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ed amidation of acid chlorides at
room temperature: new route to access aromatic
primary amides and imides amenable for late-stage
functionalization†

Chandrasekaran Sivaraj and Thirumanavelan Gandhi *

Herein, we report a solvent-controlled highly selective amidation and imidation of aroyl chlorides using an

alkali-metal silyl-amide reagent (LiHMDS), which serves as a nitrogen source at room temperature. A unique

feature of this method lies in the sequential silyl amidation of aryol chlorides and nitrogen–silicon bond

cleavage of the corresponding N,N-bis(trimethylsilyl)benzamide in a one-pot method in a very short

reaction time. This effective strategy was extended to late-stage functionalization.
Introduction

Amides and imides are vital and appealing functionalities that
are ubiquitous in biology, pharmaceutical intermediates,
natural products, and materials science.1 They are bestowed
with remarkable properties which substantiate their existence
in engineering plastics, lubricants, fertilizers, detergents,
agrochemicals, proteins, etc.2,3 In particular, primary benza-
mides are found in various drugs, such as salicylamide, nico-
tinamide, labetalol, frovatriptan, niraparib, lenvatinib,
ethosuximide and amonade (Scheme 1a). Therefore, tremen-
dous efforts have been made to develop synthetic methods for
the preparation of primary amides. Classically, primary amides
are accessed using carboxylic acid derivatives,4 aldehydes,5

alcohols,6,7 nitriles,8 and oximes.9–11 Later, various nonclassical
strategies, such as oxidative-amidation,12 hydroamination13 and
C–N coupling reactions,14 were developed. Very recently, new
methodologies for the synthesis of primary amides were
established. Mechanochemical, transamidation, ring-opening
selective cleavage and direct amidation were developed by
Menéndez,15 Lee,16 Lin17 and Chen,18 respectively.

Traditionally, imides are prepared via two routes: (i) acyla-
tion of amides with acyl chlorides, carboxylic esters, and
anhydrides,19 and (ii) a Mumm rearrangement of isoimides.20

However, both of these methods suffer from limited substrate
scope; furthermore, Mumm rearrangement demands pre-
functionalization and results in moderate yields.21 Recently,
considerable effort has been devoted to the synthesis of imides,
and in this regard several methods have been developed, such
d Sciences, Vellore Institute of Technology,
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as the metal-catalyzed carbonylation of amides,22 the oxidation
of amides,23 and the oxidative decarboxylation of amino acids,24

among others.25–33 Recently, the Liang group reported the
synthesis of imides by the chemoselective acylation of N-acyl-
glutarimides with N-acylpyrroles and aryl esters under
transition-metal-free conditions.21 However, the reported imide
synthesis displays certain drawbacks in terms of corrosive
precursors, prefunctionalized substrates, specialized reagents,
and excessive oxidants; besides, they are time-consuming with
a limited substrate scope. The development of greener and
Scheme 1 Metal-silylamides as a nitrogen source.
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Table 1 Optimization of the reaction conditions

Entry Nitrogen source Solvent

Yield (%)

2 3

1 LiHMDS in THF DCE 80 10
2 LiHMDS in toluene DCE 0 0
3 NaHMDS in THF DCE 60 5
4 KHMDS in toluene DCE 0 0
5 LiHMDS in THF CHCl3 10 0
6 LiHMDS in THF TFE 5 0
7 LiHMDS in THF DCM 4 45
8 LiHMDS in THF Dioxane 10 63
9 LiHMDS in THF DMF 0 38
10 LiHMDS in THF THF 0 35
11 LiHMDS in THF Et2O 0 30
12 LiHMDS in THF CH3CN 0 25
13 LiHMDS in THF Toluene 0 23
14 LiHMDS in THF Acetone 0 10
15 LiHMDS in THF DMSO 0 6
16 LiHMDS in THF EtOAc 0 4
17 LiHMDS in THF EtOH 0 0
18 LiHMDS in THF MeOH 0 0

