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odel for predicting drug release
rate from metal–organic frameworks: a simple and
robust drug delivery approach†

Leila Tayebi, Rahmatollah Rahimi, Ali Reza Akbarzadeh * and Ali Maleki

During the drug release process, the drug is transferred from the starting point in the drug delivery system to

the surface, and then to the release medium. Metal–organic frameworks (MOFs) potentially have unique

features to be utilized as promising carriers for drug delivery, due to their suitable pore size, high surface

area, and structural flexibility. The loading and release of various therapeutic drugs through the MOFs are

effectively accomplished due to their tunable inorganic clusters and organic ligands. Since the drug

release rate percentage (RES%) is a significant concern, a quantitative structure–property relationship

(QSPR) method was applied to achieve an accurate model predicting the drug release rate from MOFs.

Structure-based descriptors, including the number of nitrogen and oxygen atoms, along with two other

adjusted descriptors, were applied for obtaining the best multilinear regression (BMLR) model. Drug

release rates from 67 MOFs were applied to provide a precise model. The coefficients of determination

(R2) for the training and test sets obtained were both 0.9999. The root mean square error for prediction

(RMSEP) of the RES% values for the training and test sets were 0.006 and 0.005, respectively. To

examine the precision of the model, external validation was performed through a set of new

observations, which demonstrated that the model works to a satisfactory degree.
1. Introduction

Cancer is one of themajor diseases affecting human health, and
morbidity has increased gradually.1 Although the remedies for
cancer have progressed and survival rates have increased in
recent years, the heterogeneity of cancer necessitates further
effective treatment strategies.2 Cancer involves uncontrolled cell
division and tissue invasion (metastasis) caused by a series of
mutations in the genes of proteins that regulate the cell cycle.3

These mutations typically involve either promotion of cell
division or the inactivation of cell cycle suppression.4 With our
changing daily lifestyle and social environment, non-
communicable diseases have become the leading cause of
death.5 Cancer is caused by signicant changes in and damage
to genes,6 which may be accidental or via exposure to carcino-
gens. A carcinogen includes chemical substances, such as
arsenic and asbestos,7,8 or environmental, viral, or genetic
factors.9 Cancer risk factors are classied into four main classes:
(a) biological factors, such as age, gender, and genetic diseases;
(b) carcinogen exposure, for instance, to radioactive radiation,
many chemicals, and some particulate materials; and (c)
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lifestyle-related factors such as tobacco, alcohol, and exposure
to UV radiation in sunlight.10

Ways to treat cancer include surgery, chemotherapy, radia-
tion therapy, targeted therapy, immunotherapy, stem cell or
bone marrow transplant, and hormone therapy.11 Generally,
cancer drugs destroy the RNA or DNA responsible for replica-
tion in cell division; therefore, the cancer cells are unable to
divide and die.12 Chemotherapy drugs kill cancer cells by stop-
ping them from growing and multiplying.13 If the cells can't
grow and multiply, they usually die. Some chemotherapy drugs
target a specic stage of the cell cycle.14 The uoropyrimidine 5-
uorouracil (5-FU) is an effective antimetabolite drug that is
widely used for the treatment of cancer, especially colorectal
cancer. The action of 5-FU is through the inhibition of thymi-
dylate synthase (TS) and incorporation of its metabolites into
RNA and DNA.15

Unfortunately, chemotherapeutic drugs in free formation
always lead to adverse effects on healthy tissues and even the
immune system. Nanocarriers have been intensively engineered
as stimuli-responsive drug delivery systems to load and intelli-
gently release various drug molecules. To achieve superior
efficacy, the drugs need to be loaded into nanocarriers with high
loading content and released at the target site in a controllable
and specic-responsive manner.16 Further, various
nanoparticle-based systems have been studied for drug delivery,
such as liposomes, micelles, dendrimers, microbubbles, and
RSC Adv., 2023, 13, 24617–24627 | 24617
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solid particles.17 Due to their suitable pore size and diverse
functional groups, as well as great loading of drugs, metal–
organic frameworks (MOFs) are potentially benecial to
encapsulate drug products.18 Furthermore, MOFs show several
outstanding advantages, such as facile modication of physical
and chemical properties through inorganic clusters and/or
organic ligands.19

