yi,pred are the experimental values, predicted values,
average experimental values, and average predicted values,
respectively.

3. Results and discussion
3.1 Characterization of PVB

3.1.1 FTIR. The FTIR spectra of PVB and PVA are shown in
Fig. 3a. As seen in the spectra of PVB, there is a relatively wide
spectra of PVA and PVB; (b) the DSC curves of PVA and PVB; (c) TGA

© 2023 The Author(s). Published by the Royal Society of Chemistry
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peak appearing at 3468 cm−1, as a result of –OH stretching.15

The peak is much weaker than that of PVA, indicating that
a large amount of –OH participated in the acetal reaction. The
two peaks at 2959 cm−1 and 2870 cm−1 are assigned to the
stretching vibration of C–H. Both PVB and PVA have a small
peak at about 1738 cm−1, which is the stretching vibration of
C]O of vinyl acetate groups. The peak at 1381 cm−1 belongs to
the bending vibration of C–H.21 The two peaks around
1243 cm−1 and 1056 cm−1 are assigned to the asymmetric and
symmetric stretching vibration of the C–O–C of the acetate
groups, respectively. The two peaks at 1141 cm−1 and 999 cm−1

belong to the asymmetric and symmetric stretching vibration of
C–O–C–O–C,65 respectively, which are not found in the spec-
trum of PVA, conrming that the acetal reaction of PVA and n-
butanal did occur.

3.1.2 DSC. DSC curves of PVB and PVA are shown in Fig. 3b.
From Fig. 3b, it can be seen that the glass transition tempera-
ture (Tg) of PVB (66.58 °C) is different from that of PVA (74.13 °
C), which is because the regular arrangement of hydroxyl groups
in PVA is changed by the introduced butyral group, and the
molecular structure and crystallinity of the resulting PVB are
also changed.

3.1.3 TGA. TGA was used to measure the thermal stability
of PVB products. TG, derivative thermogravimetric (DTG) and
DSC curves are shown in Fig. 3c. The temperatures at about
1.5%, 10%, 50% and 90% weight loss are 239 °C, 281 °C, 363 °C
and 565 °C, respectively, which represent the thermal stability
of the PVB sample. It can be seen from Fig. 3c that in air, due to
the generation of oxidation products such as peroxides and
carbonyl compounds, there are obvious exothermic peaks on
the DSC curve. According to the literature,66–68 the possible
thermal degradation process of PVB in air is described as
follows: the rst process between 200–380 °C is dominated by
oxidation, and the DSC curve shows obvious exothermic
phenomenon. There is a small endothermic peak between 400–
Table 3 ANOVA for the quadratic model obtained by RSM

Source Sum of squares df Mean sq

Model 479.42 14 34.24
A 0.30 1 0.30
B 38.73 1 38.73
C 29.93 1 29.93
D 143.69 1 143.69
AB 7.69 1 7.69
AC 1.94 1 1.94
AD 0.29 1 0.29
BC 12.03 1 12.03
BD 0.14 1 0.14
CD 18.87 1 18.87
A2 70.06 1 70.06
B2 61.93 1 61.93
C2 155.09 1 155.09
D2 50.99 1 50.99
Residual 6.56 14 0.47
Lack of t 6.11 10 0.61
Pure error 0.44 4 0.11
Cor total 485.98 28
R2 = 0.9865, Adj. R2 = 0.9730, Adeq. precision = 30.28, C.V.% = 0.80%

© 2023 The Author(s). Published by the Royal Society of Chemistry
450 °C, whichmay be due to the pyrolysis of oxidation products.
At 500–600 °C, it is the combustion of carbonaceous residue
that releases a large amount of heat. All these results demon-
strate that the prepared PVB sample has high thermal stability,
and no substantial weight loss will occur at processing or
operational temperature.

