RSC Advances

PAPER

Cite this: RSC Adv., 2023, 13, 7877

Received 5th February 2023 Accepted 22nd February 2023

DOI: 10.1039/d3ra00772c

rsc.li/rsc-advances

1. Introduction

Solar energy is a renewable and clean energy that will play an important role in solving the energy crisis.¹⁻³ Therefore, polysilicon has rapidly developed as a raw material for solar photovoltaic cells. It is important to limit the impurities contained in solar-grade polysilicon to obtain higher photoelectric conversion efficiencies.

The standard for solar-grade polysilicon requires the carbon atom concentration to be less than 5×10^{18} atoms per cm³.⁴ Currently, the main process used in producing polysilicon is the improved Siemens method.^{1,5} Since the final polysilicon product is obtained by reacting SiHCl₃ with H_2 in a bell jar furnace, 5 carbon impurities in SiHCl₃ should be strictly limited. Therefore, the removal of carbonaceous impurities in $SiHCl₃$ is a key step in the improved Siemens method.

The carbonaceous impurities in $SiHCl₃$ were mainly methylchlorosilanes $[(CH_3)_nSiCl_{4-n}, n = 1-3]$.⁶ Moreover, the boiling points of CH₃SiHCl₂ (41.9 °C) and (CH₃)₂SiHCl (34.7 °C) are close to the boiling point of SiHCl₃ (32.0 $\,^{\circ}$ C).⁷ Azeotropes are easily formed during $SiHCl₃$ purification via distillation. Thus, purifying $SiHCl₃$ by distillation is difficult. One possible method is to convert CH_3SiHCl_2 and $(CH_3)_2SiHCl$ into

Chlorination of trichlorosilane/ chlorodimethylsilane using metal chlorides: experimental and mechanistic investigations

Rui Duan, \mathbf{D}^a Wencai Peng, \mathbf{D}^{*a} Jianshu Zhang \mathbf{D}^{*a} and Jinli Zhang \mathbf{D}^b

Removal of carbonaceous impurities from trichlorosilane (SiHCl₃) reduces the carbon content of solar grade polysilicon produced with the improved Siemens method. The separation of chlorodimethylsilane $(CH₃)₂$ SiHCl from SiHCl₃ by distillation remains challenging due to the small difference in their boiling points. Herein, the chlorination of (CH₃)₂SiHCl/SiHCl₃ with metal chlorides (WCl₆, MoCl₅) were studied. The aim was to convert (CH₃)₂SiHCl into (CH₃)₂SiCl₂, increase the relative volatility of (CH₃)₂SiHCl and SiHCl₃ and facilitate the distillation. The optimum reaction conditions were 60 °C, 60 min and n(WCl₆ or MOC_{15}): n(SiHCl₃ or (CH₃)₂SiHCl) = 0.7 at 0.8 MPa. Under these conditions, and when WCl₆ and MoCl₅ were used as the chlorine sources, the extents of $(CH₃)$ siHCl conversion were 22.7 and 18.5 times higher than those of SiHCl₃, respectively. In addition, a mechanistic study showed that the difference between the reactions of SiHCl₃ and (CH₃)₂SiHCl resulted from the different energy barriers for the reactions of the SiCl₃ and (CH₃)₂SiCl \cdot radicals with WCl_x or MoCl_x, and the barrier for the SiCl₃ reaction was higher than that for the $(CH_3)_2$ SiCl \cdot reaction. **PAPER**
 CALCONDIDENTIFICATION OF SCIENCE CONSULTION CONTROLLED SCIENCE SCIENCE CONSULTI

methylchlorosilanes with high boiling points and high chlorine contents by chlorination. This would result in higher relative volatility and make distillation easier.

Typical chlorine sources for the chlorination reactions of $CH₃SiHCl₂$ are chlorine gas,⁸ chlorinated hydrocarbons^{6,9} and chlorosilane.^{4,10,11} Wan et al.⁸ proposed photochlorination of $CH₃SiHCl₂$ with $Cl₂$ in a continuous microchannel reactor. The results showed that the removal rate of $CH₃SiHCl₂$ was as high as 99.67% under the optimal reaction conditions. But this method is currently in the laboratory research stage. In addition, Zhang and Huang⁹ reported catalytic chlorination of CH_3SiHCl_2 with carbon tetrachloride (CCl₄) over a Pd/Al₂O₃ catalyst. However, the introduction of new carbon impurities cannot be avoided, and the high price of Pd limits its utilization in industry. Additionally, silicon tetrachloride, a byproduct of polysilicon production via a modified Siemens process, can also be used as a chlorine source for chlorination of CH_3SiHCl_2 .⁴ However, silicon powder is easily formed, blocking the pores of the activated carbon catalyst during this process. Therefore, the catalytic performance and stability of the activated carbon catalyst are poor.