The quantitative structure–activity relationship (QSAR)
model is a regression model in which the relationship between
chemical structure and biological action is quantitatively
investigated.20 The basis of QSARmethods is the dependence on
action and structure.21 Quantitative dependence on action and
structure is one of the most fundamental methods of intra-
computer study for biological and chemical modeling, espe-
cially in drug design, drug targeting, and drug discovery.22 The
quantitative structure–property relationship (QSPR) method
applies structural features of molecules to create an accurate
and fast model that correlates structure-based properties of
materials to their quantitative functions. Generally, there are
two common categories for QSPR models, based on the type of
descriptors used in modeling: theory- and experiment-based
modeling. To build a theory-based QSPR model, various
molecular descriptors, such as geometric, quantum mechan-
ical, and thermodynamic quantities are used, and experiment-
based QSPR models are mainly presented using experimental
descriptors that express the physicochemical properties related
to the structure of molecules.23 QSPR investigations on drug
release from hydroxypropyl methylcellulose compounds have
been conducted using structural descriptors; these have
conrmed that the aqueous solubility of drugs and the size of
the drug molecules are appropriate descriptors that can inu-
ence drug release from these polymers.24 Also, penetration
enhancement activities of some compounds towards different
drugs have been investigated, employing a QSPR study.25 This
QSPR technique was developed using the molecular descriptors
created by the COSMIC force eld and the molecular mechan-
ical descriptors by the NEMESIS soware; which helps to better
understand the mechanisms of penetration enhancement.25 A
prediction of the volume of distribution has been created by
Ghafourian et al. using some structural descriptors, including
partitioning, quantum mechanical, molecular mechanical, and
connectivity parameters.26 Selection of the proper variable was
made using a genetic algorithm, and stepwise regression anal-
yses and many models were created for acidic and basic drugs.
Furthermore, QSPR analysis of many MOFs has been developed
by researchers to correlate their structural features and their
physical, chemical, and biological properties.27–29 To develop
a QSPR/QSAR model, several mathematical methods have been
applied. Multiple linear regression (MLR), partial least squares
(PLS), principal component analysis (PCA), and articial neural
network (ANN) are four commonly used methods.23

In this research, based on structural variables—such as
ligand fragments and metal secondary building units (SBUs)—
as the adjusted parameters, we obtained the most appropriate
drug release model from MOFs through the QSPR method,
which was performed using 5-FU drug release. The presented
procedure here investigated the relationships between the
24618 | RSC Adv., 2023, 13, 24617–24627
release of drugs from a large class of MOFs and their structures.
This work indicates a simple computational method for the
rapid calculation of drug release from MOF drug delivery
systems with suitable results. Considering that 5-FU is widely
used for cancer treatment, themodel was specically created for
this drug. One of the challenges we face in modeling drug
release from drug delivery systems is that the desired soware is
not available to everyone. In addition, the determination of
quantum descriptors is a complex process. The advantage of the
presented work is that (a) the model is performed without
special soware, and (b) modeling is carried out using simple
and knowledge-based descriptors.

2. Materials and methods

The studied dataset of MOFs containing different metal SBUs
and various organic linkers, as drug delivery systems, was
collected from different scientic research studies. The experi-
mental data of the drug release rate of different MOFs were
gathered and tested for the delivery of 5-uorouracil (5-FU) in
several cancer cell lines. Drug delivery data for 5-FU were
collected because 5-FU has a small size and is widely used as an
anticancer chemotherapy drug for the treatment of several
cancers. The measured drug release rate is expressed as
a percentage (RES%). The RES% for 67 metal–organic frame-
works were collected from the literature. Table 1 lists the MOFs
together with the experimental RES% for 5-FU collected from
the literature. The best multilinear regression (BMLR) model
was created using a set of 54 MOFs as a training set (80% of all
data), which was then applied to 13 MOFs as a test set (20% of
all data) to evaluate the predictive ability of the model. External
validation is a validation strategy to ensure that the BMLR
model is accurate for the prediction of dependent variables,
using external data that was not used to develop the model.
Aer the regression model has been obtained from the original
dataset, the new data points investigate the model's validity.
Hereupon, eight observations were used to form the external
test set. The molecular structures of organic linkers for the
training and test sets are illustrated in Table S1 (ESI).†

The statistical coefficients, R2 (coefficient of determination)
and Radj

2 (the adjusted R-squared), were calculated as follows
(eqn (1) and (2)):

R2 ¼ 1�
P ðyi � ŷiÞ2P ðyi � yÞ2 (1)

Radj
2 ¼ 1�

��
1� R2

�ðn� 1Þ
n� k � 1

�
(2)

where yi, �y and ŷi are the observed, average, and calculated
values of the dependent variable, respectively. The value n is the
number of points in the data sample, and k is the number of
independent regressors. The formula for Q2 is the same, but the
difference is that calculated values have been replaced by the
predicted values (eqn (3)):

Q2 ¼ 1�
P ðyiTR � ŷiTRÞ2P ðyi � yÞ2 (3)
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Table 1 Experimental and theoretical values of drug release rate from MOFs for training (no. 1–54), test (no. 55–67), and validation test sets (no.
68–75)

No. MOF nN nO RES+ RES−
Exp.
RES%a IM–L Ref.