3.1.4 GPC. Fig. 3d shows the GPC prole and summary of
self-made PVB, and tetrahydrofuran and polystyrene were
selected as the mobile phase solvent and the standard sample
respectively. The number average molecular weight (Mn) and
weight average molecular weight (Mw) were determined as 38
678 and 61 487 g mol−1, and the ratio of them (Mn/Mw) was
1.58972.
3.2 Modeling and parameters optimization by RSM

3.2.1 Analysis of variance (ANOVA). Twenty-nine experi-
ments based on Tables 1 and 2 were carried out, and the results
of the comprehensive score are also listed in Table 2. The
quadratic regression model presented in terms of coded vari-
ables is obtained as follows:

Y = 91.20 − 0.16A + 1.80B + 1.58C − 3.46D − 1.39AB − 0.70AC

+ 0.27AD + 1.73BC + 0.19BD + 2.17CD − 3.29A2 − 3.09B2 −
4.89C2 − 2.80D2 (8)

The results of ANOVA are shown in Table 3, which is used to
evaluate the applicability of the model and judge the signi-
cance of each factor. As shown in Table 3, the model F-value of
73.09 and the p-value of < 0.0001 indicate that the model is
signicant. The lack of t F-value of 5.50 and p-value of > 0.05
imply that lack of t is quite low and not signicant relative to
the pure error. The high values of R2 (0.9865) and adjusted R2

(0.9730) indicate that the model ts well with the experimental
data and has considerable compatibility.
uare F-value p-value

73.09 <0.0001 Signicant
0.64 0.4365
82.66 <0.0001
63.88 <0.0001
306.69 <0.0001
16.42 0.0012
4.14 0.0612
0.63 0.4411
25.69 0.0002
0.31 0.5883
40.27 <0.0001
149.54 <0.0001
132.19 <0.0001
331.03 <0.0001
108.83 <0.0001

5.50 0.0574 Not signicant

RSC Adv., 2023, 13, 7682–7693 | 7687
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Moreover, the p-value is an important criterion for deter-
mining the signicance of each independent variable. Speci-
cally, p-value > 0.05 is not signicant; p-value < 0.05 is
signicant, and p-value < 0.01 is extremely signicant. From
Table 3, the p-values of independent variables B, C, and D, and
interactions AB, BC and CD are all less than 0.05, indicating that
they have signicant effects on the quality of PVB resin, and
other factors are not signicant.

Adequate precision (AP) measures the signal-to-noise ratio,
and a greater ratio value is desirable. The value of AP of this
model is 30.28, which indicates that the model has a good
predictive ability. The coefficient of variation (CV) is also known
as the relative standard deviation and reects the degree of
dispersion of the data. The lower the CV value, the higher the
reliability of the data. The low value of CV% (0.80%) shows that
the experimental data is reliable.

Fig. 4 shows the comparison between the predicted Y values
and the actual ones. From Fig. 4a, the points are arranged along
a straight diagonal line; from Fig. 4b, the residuals are normally
distributed and within the range of−3 to +3, indicating that the
regression model is credible. In conclusion, the established
quadratic polynomial model is reliable and can be used to
optimize the PVB synthesis process.

3.2.2 Analysis of response surfaces. Based on the quadratic
regression model, 3D response surface plots and 2D contour
plots were constructed to describe the interaction effects
between the independent variables, which can further help
determine the optimal process conditions. Each response
surface plot represents the change in response value with two
variables when the other variables are at intermediate values,
and the contour plot is a projection of a response surface. It can
be seen in Table 3 that only the interactions AB, BC and CD have
signicant effects on the quality of PVB, and a detailed analysis
of them is given as follows.

These 3D response surfaces and 2D contour plots show the
interaction effects between PVA concentration and DES dosage
(Fig. 5a and b), DES dosage and n-butanal dosage (Fig. 5c and d),
Fig. 4 (a) Plot of predicted vs. actual; (b) distribution of residuals vs. pre

7688 | RSC Adv., 2023, 13, 7682–7693
n-butanal dosage and aging temperature (Fig. 5e and f) on the
comprehensive score, respectively. From Fig. 5a and b, it can be
found that as wPVA and mDES/mPVA increased simultaneously,
the comprehensive score rst increased and then decreased.
The comprehensive score was up to 90 when wPVA was in the
range of 5.5% ∼8.5% and mDES/mPVA was in the range of 0.17–
0.30. A similar trend was observed for the plots in Fig. 5c and d.
As shown in Fig. 5c and d, the optimal regions for the two
interacting variables were located in the middle area of the
design, and the maximum value of the comprehensive score
was achieved in the range of mDES/mPVA from 0.17 to 0.30, and
mBA/mPVA from 0.72 to 0.85.

As shown in Fig. 5e and f, the 3D response surface plot is
steepest and the associated contour plot shows a considerable
curvature, indicating that the interaction between n-butanal
dosage and aging temperature on the comprehensive score is
the most signicant, which is consistent with the p-value of CD
(<0.0001). The comprehensive score rst increased and then
decreased with increasing n-butanal dosage, while it decreased
as the aging temperature increased. The comprehensive score
reached the highest value in the range of mBA/mPVA from 0.65 to
0.85, and Tage from 50 °C to 62 °C.