Chlorination of $(CH_3)_2$ SiHCl with LiCl as the chloride source and $B(C_6F_5)_3$ as the catalyst was reported to occur in a mixture of ethyl ether and toluene.¹² Obviously, many researchers are studying chlorination reactions of $CH₃SiHCl₂$. However, the boiling point of $(CH_3)_2$ SiHCl is closer to that of SiHCl₃, which makes separation more difficult. Furthermore, $SiHCl₃$ and $(CH₃)₂SiHCl$ may be chlorinated at the same time. Therefore, it

a School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China. E-mail: pengwencai@shzu.edu.cn; zjschem@163.com; Tel: +86-993-2057277 b School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

is important to study the competitive relationship between the $SiHCl₃$ and $(CH₃)₂SiHCl$ during chlorination reactions.

Metal chlorides are also used as catalysts in chlorination reactions. For instance, (a) chlorination of methylphenyldichlorosilane to chlorinated methylphenyldichlorosilanes with gaseous chlorine has been catalysed by FeCl_3 , SbCl_5 , SnCl_4 and AlCl3; ¹³ (b) chlorination of 1,3-dithiolanes and 1,3-dithianes with CH_2Cl_2 has been catalysed by $\text{WCl}_6;^{14}$ and (c) chlorination of allyl groups in terpenic olefins (β -pinene and carvone) with NaClO has been catalysed by MoCl₅, AlCl₃, FeCl₃ and FeCl₂.^{15,16} Metal chlorides can be used not only as catalysts but also directly as chlorine sources in reactions, such as in the photochemical chlorination of methane mediated by FeCl₃.¹⁷ In addition, the boiling points of WCl₆ (346.7 °C) and MoCl₅ (268.0 °C) are very high and they are easily removed by distillation. RSC Advances

is important to study the competitive relationship between the injection temperature of Fax Creations, are converted to the stations, a programmed to response the creations of the stations are the stations a

Therefore, this work will focus on the thermal chlorination reaction of SiHCl₃ and $(CH_3)_2$ SiHCl by using WCl₆ and MoCl₅ as chlorine donors. The effects of the metal chloride type, molar ratio of reactants, reaction temperature and reaction time were investigated in detail. Finally, a reaction mechanism was proposed and explored in detail with density functional theory calculations.

2. Experiments and calculations

2.1 Materials used

Analytical standard dimethylchlorosilane $((CH₃)₂SiHCl, 99.0%)$ and trichlorosilane ($SiHCl₃$, 99.0%) were purchased from Sigma-Aldrich. Silicon tetrachloride (SiCl₄, 99.0%) was kindly supplied by Xinjiang Daqo New Energy Co. Additionally, dichlorodimethylsilane ($(CH_3)_2$ SiCl₂, 99.0%), chloromethyldichloromethylsilane ((CH₂Cl)CH₃SiCl₂, 99.0%), tungsten hexachloride (WCl₆, 99.5%) and molybdenum pentachloride $(MoCl₅, 99.6%)$ were purchased from Adamas.

2.2 Experimental setup

The specific experimental operations were as follows: first, to prepare stock solutions, $SiHCl₃$ or $(CH₃)₂SiHCl$ was dissolved in SiCl₄ at a concentration of 0.5 mol L⁻¹. In addition, a given amount of WCl_6 or $MoCl_5$ and 10 mL of stock solution were added to a 36.5 mL batch reactor. WCl_6 and M_0Cl_5 were easily soluble in $SiCl₄$ and formed homogeneous reaction systems, and the molar ratios of reactants $[n(\text{WCl}_6/\text{MoCl}_5): n(\text{SiHCl}_3/\text{NaCl}_3)]$ $[CH₃)₂SiHCl]$ were 0.3, 0.7 and 1.2. Next, a nitrogen stream was introduced into the reactor three times to replace the air. To maintain a homogeneous reaction system, the N_2 pressure was raised to a higher reaction pressure (0.8 MPa). Then, the reactor was heated in a water bath and cooled with an ice-salt bath (−20 \degree C) after the reaction. Finally, the reactor was opened after slowly relieving the pressure. The samples were then removed from the reactor and distilled to remove metal impurities.