Scheme 2 Other nitrogen sources. Reaction conditions were as
follows: aroyl chloride 1 (0.2 mmol), LiHMDS (2.5 equiv.), aDCE (3 mL)
and bdioxane (3 mL), RT, <5 min.
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more practical methods for the synthesis of primary amides and
imides remains in demand. Our group has a long-standing
interest in Brønsted base [MN(SiMe3)2, M = Li, Na and K]
promoted organic transformations, especially the cleavage of
C–C and C–O bonds in C-acyl imidazolium salts and esters,
respectively.34 Recently, we have shown that KN(SiMe3)2
promotes the acylation of weakly acidic C–H bonds in toluene
derivatives.35 Along these lines, in 1983 Hart and co-workers
reported for the rst time that [MN(SiMe3)2, M = Li, Na and
K] acts as a base and nitrogen source in converting aryl alde-
hydes to aryl amines. Likewise, Fout, Walsh, and Mao used
[MN(SiMe3)2, M = Li, Na and K] as a nitrogen source for ami-
nation reactions (Scheme 1b).36 To the best of our knowledge,
the usage of [MN(SiMe3)2, M = Li, Na and K] as a nitrogen
source for amination reactions at ambient temperature in
a short reaction time is unknown. Herein, we report the solvent
controlled metal-free, additive-free amidation and imidation of
acid chlorides using LiN(SiMe3)2 as a nitrogen source in a very
short reaction time at ambient temperature (Scheme 1c).
Scheme 3 Other acyl sources. Reaction conditions were as follows:
aroyl chloride 1 (0.2 mmol), LiHMDS (2.5 equiv.), aDCE (3 mL) and
bdioxane (3 mL), RT, <5 min.
Results and discussion

Initially, the metal-free amidation of aroyl chlorides with
LiN(SiMe3)2 (in THF) was investigated. The reaction of 1.0 equiv.
benzoyl chloride 1 with 2.5 equiv. LiN(SiMe3)2 at room
temperature in DCE for 5 min resulted in the formation of the
benzamide 2a in 80% yield. An increment in LiN(SiMe3)2 (from
2.5 to 3.0 equiv.) reduced the yield of 2, while decreasing it (from
2.5 to 1.0 equiv.) resulted in the appearance of unidentiable
products (without hampering the reaction progression). In the
9232 | RSC Adv., 2023, 13, 9231–9236
absence of LiN(SiMe3)2 (in THF) no product was observed,
suggesting that LiN(SiMe3)2 promotes the process. Other silyl
amides like NaHMDS (in THF) and KHMDS (in Toluene) were
tried. No reaction was observed in case of KHMDS in toluene
(Table 1, entry 4), whereas reduction in the yield of 2 was
observed when NaHMDS in THF was used (Table 1, entry 3). We
next tested various nitrogen sources (ammonium salts, azide
and urea). Among these, ammonium salts gave the desired
primary amides, whereas LiHMDS were the best (Scheme 2).
The relative importance of various solvents on the reaction,
such as CHCl3, TFE, DCM, dioxane, DMF, THF, diethyl ether,
acetonitrile, toluene, acetone, DMSO, ethyl acetate, ethanol and
methanol, was examined (Table 1, entries 5–18). Among these,
halogenated solvents showed a trace amount of 2 (Table 1,
entries 5–7), and, surprisingly, non-halogenated solvents
showed the formation of imide 3 devoid of 2 (Table 1, entries 9–
18). Thus, dioxane was found to the best solvent to give 3 in
a higher yield (63%) (Table 1, entry 8). This investigation reveals
that the solvents play a crucial role in the formation of 2 and 3.
Furthermore, various acyl sources, such as acids, esters,
amides, C-acyl imidazolium salts, aliphatic acid chlorides,
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Scheme 4 Synthesis of primary amides, symmetric and unsymmetric imides. Reaction conditions were as follows: aroyl chloride 1 (0.2 mmol),
LiHMDS (2.5 equiv.), DCE (3 mL) and dioxane (3 mL), RT, <5 min.

Scheme 5 Late-stage functionalization of drugs. Reaction conditions
were as follows: acid chloride 1 (0.2mmol), LiHMDS (2.5 equiv.), DCE (3
mL) and dioxane (3 mL), RT, <5 min.

Scheme 6 Control experiment. Reaction conditions were as follows:
acid chloride 1 (0.2 mmol), LiHMDS (2.5 equiv.), DCE (3 mL) and
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aromatic side chain carboxyl chlorides and a-substituted
aromatic side chain carboxyl chlorides were examined (Scheme
3). Among these C-acyl imidazolium salts and a-substituted
aromatic side chain carboxyl chlorides gave products 2 and 3,
which reveals that this protocol is a substrate selective reaction.