Pred.
RES%b Dev.c

Std.
dev.d

L.B.
95%e

U.B.
95%f

Training set (54 entries)
1 NTU-Z11 0.00 16.00 1.377 2.550 64.00 −5.91 32 28.991 0.009 −0.026 63.991 64.009
2 CPON-1 1.00 5.00 −0.220 2.811 25.00 −3.27 33 23.994 0.006 0.556 24.989 25.006
3 [(CH3)2NH2]2[Zn(TATAT)2/3]$3DMF 9.00 12.00 −7.698 4.739 44.00 −9.95 34 51.994 0.006 1.055 43.987 44.004
4 fa-IRMOF3 3.00 13.00 −2.189 3.300 45.00 −5.09 35 14.999 0.001 2.116 44.983 45.000
5 [(Me2NH2)4Zn2(FDC)4]n 4.00 20.00 −5.491 3.664 29.00 −7.70 36 25.993 0.007 −1.934 29.000 29.017
6 [Zn3(BTC)2(Me)(H2O)2](MeOH)13 0.00 33.00 −4.982 2.627 18.00 −9.95 37 31.003 −0.003 0.149 17.991 18.008
7 [Zn3(bdcNH2)2(dfp)2]$DMF 4.00 12.00 0.227 3.712 89.00 −13.05 38 51.999 0.001 −1.332 88.997 89.015
8 NH2(CH3)2[Zn3(L)2$3.5DMF] 0.00 16.00 −0.596 4.440 22.00 −9.60 39 42.999 0.001 1.293 21.986 22.003
9 IRMC-1 12.00 1.00 −5.553 5.521 85.00 −7.27 40 11.993 0.007 −0.200 84.991 85.010
10 [Zn2(ad)2(hmdb)(H2O)](DMF)2 15.00 12.00 −17.118 2.995 13.00 −19.86 41 19.992 0.008 −0.216 12.992 13.010
11 [Zn(FDC)]$H2O 0.00 5.00 1.375 2.624 34.00 −1.09 42 51.999 0.001 −1.981 34.000 34.017
12 [Zn(BTC)(HME)]$(DMAc)(H2O) 7.00 8.00 −6.494 3.260 31.00 −8.48 43 22.996 0.004 1.757 30.984 31.001
13 [Zn2(ad)2(fmdb)(H2O)](DMF)3 10.00 15.00 −11.880 4.244 11.00 −14.79 44 23.991 0.009 −0.969 10.995 11.013
14 [Zn3(OH)2(H2tccp)2(bpy)2](H2O)3(DMF)3 6.00 18.00 −6.142 5.810 29.00 −14.22 45 63.998 0.002 0.412 28.989 29.007
15 [Zn8(O)2(CDDB)6(DMF)4(H2O)] 10.00 31.00 −13.260 3.020 43.00 −17.87 46 45.991 0.009 −2.038 43.000 43.017
16 [Zn2(ad)2(AMDB)(H2O)](DMF)3 17.00 10.00 −18.100 3.533 20.00 −20.87 47 47.995 0.005 0.245 19.990 20.008
17 [Zn2(bptc)(H2O)]$(DMAc)3(H2O)4 3.00 16.00 −4.027 3.400 26.00 −7.02 48 9.998 0.002 −0.741 25.995 26.012
18 [Zn(4,4-bipy)(formic acid)2(NO3)2] 1.00 4.00 −0.836 2.334 17.00 −8.83 49 56.199 0.001 0.266 16.990 17.008
19 ([Zn4O(dmcapz)3] 6.00 7.00 −2.396 5.965 52.00 −5.40 50 39.991 0.009 0.540 51.989 52.007
20 [Zn7L2(HL)2(OH–)4(H2O)2]$2H2O 4.00 40.00 −10.174 3.465 17.00 −12.62 51 83.997 0.003 −0.433 16.993 17.011
21 [Zn2(fer)2] 0.00 8.00 0.449 1.088 40.00 −8.23 52 95.001 −0.001 −0.697 39.994 40.012
22 [Zn2(abtc)(DMA)(H2O)2]$(DMA)4 3.00 11.00 −1.637 4.194 41.00 −9.12 53 78.991 0.009 −0.070 40.992 41.009
23 [(Me2NH2)2Zn3(fdc)4]n$DMA 2.00 20.00 −0.153 3.664 75.00 −5.35 54 28.991 0.009 −0.378 74.993 75.010
24 ZIF-NP 5.00 4.00 −2.293 1.896 60.00 −4.65 55 23.994 0.006 0.907 59.987 60.005
25 ZIF-90 2.00 0.00 0.552 2.375 41.00 −7.57 56 51.994 0.006 −0.218 40.992 41.010
26 Cu-BTC 0.00 12.00 1.356 2.550 53.00 −13.30 57 14.999 0.001 −0.151 52.992 53.009
27 [Cu(L)(4,4′-bipy)(H2O)]n$1.5nCH3CN 3.50 5.00 −3.353 3.235 15.00 −26.65 58 25.993 0.007 −1.176 14.996 15.014
28 [(Cu2(L2)(H2O)2]$2.22DMA 3.22 12.20 −3.335 4.095 24.00 −19.77 59 31.003 −0.003 0.473 23.989 24.007
29 GDMU-2 0.00 14.00 −0.794 5.100 9.00 −20.12 60 51.999 0.001 1.042 8.987 9.004
30 [Cu(BTTA)]n 6.00 4.00 −4.745 5.334 15.00 −6.93 61 42.999 0.001 0.446 14.989 15.007
31 [NH2(CH3)][Cu6(L)3(OAc)(H2O)4]$xsolvent 10.00 30.00 −13.703 5.211 18.00 −28.52 62 11.993 0.007 −0.953 17.995 18.013
32 [H3O][Cu6(tpta)3(DMA)4(COO)]$