The mole fraction of the chlorosilane solution was determined with a 9790 Plus gas chromatograph equipped with a thermal conductivity detector (TCD), and H_2 was used as the carrier gas. The gas chromatography (GC) detection conditions were as follows: a 3 m 25% DC-550/Chromo packed column; an injection temperature of 150 °C; and a detector temperature of 150 °C. In addition, a programmed temperature rise was used for the oven temperature, *i.e.*, it was first held at 60 \degree C for 2.5 min, then raised to 120 °C at a rate of 30 °C min⁻¹, and finally held at 120 $\mathrm{^{\circ}C}$ for 2.5 min. The identities of the products were determined from the retention times of standard samples.

The conversion of $SiHCl₃$ was calculated according to eqn (1) , and it was expressed as $X(SHCl₃)$. The inlet and outlet mole fractions of SiHCl₃ were expressed as $x(SiHCl₃)_{in}$ and $x(SiHCl₃)_{out}$, respectively. The formula used for calculation of the $(CH₃)₂SiHCl$ conversion rate was the same as that used for $SiHCl₃$.

$$
X(SiHCl_3) = \frac{x(SiHCl_3)_{in} - x(SiHCl_3)_{out}}{x(SiHCl_3)_{in}} \times 100\% \tag{1}
$$

To further identify the components in the reaction product, samples were dissolved in deuterated chloroform $(CDCl₃)$ and qualitatively analysed with nuclear magnetic resonance (NMR) spectroscopy using a Bruker Avance III $[$ ¹H (400 MHz),¹³C (101 MHz)].

2.3 Theoretical method

The reactions discussed herein are free radical reactions, including chain initiation reactions, chain propagation reactions, and chain termination reactions. All the calculations were performed with the Gaussian 16 program.¹⁸ The geometric configuration of each stationary point for a reactant, transition state, or product along the reaction pathway was studied with B3LYP calculations by using the def2-TZVP basis set for the metal atoms and the 6-311G++(2d,p) basis set for the remaining atoms. In addition, frequency analyses were performed to ensure that the structure determined for a reactant or product was at a local minimum (all frequencies were positive) or in a transition state (only one negative frequency). The intrinsic reaction coordinates (IRCs) were used to evaluate whether the structures of the transition states were correctly connected to the products and reactants.¹⁹ The energy (E) in the entire reaction process was taken from the Gibbs free energy in the output file, that is, EE + thermal free energy correction ($T = 298.15$ K). The energy barrier (EB), the energy change (ΔE) and the dissociation energy (DE) were calculated with eqn (2) , (3) , and (4) .

$$
EB = E(transition state) - E(reactant)
$$
 (2)

$$
\Delta E = E(\text{product}) - E(\text{reactant}) \tag{3}
$$

$$
DE = \sum E
$$
(free radicals) – E (molecular) (4)

3. Results and discussion

3.1 Experimental research on chlorination of $SiHCl₃/$ $(CH₃)₂$ SiHCl with WCl₆

3.1.1 Effect of reaction temperature. The influence of reaction temperature on the conversion rate for the reaction of WCl_6 and $SiHCl_3/(CH_3)_2SiHCl$ was investigated over the

Fig. 1 Conversions of (a) SiHCl₃/(b) (CH₃)₂SiHCl in chlorination reactions run with WCl_6 at different reaction temperatures.

temperature range of 40–80 °C with a reaction pressure of 0.8 MPa and $n(WCl_6)$: $n[SiHCl_3/(CH_3)_2SiHCl] = 0.3$. The SiHCl₃ or $(CH₃)₂SiHCl$ conversion rate as a function of temperature is shown in Fig. 1. These results showed that the conversion rates for $(CH_3)_2$ SiHCl and SiHCl₃ both increased with increasing temperature and time. The conversion rate of $SiHCl₃$ was extremely low, between 0.8% and 6.3% at 40 °C to 80 °C for 10 min to 120 min. The $(CH₃)₂SiHCl$ conversion was also low, between 2.0% and 9.5%, at 40 °C. However, when the reaction temperature was 60 °C, the conversion of $(CH_3)_2$ SiHCl increased substantially from 3.3% to 59.9% with an increase in the reaction time from 10 min to 30 min. By prolonging the reaction time to 60 min, the conversion of $(CH₃)₂SiHCl$ gradually increased to 75.2%. And the conversion of $(CH_3)_2$ SiHCl increased slightly with increasing temperature and time. Therefore, the optimum reaction conditions were 60 °C for 60 min. Paper **Access Article 2023.** The conversion of the conversion of the state of the conversion of Creative Common Creative Comm

In addition, a solid precipitated from the reaction products obtained with conversion rates greater than 50%. The metal chloride is highly moisture-sensitive, and it was difficult to analyse it further. Since the high-valent tungsten chloride was highly soluble in silicon tetrachloride, $(CH₃)₂SiHCl$ is thought to react with WCl_6 to form a low-valent tungsten chloride or elemental tungsten.