With the optimized conditions in hand, the substrate scope
was rst surveyed for the reaction of primary amides and
symmetric imides (Scheme 4). Various examples of acid chlo-
rides were subjected to the synthesis of corresponding prod-
ucts. The substrates with electron-withdrawing groups, 2d, 2e,
2g, 3d, 3e and 3g, were well tolerated compared with that to
electron-releasing groups, 2b, 2c, 2f, 3b, 3c and 3f, in amidation
and imidation reactions. Importantly, the amidation reaction
does not progress with substrates possessing ortho substituents,
2m–2o. Successively, our intent was to explore unsymmetrical
imides 4 (Scheme 4) by adopting this approach. The reaction of
acid chloride 1 with primary amide 2a in the presence LiHMDS
in dioxane at room temperature afforded unsymmetrical imides
4. There were no signicant changes in yield with respect to
electron-releasing or electron-withdrawing groups, 4a–4g.
Additionally, poly- and heterocyclic substrates were compatible
to give amides 2h–2k, symmetric imides 3h–3k, and unsym-
metric imides 4h–4k in moderate to good yields. This protocol
could be extended to the synthesis of drug nicotinamide 2l from
its corresponding acid chloride. Scale-up experiments were
performed in order to put forth the practicality of the solvent-
controlled amidation and imidation methodology by using
aroyl chloride (1 g, 7.14 mmol) as a test molecule under the
optimized reaction conditions. As can be clearly seen from
Scheme 4, the isolated yields of 2a (70% yield) and 3a (51%) are
dioxane (3 mL), RT, <5 min.

© 2023 The Author(s). Published by the Royal Society of Chemistry RSC Adv., 2023, 13, 9231–9236 | 9233
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Scheme 7 Plausible mechanistic pathways.
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quite satisfactory. Late-stage functionalization strategies are
currently receiving great interest in both the drug discovery and
chemical biology, and in this regard, solvent controlled ami-
dation and imidation studies were carried out on three different
drug molecules, clobric acids 2p and 3l, naproxens 2q and 3m,
and ketoprofens 2r and 3n (Scheme 5).

Further, to understand this methodology, a control experi-
ment was carried out (Scheme 6). Precursor 1 reacted with other
nitrogen sources (ammonium salts, azide and urea) under the
optimal reaction conditions resulted in the formation of 2, and
no 3 was formed. From this result, it is deciphered that non-
silylamide nitrogen sources preferentially gave primary
amides 2 whereas silylamide ones move forward to give 3 by
reacting with aroyl chloride.

Based on the above studies and literature report, a plausible
mechanism for the formation of primary amides and imides is
depicted in Scheme 7. Initially, nucleophilic addition of the
nitrogen in LiN(SiMe3)2 to the electrophilic carbonyl carbon of 1
forms a tetrahedral intermediate I. Then, I proceeds to form
a key silylamide intermediate II 21 (ArC (]O)N(SiMe3)2) via LiCl
elimination. Intermediate II can proceed through two different
pathways based on the chosen solvent. In the presence of DCE
(polar solvent), the chlorine atom in DCE coordinates with
silicon in silyl amide intermediate II, which helps to cleave both
nitrogen–silicon bonds simultaneously in silyl amide interme-
diate II instead of one more acid chloride to deliver amide 2
during the acidic work up. In the case of dioxane (non-polar
solvents), the cleavage of the nitrogen–silicon bond in silyl
amide intermediate II is difficult due to less solubility.37

Further, one more acid chloride is required to cleave the
nitrogen–silicon bond in silyl amide intermediate II to form
a new intermediate III, which leads to symmetric imides 3
during acidic work up.
Conclusions

In summary, we developed a straightforward and efficient
synthetic methodology for the synthesis of primary amides,
symmetric and unsymmetric imides. Both the amidation (34
examples) and the late-stage functionalization of drugs (7
examples) worked smoothly with the yields ranging from 50 to
70%. The major advantages of the presented methodology over
9234 | RSC Adv., 2023, 13, 9231–9236
the existing ones are that (i) there is no need for the external
amine source and oxidant, (ii) it does not require any metal
catalyst, (iii) it enables the selective synthesis of primary amides
and imides in high yields, (iv) it allows the derivatization of drug
molecules, (v) it uses safe solvents at room temperature, and (vi)
the reaction completes in a very short time, thus avoiding harsh
conditions. Therefore, we think that this solvent-controlled
amidation and imidation protocol will create a new perspec-
tive for the synthesis of primary amides/imides and related drug
molecules.
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