3.2.3 The optimal process conditions obtained by RSM
model. The optimal process conditions for the synthesis of high
quality PVB resins were obtained by solving the quadratic
regression model using Design-Expert soware. The optimal
operation conditions were: wPVA= 6.9%,mDES/mPVA= 0.25,mBA/
mPVA = 0.81 and Tage = 57.3 °C. The comprehensive score pre-
dicted at the optimal process conditions was 92.08, and the
experimental validation under these conditions was 91.78, of
which AD was 83.54% and dp was 3.5 mm, indicating the good
optimization performance of the RSM model.
3.3 Modeling and parameters optimization by ANN

3.3.1 Determination of the number of neurons in the
hidden layer. The architecture of ANN was constructed based on
dicted.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Response surface plots and contour plots of interaction effects of AB (a and b), BC (c and d), and CD (e and f) on the comprehensive score.
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the experimental data obtained from RSM (Table 2) and the
relevant parameters described in section 2.8. According to eqn
(4), the rough value of the number of neurons in the hidden
layer was obtained to be 9. A relatively wide range was set from 4
© 2023 The Author(s). Published by the Royal Society of Chemistry
to 14 to investigate the effect of the number of hidden layer
neurons on the prediction performance of ANN model, and the
results are shown in Fig. 6a. From Fig. 6a, the ANN structure
with 8 neurons in the hidden layer presented the lowest MSE
RSC Adv., 2023, 13, 7682–7693 | 7689
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Fig. 6 ANN training. (a) Effect of the number of neurons on MSE value; (b) plots of MSE of training, validation and test verse to the epochs
number.
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value, and it was selected in ANNmodel in this work. Therefore,
a three-layered BP ANN model with 4, 8, and 1 neurons in the
input layer, hidden layer and output layer, respectively, was
identied as the optimal model.

3.3.2 Analysis of ANN model results. Fig. 6b displays the
relationship between the progression of training (TP), valida-
tion (VP) and test performance (TSP) during the simulation and
the number of epochs. The MSE value dropped gradually as the
number of epochs increased. The best validation performance
was achieved in the 5th epoch, and the value of MSE was
0.0016095, indicating that the network is stable.

As the regression analysis of output and target are shown in
Fig. 7a, the regression coefficients of training (0.99982), vali-
dation (0.9966), test (0.99985) and the network (training, testing
and validation, 0.99809) are all greater than 0.99, which
demonstrates a good t. Fig. 7b shows the plot of the predicted
comprehensive score versus the actual values of the training
sample, and the predicted values are close to the actual values.
The results of Fig. 7a and b indicate that the predictive
Fig. 7 (a) Regression plot of output vs. target; (b) actual and predicted c

7690 | RSC Adv., 2023, 13, 7682–7693
capability of the ANNmodel is good, and the prediction result is
reliable.

3.3.3 The optimal process conditions obtained by ANN
model. The optimal process conditions obtained by the ANN
model were: wPVA = 8.1%, mDES/mPVA = 0.23, mBA/mPVA = 0.73
and Tage = 55.6 °C, and the comprehensive score predicted at
these conditions was 92.71. A validation experiment was carried
out under the optimal process conditions, and the compre-
hensive score was calculated as 92.60, with AD of 81.35% and dp
of 3.0 mm, which conrmed the good predictive and optimiza-
tion performance of the ANN model.
3.4 Comparison of RSM and ANN models

To verify the predictive performance of the models, validation
experiments were performed under the optimal process condi-
tions obtained by RSM and ANN models, which have been
described in detail in the previous section. The values of AD, dp
and the comprehensive score of PVB products are summarized
in Table 4, and the SEM images of PVB obtained by RSM and
omprehensive score.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 4 Comparison of RSM and ANN models

Model R2 RMSE AAD (%) AD (%) dp (mm)

Comprehensive
score

Actual Predicted

RSM 0.9865 0.4754 0.45 83.54 3.5 91.78 92.08
ANN 0.9962 0.2551 0.13 81.35 3.0 92.60 92.71
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ANN are shown in Fig. 8a and b, respectively. As shown in Table
4, the PVB product obtained by RSM has slightly higher AD and
dp values than that of PVB obtained by ANN. The differences
mainly because DES dosage, n-butanal dosage, and Tage in the
optimal process conditions of RSM all exceeded those of ANN,
which accelerated the acetal reaction rate and increased AD.
However, the excessively fast reaction rate and higher temper-
atures resulted in the product molecules not being dispersed in
time and sticking together, so the PVB particles were larger.
Compared with the RSMmodel, the value of the comprehensive
score obtained by the ANN model is higher and much closer to
its predicted value, indicating that the optimal process condi-
tion obtained from ANN has better reliability and accuracy.