12H2O$7DMA
4.00 30.00 −7.078 3.400 35.00 −26.73 63 19.992 0.008 1.097 34.987 35.004

33 [Cu2(OH)bcb](DMF)2(H2O)3 0.00 9.00 0.993 4.028 29.00 −20.22 64 51.999 0.001 1.010 28.987 29.004
34 [Dy(BTC)(H2O)]$(H2O)(DMF) 0.00 6.00 0.450 2.550 24.00 −9.85 65 22.996 0.004 0.174 23.991 24.008
35 [Dy(HABA)(ABA)](DMA)4] 27.00 6.00 −26.397 2.198 52.00 −67.28 66 23.991 0.009 0.657 51.987 52.007
36 [Gd(BCB)(DMF)](H2O)2 1.00 10.00 −1.050 4.386 15.00 −47.01 67 63.998 0.002 −1.063 14.996 15.013
37 [Gd2(H2O)3(SDBA)3](DMA)3] 3.00 15.00 −3.987 3.114 26.00 −48.84 68 45.991 0.009 0.422 25.990 26.007
38 [In(Hpbic)(pbic)](DMF)2 6.00 4.00 −4.715 3.200 31.00 −15.35 69 47.995 0.005 −1.747 30.999 31.016
39 [Co(SDB)(bpdh)0.5]n 2.00 6.00 2.064 6.027 52.00 −19.06 70 9.998 0.002 −0.637 51.994 52.012
40 [Ca3(TATAB)2(H2O)(MeOH)](DMF)3 12.00 14.00 −12.910 1.630 43.00 −18.70 71 56.199 0.001 −0.814 42.995 43.012
41 Mg(H2TBAPy)(H2O)3$C4H8O2 0.00 13.00 −1.265 3.400 12.00 −9.40 72 39.991 0.009 0.258 11.990 12.008
42 [Co2(L)(4,4

′-Bipy)2]$CH3CN 6.00 10.00 −5.475 5.418 20.00 −13.87 73 83.997 0.003 0.620 19.989 20.006
43 [Sr(HTATB)(H2O)2](DMF)4 3.00 7.00 −0.290 3.860 52.00 −9.77 74 95.001 −0.001 −0.585 51.994 52.011
44 [Ba(HTATB)(H2O)2](DMF)4 7.00 12.00 −7.495 3.860 23.00 −15.84 75 78.991 0.009 −0.162 22.992 23.009
45 MIL-100 (Fe) 0.00 24.00 −2.918 2.550 24.00 −7.88 76 28.991 0.009 0.988 23.987 24.005
46 UiO-66 0.00 20.00 0.195 1.700 64.00 −7.78 77 23.994 0.006 −0.289 63.992 64.010
47 MIL-101-NH2-Fe 4.00 16.00 −4.873 1.082 46.00 −10.54 78 51.994 0.006 1.168 45.986 46.004
48 MIL-88B 0.00 24.00 −0.211 4.564 48.00 −7.44 79 14.999 0.001 0.237 47.990 48.008
49 UiO-66-COOH 1.00 4.00 −1.025 2.922 10.00 −6.36 80 25.993 0.007 −0.932 9.995 10.013
50 CP5-capped UiO-66-NH-Q 7.00 62.00 −14.774 3.377 56.20 −20.31 81 31.003 −0.003 −0.442 56.192 56.212
51 MOF-In1 0.00 20.00 −0.646 3.342 40.00 −8.55 82 51.999 0.001 1.074 39.987 40.004
52 Mn-ZIF-90 4.00 2.00 1.068 2.380 84.00 −2.09 83 42.999 0.001 0.036 83.991 84.009
53 UiO-67-(NH2)2 12.00 32.00 −13.236 0.464 95.00 −20.00 84 11.993 0.007 −0.570 94.993 95.012
54 DCA-UiO-DTDP-FA 14.00 36.00 −17.144 0.622 79.00 −22.83 85 19.992 0.008 1.759 78.983 79.002
RMSEP 0.006

Test set (13 entries)
55 [Zn3(m3-O)(BTC)2(DMF)]$2NH2(CH3)2$4H2O 3.00 18.00 −3.087 2.550 51.00 −10.32 32 50.999 0.001 −0.559 50.993 51.011
56 [Zn(bptc)(H2O)]$(DMA)4 4.00 13.00 −4.317 3.400 29.00 −10.09 86 28.991 0.009 1.206 28.986 29.005

© 2023 The Author(s). Published by the Royal Society of Chemistry RSC Adv., 2023, 13, 24617–24627 | 24619
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Table 1 (Contd. )

No. MOF nN nO RES+ RES−
Exp.
RES%a IM–L Ref.

Pred.
RES%b Dev.c

Std.
dev.d

L.B.
95%e

U.B.
95%f

57 [Zn2(L)(H2O)1.5]$5H2O 1.00 9.50 −0.476 4.095 24.00 −7.09 87 23.995 0.005 0.405 23.988 24.009
58 [Zn3(bdc)2(dfp)2]$2DMF 2.00 12.00 0.844 4.330 63.00 −13.64 38 62.996 0.004 0.236 62.988 63.010
59 [Zn(H2O)6K2(H2BTC)2(H2O)4](H2BTC)2$2H2O 0.00 36.00 −3.904 2.550 42.00 −8.06 88 41.993 0.007 0.819 41.986 42.008
60 ZIF-8 5.00 4.00 −3.831 1.896 38.00 −6.19 89 37.998 0.002 −0.325 37.991 38.011
61 [(Zn2(L1)(DMA)]$1.75DMA 3.75 10.75 −3.975 4.095 19.00 −7.04 59 18.998 0.002 −0.830 18.993 19.013
62 ZIF-90 2.00 0.00 0.482 2.375 40.00 −7.64 90 39.996 0.004 0.744 39.988 40.007
63 [Zn10(OH)O(BTC)5(HBTC)(DMA)2(H2O)4]$