3.1.2 Effect of reactant ratio. The conversions of $SiHCl₃$ or $(CH₃)₂SiHCl$ observed for chlorination reactions run with WCl₆ at different reactant ratios are shown in Fig. 2. Herein, the experimental conditions included a reaction pressure of 0.8 MPa, a reaction temperature of 60 °C and a reaction time of 60 min. When WCl₆ and $(CH_3)_2$ SiHCl were reacted, with increases in the molar ratio of WCl₆ to $(CH_3)_2$ SiHCl from 0.3 to

Fig. 2 Conversions of SiHCl₃/(CH₃)₂SiHCl during chlorination of $SiHCI₃/(CH₃)₂SiHCI$ with WCI₆ at different reactant ratios.

Fig. 3 (a) ${}^{1}H$ NMR and (b) ${}^{13}C$ NMR spectra for the product of $(CH₃)₂$ SiHCl chlorination by WCl₆.

0.7 and 1.2, the conversion of $(CH₃)₂SiHCl$ increased from 75.2% to 100.0% and 100.0%. The conversion rate of $SiHCl₃$ was far lower than that of $(CH₃)₂SiHCl. Obviously, the optimum$ molar ratio of WCl₆ to $(CH_3)_2$ SiHCl/SiHCl₃ was 0.7. The ratio of the two conversion rates was 22.7.

The product from the 100% conversion reaction was analysed by GC. It contained a large amount of $(CH_3)_2$ SiCl₂ and a small amount of $(CH_2Cl)CH_3SiCl_2$. To further confirm the composition of the sample, the product was qualitatively analysed by ¹H NMR and ¹³C NMR, as shown in Fig. 3. The main product $(\text{CH}_3)_2\text{SiCl}_2$ (¹H NMR: 0.81 ppm; ¹³C NMR: 6.83 ppm) was identified from the NMR spectrum. Therefore, the main product of the reaction between $(CH_3)_2$ SiHCl and WCl₆ was $(CH₃)₂SiCl₂$, and the byproduct was $(CH₂Cl)CH₃SiCl₂$.

3.2 Experimental research on chlorination of $SiHCl₃/$ $(CH₃)₂$ SiHCl with MoCl₅

3.2.1 Effect of reaction temperature. The conversion rates for $SiHCl₃/(CH₃)₂SiHCl$ in chlorination reactions run with $M_0Cl₅$ at different temperatures are shown in Fig. 4. Here, the reaction conditions were the same as those used for $SiHCl₃/$ $(CH₃)₂SiHCl$ and WCl₆. Similarly, the conversion rates for $(CH₃)₂SiHCl$ and $SiHCl₃$ both increased with increases in temperature and time. The conversion rate of $SiHCl₃$ was very low. $(CH_3)_2$ SiHCl hardly reacted at 40 °C but reacted rapidly at 60 °C and 80 °C. Apparently, the conversion levels for the MoCl₅ reaction with $(CH_3)_2$ SiHCl were much higher than those with SiHCl₃ at 60 °C and 80 °C. In addition, the conversion of $(CH₃)₂SiHCl$ was as high as 64.0% at 60 °C for 60 min. Therefore, we will continue to explore the effect of the reactant ratio on the conversion of $SiHCl₃/(CH₃)₂SiHCl$ in the chlorination reactions with $Mod₅$ under these reaction conditions. Additionally, when the products were formed with conversion rates

Fig. 4 Conversions of (a) $SHCl₃/(b)$ (CH₃)₂SiHCl in chlorination reactions run with MoCl₅ at different reaction temperatures.

Fig. 5 Conversions of SiHCl₃ or (CH₃)₂SiHCl in chlorination reactions run with MoCl₅ at different reactant ratios.

greater than 40%, a solid deposit formed during the reaction of $Mod₅$ with $(CH₃)₂$ SiHCl. The reaction was also presumed to yield a low-valent molybdenum chloride or elemental molybdenum.