The performance of the RSM and ANN models was further
compared based on three statistical indicators (R2, RMSE, and
AAD%). As shown in Table 4, both models have R2 values close
to 1 and very low RSME and AAD% values. However, ANN has
Fig. 8 SEM images of PVB samples obtained by RSM (a), ANN (b); recyc

© 2023 The Author(s). Published by the Royal Society of Chemistry
a higher R2 value and lower RMSE and AAD% values. Therefore,
it can be concluded that both RSM and ANN are efficient tools
for optimizing the synthesis process of PVB, and the optimiza-
tion performance and prediction accuracy of ANN model is
better than RSM model.
3.5 Recycling experiments

The reusability of the catalyst is an important factor for its
large-scale industrial application. Based on the above results,
the recycling experiments were conducted based on the
optimal process conditions obtained from the ANN model.
Aer the aging reaction, PVB particles were separated by
centrifugation and the mother liquor was collected. The
content of DES and n-butanal remaining in the solution was
measured through acid–base titration and UV spectropho-
tometer, respectively. The mother liquor was used as the raw
material for the recycling experiment, and the required
amounts of DES, water, n-butanal and SDS were carefully
calculated and supplemented, and the experimental opera-
tions were performed as previously described. The detailed
experimental parameters and results are shown in Table 5, and
the SEM images are shown in Fig. 8c and d. As shown in Table
5 and Fig. 8c, the AD and dp values of PVB product in the
recycling experiment (R1) were similar to those in the basic
experiment (Fig. 8b), and the comprehensive score reached
92.49, indicating good reusability of DES (BAC–PTSA) for the
ling experiments: R1 (c) and R2 (d).

RSC Adv., 2023, 13, 7682–7693 | 7691
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Table 5 Comparison of the amount of main substances added in the basic and recycling experiments

Water
(mwater/mPVA)

DES
(mDES/mPVA)

n-Butanal
(mBA/mPVA)

SDS
(mSDS/mPVA) AD (%) dp (mm)

Comprehensive
score

Basic 12.4 0.230 0.73 0.01 81.35 3.0 92.60
R1 1.4 0.026 0.61 0.003 81.20 3.0 92.49
R2 1.4 0 0.61 0 80.41 3.5 89.35
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synthesis reaction of PVB. A contrast recycling experiment (R2)
was carried out in which only water and n-butanal were sup-
plemented to the mother liquor, while DES and SDS were not
supplemented. As shown in Table 5 and Fig. 8d, PVB products
obtained by R2 had lower AD and larger dp than those of the
basic experiment and R1. This may be because the loss of DES
slowed down the reaction rate, so the AD of PVB obtained in
the same reaction time was lower. In addition, the loss of both
DES and SDS led to a poor dispersion effect, so the particle size
of PVB was large. Qualied PVB products could be obtained by
supplementing a small amount of lost raw material, demon-
strating the feasibility of the recycling technology in PVB
practical production.
4. Conclusions

In this work, DES (BAC–PTSA) was prepared and selected as the
catalyst for the synthesis of PVB. RSM and ANN were applied to
investigate the effects of PVA concentration, DES dosage, n-
butanal dosage and aging temperature on the quality of PVB
resin, and to predict the optimal synthesis process conditions of
PVB. The obtained results showed that both RSM and ANN were
efficient tools for optimizing the synthesis process of PVB, and
ANN is a better and more precise optimization tool than RSM.
The optimal process conditions predicted by ANN were wPVA =

8.1%, mDES/mPVA = 0.23, mBA/mPVA = 0.73 and Tage = 55.6 °C
with the predicted comprehensive score of 92.71, which was
validated as 92.60. Moreover, PVB products obtained in the
recycling experiment had similar AD values and particle
morphologies to those of the basic experiment. It can be
concluded that the DES used in this work exhibited good cata-
lytic and dispersion properties, as well as excellent reusability,
in which not only the amount of SDS but also the discharge of
wastewater was reduced, so it has great application potential in
PVB industrial production.
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