11DMA
13.00 55.00 −21.242 2.550 42.00 −27.15 91 41.991 0.009 −0.330 41.989 42.013

64 [Dy2(L)2(H2O)2]n 0.00 14.00 0.912 2.550 52.00 −10.18 92 51.999 0.001 −0.058 51.991 52.010
65 FA-MOF-808 0.00 12.00 0.797 2.550 45.00 −5.48 93 45.005 −0.005 −1.695 44.997 45.016
66 FA-NH2-UiO-66 4.00 20.00 −5.901 1.082 42.00 −13.01 93 41.994 0.006 0.877 41.987 42.007
67 MIL-88B 0.00 20.00 −2.743 1.700 22.00 −38.24 94 21.999 0.001 −0.492 21.991 22.012
RMSEP 0.0052

External validation test set (8 entries)
68 Zn6(L)3(DMA)4]$5DMA 9.00 33.00 −10.35 3.400 72.00 −13.61 95 71.998 0.002 −0.931 71.986 72.022
69 [Zn3(BTC)2(Aml)(H2O)2](MeOH)6 6.00 14.00 −7.12 2.296 30.00 −12.12 96 29.997 0.003 −0.519 29.985 30.019
70 [[Dy2(H2O)3(SDBA)3](DMA)6] 0.00 21.00 −1.72 3.114 29.00 −12.00 97 28.990 0.010 0.551 28.980 29.015
71 [Gd2(TATAB)2]$6DMF 12.00 12.00 −11.28 1.630 61.00 −49.29 98 60.997 0.003 0.090 60.982 61.017
72 [Mg3(H2O)4(5-aip)2(5-Haip)2]$4DMA 8.00 24.00 −9.00 1.082 69.00 −13.89 99 68.991 0.009 0.869 68.979 69.014
73 [Ca3(TATB)2(H2O)](DMF)4(H2O) 6.00 13.00 −2.78 3.860 78.00 −12.06 100 77.994 0.006 0.671 77.979 78.015
74 NanoHKUST-1 0.00 12.00 2.06 2.550 63.00 −3.65 101 62.996 0.004 −0.167 62.985 63.017
75 Fe-MIL-53-NH2 1.00 4.00 2.37 1.082 72.00 −3.70 102 71.999 0.001 −0.565 71.985 72.020
RMSEP 0.0054

a Exp. RES%: experimental value of RES%. b Pred. RES%: predicted value of RES%. c Dev.: deviation. d Std. dev.: standard deviation. e L.B.: lower
bound. f U.B.: upper bound.
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where yiTR and ŷiTR show the observed and calculated values for
the training set, respectively. Other statistical parameters,
including QF1

2, QF2
2, and QF3

2 are calculated using eqn (4)–(6):

QF1
2 ¼ 1�

P ðyi � ŷiÞ2P ðyi � ytrÞ2
; (4)

QF2
2 ¼ 1�

P ðyi � ŷiÞ2P ðyi � ytestÞ2
(5)

QF3
2 ¼ 1�

P ðyi � ŷiÞ2
.
ntestP ðyi � ytrÞ2
.
ntr

(6)

where �ytest indicates the average values for the test set. The
model accuracy is dened by the concordance correlation
coefficient (CCC), which is calculated by eqn (7) as follows:

QCCC
2 ¼

Pðyi � yÞ
�byi � ŷ

�
P ðyi � yÞ2 þP�byi � ŷ

�2

þP�
y� ŷ

�2
(7)

Aer the BMLR model has been developed with the original
dataset, the new observations (the new set of compounds)
investigate the model's validity by computing Q(Ext)

2, Q(Ext)F1
2,

Q(Ext)F2
2, Q(Ext)F3

2, and Q(Ext)CCC
2.
24620 | RSC Adv., 2023, 13, 24617–24627
3. Results and discussion

A reliable correlation for the prediction of drug release rate from
MOFs containing different metal SBUs and various organic
linkers was obtained in this research. The QSPR modeling for
the abovementioned dataset was performed using SPSS so-
ware (version: 1.0.0.1406). The number of nitrogen and oxygen
atoms, as well as the two adjustable parameters, comprise four
variables employed to build the correlation by multiple linear
regression model (eqn (8)). These descriptors were created
based on our knowledge of chemistry, without using the so-
ware. The mentioned descriptors are knowledge-based and
obtained through advanced inorganic chemistry theories with
tedious work. The descriptors were selected in such a way that,
on the one hand, they are related to the chemical structure of
the MOF, and on the other hand, they can have a reasonable
impact on the drug release rate (RES%). Several descriptors
were examined for this purpose, and nally, these four
descriptors were selected, which created the maximum R2 and
minimum RMSE; also, they do not have a high correlation
coefficient with each other.