3.2.2 Effect of reactant ratio. Fig. 5 shows the conversion of $SiHCl₃/CH₃$ ₂ $SiHCl$ during chlorination with MoCl₅ at different reactant ratios. Herein, the experiment was also carried out at 0.8 MPa, 60 °C and 60 min. Fig. 5 shows that high molar ratios of MoCl₅ to SiHCl₃/(CH₃)₂SiHCl favoured conversion of SiHCl₃ or $(CH_3)_2$ SiHCl. As expected, the conversion rate of $(CH_3)_2$ SiHCl was still much higher than that of SiHCl₃. When the molar ratio of MoCl₅ to SiHCl₃/(CH₃)₂SiHCl was 0.7, the ratio of the two conversion levels was the largest at 18.5. Therefore, the optimum conditions were 60 °C, 60 min and $n(MoCl₅)$: $n(SiHCl₃)$ or $(CH_3)_2$ SiHCl) = 0.7 for chlorination of SiHCl₃/(CH₃)₂SiHCl with $Mod₅$ at 0.8 MPa. Furthermore, the product formed with 100% conversion was also analysed by GC, 1 H NMR and 13 C NMR, which showed that the main product of the reaction between $(CH_3)_2$ SiHCl and MoCl₅ was $(CH_3)_2$ SiCl₂ and that the byproduct was $(CH_2Cl)CH_3SiCl_2$. RSC Advances $\frac{2}{3}$ are $\frac{2}{3}$ and $\frac{2}{3}$ are $\frac{2}{3}$ are $\frac{2}{3}$ an

3.3 Mechanism calculation of chlorination of $SiHCl₃/$ $(CH₃)₂$ SiHCl with WCl₆

To verify the results of the calculations, the main geometric parameters of SiHCl₃, $(CH_3)_2$ SiHCl, WCl₆ and MoCl₅ were

 a Equatorial plane. b Axial direction.

compared with the reported experimental results. It can be seen from the data in Table 1 that the calculated geometric parameters have small errors compared with the experimental values.

3.3.1 Chain initiation reaction. The dissociation energies for the bonds in $WCl_x(x$ indicates the number of chlorine atoms in the metal chloride, and $1 \le x \le 6$), SiHCl₃ and (CH₃)₂SiHCl are shown in Table 2 and 3. By comparing the dissociation energies, it was found that the bond energy of the W–Cl bonds is the smallest in SiHCl₃ and WCl_x ($4 \le x \le 6$), with values of 155.6 kJ mol⁻¹, 202.0 kJ mol⁻¹ and 314.2 kJ mol⁻¹ respectively. Moreover, the Si–H bond, with an energy of 333.3 kJ mol^{-1} , is the weakest bond in $SiHCl₃, WCl₃, WCl₂,$ and WCl. Therefore, chain initiation reaction can be divided into cleavage of the Si– H bond and cleavage of the W–Cl bond. Chain initiation involves a decomposition reaction in which Cl^- is released from WCl_x (eqn (5)) for the SiHCl₃ reaction with WCl₆, WCl₅, and WCl₄. In contrast, in the reactions between $SiHCl₃$ and WCl₃, $WCl₂$, and WCl, the chain initiation reaction is cleavage of the Si-H bond of SiHCl₃ (eqn (6)).

$$
WCl_x = WCl_{x-1} + Cl \t\t(5)
$$

$$
HSiCl_3 = H \cdot + SiCl_3 \tag{6}
$$

Correspondingly, in reactions of $(CH₃)₂SiHCl$ with WCl₆, $WCl₅$ and $WCl₄$, the chain initiation reaction is cleavage of the W–Cl bond in WCl_x (eqn (5)). In the $(CH₃)₂$ SiHCl reactions with $WCl₃$, $WCl₂$ and WCl, the chain initiation reaction involves breakage of the Si-H bond in $(CH₃)₂SiHCl$ (eqn (7)).

$$
(CH3)2SiHCl = H· + (CH3)2SiCl·
$$
 (7)

3.3.2 Chain propagation reaction. In the $SiHCl₃$ reactions with WCl₆, WCl₅ and WCl₄, the chlorine atoms from WCl_x continue to react with SiHCl₃. Then, chain growth could occur *via* two reactions: \odot in the substitution reaction, Cl·attacks the

Fig. 6 Structures of transition states formed during the reactions of $SiHCI₃ / (CH₃)₂ SiHCI with WCI₆.$

Fig. 7 (a–d) Relative energies for the reactions of SiHCl₃ with WCl_x.

silicon atom in SiHCl₃ to generate H \cdot and SiCl₄, and the energy barrier for this step is 144.8 kJ mol $^{-1}$. The structure of transition state TS1 involved in this reaction is shown in Fig. 6. ② In the hydrogen abstraction reaction, Cl · abstracts the hydrogen atom on silicon to generate HCl and SiCl_{3} , and the energy barrier is so small that it can be treated as no energy barrier. DeSain et al. also considered the reaction to be a barrierless hydrogen abstraction reaction.²³