RES% = 20.135 + 15.157nN + 2.675nO
− 7.300RES− + 14.296RES+ (8)

where RES% represents the values of drug release rate in
percentage from the MOFs; nN is the number of nitrogen atoms;
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 2 RES− values specified for molecular fragments of linkers

Class Effective fragments Substituents RES−

Aryl compound X:

–COOH 0.850
–NO2 0.915
–OH −0.900
–NH2 −0.618
–NH–C −0.460
–NH–Ar −0.352
–CO–NH 0.680
–C–Ar 0.145
–O–C 0.314
–SO2–Ar 1.414
–CO–Ar 0.612
–P]O 0.264
–N]N–Ar 0.794

Aromatic

5 = O & 1,2,3,4 = C 0.720
5 = N & 1,2,3,4 = C 1.320
1,4 = N & 2,3,5 = C 1.645
1,5 = N & 2,3,4 = C 1.655
1,4,5 = N & 2,3 = C 1.801
1,2,4 = N & 3,5 = C 1.811
1,3,5 = N & 2,4 = C 1.817
1,2,3,5 = N & 4 = C 1.860
1 = N & 2,3,4,5,6 = C 0.695
1,3 = N & 2,4,5,6 = C 1.010
1,6 = N & 2,3,4,5 = C 1.020
1,3,5 = N & 2,4,6 = C 1.310

Aliphatic CnH2n n = 2 0.186
CnH2n+1 n = 1 0.251

N-functional –C–NH2 −0.411
–C]N–N]C– 1.021

1.780

1.840

O-functional R–(CO)OH R: H 0.944
C 0.952

R–(CO)–R H 0.730
C 0.700

C–OR H −0.742

2.014

Halide X: F 0.330

Ion fragments

[NH2(CH3)2]
+ 1.040

1.560
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nO is the number of oxygen atoms of the desired MOF. RES+ and
RES− are two new descriptors that increase and decrease the
RES%; they exhibit the contribution of d-orbitals of metal SBUs
and molecular fragments of linkers, which affect the RES%
from MOFs, respectively. According to the resulting model, the
increaser values are well dened, and it was found that not only
the impact of metal should be considered to determine the RES+

values, but also the ligand effects are signicant; therefore, the
effect of ligand interaction with the metal center was evaluated,
© 2023 The Author(s). Published by the Royal Society of Chemistry
and RES+ was calculated. To create an MLR model, a suitable
database containing 67 metal–organic frameworks was studied,
and the experimental data for drug release rates from these
MOFs are given in Table 1.

According to our previous works,30,31 to estimate the impor-
tant properties of materials, simple group-contribution
methods can be employed, and the values of RES− were deter-
mined based on this technique. This study found a reliable
contribution between various particular molecular fragments of
RSC Adv., 2023, 13, 24617–24627 | 24621
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Fig. 1 Molecular orbital diagram indicating the interaction of metal d-orbitals and the heteroatoms of linkers.
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the linker and the drug release rate from MOFs, RES%. Table 2
lists different RES− values; these values have been determined
for several molecular fragments of linkers, which are the result
of the core correlation. In Table 2, for the substituents con-
taining nitrogen or oxygen attached to one or more rings, the
ring symbol is used for simplicity.

As mentioned above, RES+ represents one of the descriptors
that increase the RES%. It is obtained from eqn (9) and consists
of two parts: RESM and IM–L. The RESM results from eqn (10) and
is calculated by considering the molecular weight of MOF and
the atomic mass of oxygen and nitrogen, as well as the impact of
d-orbitals of the metal center. IM–L describes the interaction
between the d-orbitals of the metal center and the valence
orbitals of heteroatoms of linkers. The IM–L value resulted from
our experimental inorganic chemistry knowledge and can be
applied to a variety of interactions. Fig. 1 represents the
molecular orbital diagram resulting from the interaction of
metal d-orbitals and the heteroatoms of linkers for an octahe-
dral geometry of SBU, as an example.

RES+ = RESM + IM–L (9)

RESM = [(MOFMw
)/(nOmO + nNmN)] ×

P
Ed(SBU) (10)

where MOFMw
is the molecular weight of MOF; mO and mN are

the atomic mass of oxygen and nitrogen, respectively.
P

Ed(SBU)
is dened as the total energy of d-orbitals of the metal SBU,
considering its geometry.

The energies of the d-orbitals for the metal center are
considered through the Krishnamurthy and Schaap ndings.103

Hence, the relative energies of d orbitals in crystal elds of
different metal center geometries were calculated based on
Krishnamurthy and Schaap's approach (Table 3).
Table 3 Relative d-orbital energies for three primary geometric configu

Coordination number
Metal center
conguration

Relative en

dz2

1 ML (z) 5.14
2 ML2 (XY) −2.41
4 ML4 (Td) −2.67

24622 | RSC Adv., 2023, 13, 24617–24627
In other words, rst, RESM is calculated by considering the
total energies of d-orbitals of metal SBUs using Krishnamurthy
and Schaap's approach, then the corresponding interaction
between metal and linker heteroatom (IM–L value) is added to
the result in the RES+. The values of RES+ and IM–L for the
training and test sets are listed in Table 1.