Therefore, when WCl_6 , WCl_5 and WCl_4 react with SiHCl₃, the chain growth reaction is hydrogen transfer between $SiHCl₃$ and Cl \cdot (eqn (8)). The generated SiCl₃ continues to react with WCl₆, $WCl₅$ and $WCl₄$ (eqn (9)). In the SiHCl₃ reactions with $WCl₃$, \rm{WCl}_{2} , and \rm{WCl}, \rm{SiCl}_{3} from \rm{SiHCl}_{3} continues to react with \rm{WCl}_{x} (eqn (9)). The relative energies for the reactions of SiHCl₃ with WCl_6 , WCl_5 , WCl_4 and WCl_3 are shown in Fig. 7. The structures of the transition states involved in each reaction are shown in Fig. 6.

$$
HSiCl3 + Cl· = HCl + SiCl3
$$
 (8)

$$
SiCl3 + WClx = SiCl4 + WClx-1
$$
 (9)

In the $(CH_3)_2$ SiHCl reactions with WCl₆, WCl₅ and WCl₄, the Cl· from WCl_x decomposition continues to react with $(CH_3)_2$ -SiHCl. There are also two possible chain growth reactions. ① Substitution reaction: Cl directly attacks the silicon atom in $(CH₃)₂SiHCl$, passes through transition state TS6, and generates H \cdot and $(CH_3)_2$ SiCl₂, and the reaction energy barrier is 85.6 kJ mol⁻¹. TS6 is shown in Fig. 6. ② Hydrogen abstraction reaction: Cl attacks the hydrogen atom on silicon to generate $(CH₃)₂SiCl·$ and HCl. This reaction step is also regarded as having no energy barrier.

Therefore, the pathway followed in the reaction of $Cl·$ with $(CH₃)₂SiHCl$ is hydrogen transfer from silicon to the chlorine atom (eqn (10)). The generated $(CH₃)₂SiCl·$ continues to react with WCl_6 , WCl_5 , and WCl_4 to form $(\text{CH}_3)_2\text{SiCl}_2$ (eqn (11)). In the $(CH₃)₂SiHCl$ reactions with WCl₃, WCl₂, and WCl, $(CH₃)₂SiCl·$ and WCl_x react to form $(CH_3)_2$ SiCl₂ (eqn (11)). The relative

Fig. 8 (a–f) Relative energies for the reactions of $(CH_3)_2$ SiHCl with WCl_x.

^a The formula used for calculation of ΔG was the same as that for ΔE (eqn (3)).

energies for the $(CH_3)_2$ SiHCl reaction with WCl₆, WCl₅, WCl₄, $WCl₃$, $WCl₂$ and WCl are shown in Fig. 8. The structures of the transition states involved in each reaction are shown in Fig. 6.

$$
(CH3)2SiHCl + Cl· = HCl + (CH3)2SiCl·
$$
 (10)

$$
WCl_x + (CH_3)_2 SiCl \cdot = (CH_3)_2 SiCl_2 + WCl_{x-1}
$$
 (11)

Fig. 7 and 8 show that the difference in the reactions of $SiHCl₃$ and $(CH₃)₂SiHCl$ with WCl_x lies in the energy barriers of the SiCl_3 and $(\text{CH}_3)_2\text{SiCl}$ reactions with WCl_x. The energy barriers and Gibbs free energy changes of the reactions of WCl_x with $\rm SiCl_3$ and $\rm (CH_3)_2\rm SiCl^+$ are shown in Table 4. The data show that the energy barriers for the reactions of WCl₆, WCl₅, WCl₄ and WCl₃ with SiCl₃ are higher than those for the $(\text{CH}_3)_2\text{SiCl} \cdot$ reactions, with differences of 86.9 kJ mol⁻¹, 62.6 kJ mol⁻¹, 71.6 kJ mol⁻¹ and 75.2 kJ mol⁻¹. These results also show that ΔG > 0 for the reactions of WCl₃, WCl₂, and WCl with SiCl₃ and that ΔG < 0 for the reactions of WCl₃, WCl₂, and WCl with $(CH_3)_2$ SiCl \cdot . Obviously, WCl_x reacts more readily with $(CH_3)_2$ -SiHCl. These results are consistent with the experimental data, which demonstrates the practicality of the calculations.

3.3.3 Chain termination reaction. At the chain termination stage, free radicals combine with each other to form the bond with the largest bond energy. According to a comparative analysis using the data in Tables 5 and 6, in the reactions of SiHCl₃ and $(CH_3)_2$ SiHCl with WCl₆, WCl₅, and WCl₄, chain termination involves reactions of both SiCl_3 and $(\text{CH}_3)_2\text{SiCl}$. with Cl \cdot (eqn (12) and (13)). The calculated dissociation energy for H₂ is 436.9 kJ mol^{−1}. Hence, in the reactions of SiHCl₃ and $(CH₃)₂SiHCl$ with WCl₃, WCl₂, and WCl, the chain termination reaction involves the combination of two H \cdot (eqn (14)).