In this work, the geometries of the metal centers (SBUs) of
MOFs were diverse, including octahedral, trigonal bipyramid,
tetrahedral, square planar, square pyramidal, pentagonal
bipyramid, square antiprism, and triangular dodecahedral. If
the metal center is six-coordinated in octahedral coordination
geometry, the d orbitals split into two sets, as shown in Table 4,
rst row. According to Table 3, the eld for ML6 will be ML6 (Oh)
= 2ML2(XY) + 2ML(Z), and the total energies of the d-orbitals for
octahedral geometry are obtained as

P
Ed(Oh) = 2 Dq. The d-

orbitals of the metal center under a tetrahedral crystal eld
are split in e and t2 orbitals (dz2, dx2–y2) (dxy, dxz, dyz). Regarding
Table 3, the summation of d-orbital energies for tetrahedral
geometry is

P
Ed(Td) = −0.89 Dq (Table 4, rst row). Whenever

the metal SBU is connected to ve adjacent ligands to afford the
square pyramidal environment, it causes the d orbitals to split
into four groups with different energies, as listed in Table 4,
second row. Considering Table 3, a square pyramidal eld with
C4V symmetry is considered as ML5 (C4V) = 2ML2(XY) + ML(Z),
then the sum of d-orbital energies for square pyramidal
conguration is derived by

P
Ed(C4V) = 4.57 Dq. The square

planar geometry of metal centers with D4h symmetry creates a d-
orbital splitting, shown in Table 4, second row. Its corre-
sponding eld is twice that of the ML2(XY) eld, ML4(S.P.) =

2ML2(XY), and the sum of d-orbital energies is equal to 5.14 Dq.
The metal d-orbital splitting diagram for trigonal bipyramidal
metal SBU geometry is illustrated in Table 4, third row. For
rations

ergy of d-orbitals in units of Dq

dx2–y2 dxy dxz dyz

−3.14 −3.14 0.57 0.57
6.14 1.14 −2.57 −2.57
−2.67 1.78 1.78 1.78

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 4 Total d-orbital energies for different metal center geometries

d-orbital splitting
diagram Geoa

P
Edb

Td −0.890

Oh 2.000

S.Py. 4.570

S.P. 5.140

T.B.P. 3.530

P.B.P. 2.470

S.An. −2.670

T.A.D. −10.680

a Geo: metal center geometry. b
P

Ed: total energy of d-orbitals (Dq).
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T.B.Py. with symmetry D3h, the respective eld is

ML5 ðT:B:Py:Þ ¼ 3
2
ML2ðXYÞ þ 2MLðZÞ: The total energy of d-

orbitals for trigonal bipyramidal geometry is
P

Ed(D3h) = 3.53
Dq, and the corresponding RES+ variables are calculated. For
© 2023 The Author(s). Published by the Royal Society of Chemistry
metal SBUs having pentagonal bipyramidal (D5h), the crystal
eld splitting is displayed in Table 4, third row, and its eld is

considered as ML5 ðP:B:Py:Þ ¼ 5
2
ML2ðXYÞ þ 2MLðZÞ: The conse-

quent energies of the d orbitals is
P

Ed = −2.47 Dq. When the
RSC Adv., 2023, 13, 24617–24627 | 24623
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Table 5 Correlation parameters for the validation of eqn (8) by the training, test, and external validation test sets for drug release by MOFs as drug
carriers

R2 and Q2 tests

Method Sets R2 Radj
2 Q2 QF1

2 QF2
2 QF3

2 QCCC
2

Eqn (8) Training set 0.9999 0.9999 — — — — —
Test set 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
External validation test set 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

Table 6 Statistical parameters of the model for the training, test, and external validation test sets

Eqn (8) No. of MOFs RMSEP MSE MAPE F statistic Signicance F

Training set 54 0.0063 0.000 0.012 373 493 505.6 1.109 × 10−182

Test set 13 0.0052 0.000 0.0073 35 334 456.7 5.1323 × 10−29

External validation test set 8 0.0054 0.000 0.0044 34 571 821.9 7.988 × 10−12

Fig. 2 Predicted values of drug release rate for the training and test
sets versus the experimental values of drug release rate.
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metal center is eight-coordinate, it can form square antiprism
geometry with D4d symmetry. The d-orbital splitting is consid-
ered in Table 4, fourth row, and concerning Table 3, its eld
results from ML8 = 2ML4 (Td), but considering that in a cube,
four ligands in the upper plate rotate 45°; the energy value of the
dxy and dx2–y2 orbitals equal the average energy of the two
orbitals in the cube conguration. Aerward, the resultant
energies of the d orbitals are obtained by

P
Ed(D4d) = −2.67 Dq.

The last studied metal SBU has triangular dodecahedral
geometry with D2d symmetry. The metal d-orbital splitting
diagram for this type of metal center geometry is exhibited in

Table 4, fourth row. Its eld is considered as ML8 ¼ 8
3
4
ML4;

therefore, according to Table 3, the total energy of the d orbitals
is

P
Ed = −10.68. As mentioned above, the respective RES+ is

acquired from eqn (9), and Table 1 presents the corresponding
RES+ values.

To validate the proposed QSPR model, an external validation
method was employed using new data points and the statistical
parameters obtained from the model for the external set,
proving the accuracy and reliability of the proposed model.
From the resulting BMLR model (eqn (8)), R2 and adjusted R2

values both are 0.9999 for the training and test sets. As shown in
Table 5, correlation parameters for the test set, including QF1

2,
QF2

2, QF3
2, and QCCC

2 of the model yielded 0.9999. These
correlation parameters for the external validation test set were
acquired at 0.9999 as well, which demonstrated that the model
is very credible and robust.