$$
Cl \cdot + SiCl_3 = SiCl_4 \tag{12}
$$

$$
(CH3)2SiCl· + Cl· = (CH3)2SiCl2
$$
\n(13)

$$
2H \cdot = H_2 \tag{14}
$$

DE/kJ mol $^{-1}$	٠Cl	\cdot SiCl ₃
\cdot Cl \cdot SiCl ₃	193.6	366.8 216.4

Table 6 Free radicals and dissociation energies in the chlorination reaction of $(CH₃)₂SiHCl$

In summary, the overall process for $SiHCl₃$ and $(CH₃)₂SiHCl$ reactions with WCl₆, WCl₅ and WCl₄ is shown in eqn (15) and (16), and the overall process for reactions with WCl_3 , WCl_2 and WCl is shown in eqn (17) and (18).

$$
HSiCl3 + 2WClx = SiCl4 + 2WClx-1 + HCl
$$
 (15)

$$
(CH3)2SiHCl + 2WClx = (CH3)2SiCl2 + 2WClx-1 + HCl (16)
$$

$$
2HSiCl_3 + 2WCl_x = 2SiCl_4 + 2WCl_{x-1} + H_2 \tag{17}
$$

 $2(CH_3)_2SHCl + 2WCl_x = 2(CH_3)_2SiCl_2 + 2WCl_{x-1} + H_2$ (18)

3.4 Mechanism calculation of chlorination of $SiHCl₃/(CH₃)₂SiHCl with MoCl₅$

3.4.1 Chain initiation reaction. The calculation process was the same as that in the previous section. By comparing the bond energies of Si–H bonds and Mo–Cl bonds in Tables 3 and 7, we can also divide the chain reaction into two reaction paths. In the processes involving M_0Cl_5 and M_0Cl_4 reactions with $SiHCl₃$ and MoCl₅, MoCl₄, MoCl₃ and MoCl reactions with $(CH₃)₂SiHCl$, Mo–Cl bond cleavage serves as the chain initiation reaction (eqn (19)). In the processes involving Mod_{3} , Mod_{2} , and MoCl reactions with $SiHCl₃$ and MoCl₂ reaction with $(CH₃)₂SiHCl$, chain initiation involves cleavage of the Si-H bonds (eqn (6) and (7)).

$$
MoClx = MoClx-1 + Cl·
$$
 (19)

Table 7 Dissociation energies of $Mo-Cl$ in $MoCl_x$

Compound	Parameter	DE/kJ mol ⁻¹
M_0Cl_5	$Mo-Cl$	126.5
MoCl ₄		281.5
M_0Cl_3		336.5
M_0Cl2		347.2
MoCl		341.3

Fig. 9 (a–c) Relative energies for the reactions of SiHCl₃ with MoCl_y

3.4.2 Chain propagation reaction. When the chain initiation reaction involves the release of Cl from molybdenum chloride, chlorine atoms capture the hydrogen on the silicon to generate $\rm SiCl_3^{\cdot}$ or $(\rm CH_3)_2\rm SiCl^{\cdot}$ (eqn (8) and (10)). When the chain initiation reaction involves cleavage of Si–H bonds, SiCl ³ or $(\text{CH}_3)_2$ SiCl \cdot is formed. The SiCl₃ or $(\text{CH}_3)_2$ SiCl \cdot generated in the two reactions reacts with M_0Cl_x (eqn (20) and (21)). The relative energies for the reactions of SiHCl₃ and $(CH_3)_2$ SiHCl with MoCl_x are shown in Fig. 9 and 10. The structures of the transition states involved in these reactions are shown in Fig. 11.

$$
MoCl_x + SiCl_3 = SiCl_4 + MoCl_{x-1}
$$
 (20)

$$
MoCl_x + (CH_3)_2SiCl \cdot = (CH_3)_2SiCl_2 + MoCl_{x-1}
$$
 (21)

The main difference between the reactions of M_0Cl_x with $SiHCl₃$ and $(CH₃)₂SiHCl$ lies in the energy barriers for the reactions of \cdot SiCl₃ and \cdot (CH₃)₂SiCl with MoCl_x. Fig. 9 and 10 show the energy barriers and Gibbs free energy changes for Mod_x reactions with $\rm SiCl_{3}$ and $(\rm CH_{3})_{2}\rm SiCl\cdot$, and these are summarized in Table 8. The energy barriers for the reactions of M_0Cl_5 , M_0Cl_4 , and MoCl₃ with SiCl₃ are higher than those for the $(\text{CH}_3)_2\text{SiCl} \cdot$