The root mean square error for prediction (RMSEP) values
were 0.006, 0.0052, and 0.0054 for the training, test, and
external validation test sets, respectively. Also, the mean abso-
lute percentage errors (MAPE) were 0.012, 0.0073, and 0.0044 as
shown in Table 6, which are low values for RMSEP and MAPE;
thus, the model is suitable to estimate the drug release rate
values from MOF materials.

The predicted and experimental values of drug release rate
percentage for the training and test sets are shown in Fig. 2. It
well proves that the predicted values of drug release rate
percentage are tted on the experimental values.
24624 | RSC Adv., 2023, 13, 24617–24627
As can be observed from Table 7, the standard error (SE) for
all descriptors are low values, which conrms that the proposed
model is appropriate and robust. The probability values (p-
values) of the descriptors are very small, conrming that the
data could have occurred under the null hypothesis. Other
parameters, such as t-test, signicance level, and lower and
upper bound values for descriptors are presented in Table 7. It
can be concluded from Table 7 that all variables in eqn (8) have
large effects on the resulting model. The VIF and tolerance for
these descriptors are near 1, showing that there is no intercor-
relation among the variables.

MOF design and RES calculation are accomplished through
the descriptors in eqn (8) and also by considering the “mean
effect”. Two parameters are involved the “mean effect”: (a) the
coefficient of descriptors and (b) the nature of descriptors. The
value assigned to the nature of descriptors may be positive or
negative (Table 1); the coefficient of descriptors can also be
positive or negative (the coefficients that appear in eqn (8)).
Aer putting the values of the descriptors in eqn (8), the MOF
design can be performed.104
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 7 Regression coefficients of eqn (8), the standard error (S.E.), P-values, t-test, and confidence intervals for descriptors

Equation Des.a Coef.b S.E.c P-Value t-Test Sig.d L.B.e (95%) U.B.f (95%)

Eqn (8) Int.g 20.135 0.0021 1.563 × 10−155 9662.987 <0.0001 20.139 20.130
nN 15.157 0.0004 5.7733 × 10−184 36 759.32 <0.0001 15.158 15.156
nO 2.675 0.0001 2.76 × 10−180 30 922.6 <0.0001 2.675 2.675
RES+ −7.301 0.0005 1.4903 × 10−166 −16219 <0.0001 −7.300 −7.302
RES− 14.296 0.0004 9.219 × 10−184 36 409.89 <0.0001 14.297 14.296

a Descriptor. b Coefficients. c Standard error. d Signicance level. e Lower bound. f Upper bound. g Intercept.
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For further assessment, the cross-validation method was
used to make sure overtting did not occur in modeling.105

Therefore, leave-one-out (LOO) and y-randomization (yrand)
procedures were employed as cross-validation techniques. The
values of RLOO

2 and Ryrand
2 were obtained at 0.999 and 0.206,

respectively. The resulting values conrm the model's accuracy
in predicting the release rate percentage (RES%) from MOFs.
Also, Ryrand

2 > 0.5 indicated that there is no chance correlation
in the model. Moreover, the Durbin–Watson (DW) statistic of
the proposed model was obtained at 2.453, which indicates that
there is no autocorrelation in the residuals from the BMLR
model. The acceptable range of DW is 1.50–2.50.
4. Conclusion

In this work, a straightforward and robust MLR model has been
established, for the rst time, to estimate the drug release rate
from a set of 67 MOF materials containing different metal SBUs
and various organic linkers. The QSPR model was based on four
variables, which include the number of nitrogen and oxygen
atoms calculated from MOF structures, as well as RES+ and
RES−, new descriptors that play increaser and decreaser roles.
These descriptors were not calculated using soware or any
complex method, but were computed using a simple and fast
procedure. The R2 value was 0.9999 for both training and test
sets. Also, other statistical parameters, including RMSEP, MSE,
and MAPE, were satisfactory and conrmed the suitable reli-
ability of eqn (8). The external validation proved that the model
is valid for data beyond the dataset used to t the model. Thus,
the present QSPR model enables us to build a straightforward
method for predicting drug release rates fromMOFs using their
structural conguration. As a view towards the future, we are
developing QSPR models of MOF-based DDS for other impor-
tant drugs.
Data and software availability

This QSPR method—applying the number of atoms and
adjusted descriptors (computed through chemistry knowledge
and tedious work as increaser and decreaser parameters)—is
considered proprietary; moreover, it can be used without any
complex soware and quantum methods. Therefore, this work
has unique scientic value, and we share in Table S1 (ESI)† the
metal center geometries as a decreaser descriptor, and in Table
4 the ligand fragments as a decreaser descriptor. Finally, the
© 2023 The Author(s). Published by the Royal Society of Chemistry
free version of Microso Excel 365, with no download needed,
was utilized for calculating statistical parameters.
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L. Léonard-Akkari, N. Oulahal, P. Degraeve and C. Bordes,
Front. Microbiol., 2019, 10, 829.

22 S. Kwon, H. Bae, J. Jo and S. Yoon, BMC Bioinf., 2019, 20, 1–
12.
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