Fig. 11 Structures of transition states during the reactions of $SiHCl_z/$ (CH3)2SiHCl with MoCl5.

reactions, and the differences are 75.6 kJ mol⁻¹, 72.7 kJ mol⁻¹, and 69.3 kJ mol⁻¹, respectively. The ΔG values for the MoCl₅, MoCl_{4} , MoCl_{3} , MoCl_{2} and MoCl reactions with SiCl_{3} are all larger than the ΔG values for the corresponding $(CH_3)_2$ SiCl \cdot reactions. The above results reveal that M_0Cl_x reacts more easily with $(CH₃)₂SiHCl.$ In addition, the energy barrier difference between the reactions of MoCl₅ with SiHCl₃ and $(CH_3)_2$ SiHCl and the reactions of WCl_6 can be explained by the presence of only five Cl atoms in MoCl₅. WCl₆ is more conducive the chlorination of $(CH₃)₂SiHCl$ in SiHCl₃. Obviously, the calculated results are in good agreement with the experimental results.

Fig. 10 (a–e) Relative energies for the reactions of $(CH_3)_2$ SiHCl with MoCl_x

Table 8 Energy barriers and Gibbs free energy changes for MoCl_x reactions with SiCl₃ and $(\mathsf{CH}_{3})_{2}$ SiCl \cdot

Reactant		EB $(kJ \mod 1)$	ΔG $(kImol^{-1})$
MoCl ₅	\cdot SiCl ₃	75.6	-240.3
	\cdot (CH ₃) ₂ SiCl	0	-276.3
MoCl ₄	\cdot SiCl ₃	140.3	-85.3
	\cdot (CH ₃) ₂ SiCl	67.6	-121.3
M_0Cl_3	$-SiCl3$	143.6	-30.3
	\cdot (CH ₃) ₂ SiCl	74.3	-66.4
M_0Cl2	\cdot SiCl ₃		-19.6
	\cdot (CH ₃) ₂ SiCl	46.6	-55.6
MoCl	\cdot SiCl ₃		-25.5
	\cdot (CH ₃) ₂ SiCl	89.2	-61.6

3.4.3 Chain termination reaction. In the same way, in the $SiHCl₃$ reactions with MoCl₅ and MoCl₄ and the $(CH₃)₂SiHCl$ reactions with $MoCl₅$, $MoCl₄$, $MoCl₃$ and MoCl, chain termination occurs *via* a combination of SiCl₃ and $(\text{CH}_3)_2$ SiCl·reactions with Cl \cdot (eqn (12) and (13)). In the processes for SiHCl₃ reactions with Mod_{3} , Mod_{2} and MoCl and $(CH_{3})_{2}$ SiHCl reaction with $Mod₂$, chain termination occurs via the combination of two hydrogen atoms (eqn (14)).

Therefore, the overall equation for the reactions of $SiHCl₃$ with $Mod₅$ and $Mod₄$ is shown as eqn (22), and the overall equation for the reactions with M_0Cl_3 , M_0Cl_2 and M_0Cl is shown as eqn (23). The overall equation of the reactions of $(CH₃)₂SiHCl$ with MoCl₅, MoCl₄, MoCl₃ and MoCl is shown as eqn (24), and the overall equation of the reaction with $Mod₂$ is shown as eqn (25).

 $HSiCl_3 + 2MoCl_x = SiCl_4 + 2MoCl_{x-1} + HCl$ (22)

 $2HSiCl_3 + 2MoCl_x = 2SiCl_4 + 2MoCl_{x-1} + H_2$ (23)

 $(CH_3)_2$ SiHCl + 2MoCl_x = (CH₃)₂SiCl₂ + 2MoCl_{x−1} + HCl (24)

 $2(CH_3)_2$ SiHCl + 2MoCl_x = 2(CH₃)₂SiCl₂ + 2MoCl_{x−1} + H₂(25)

4. Conclusions

Chlorination reactions of $SiHCl₃/(CH₃)₂SiHCl$ were carried out with two metal chlorides (WCl₆ and MoCl₅) as the chlorine sources. The conversion rates for $(CH₃)₂SiHCl$ and $SiHCl₃$ both increased with increases in the reactant ratio, temperature and time. The conversions for the reactions of $(\text{CH}_3)_2$ SiHCl with WCl₆/ $Mod₅$ were much higher than those of SiHCl₃. Furthermore, the use of $WCl₆$ as the chlorine source showed higher conversion of the $(CH_3)_2$ SiHCl than MoCl₅. The optimum conditions for the reaction of WCl₆ with $(CH_3)_2$ SiHCl were as follows: a reaction pressure of 0.8 MPa, a reaction temperature of 60 °C, a reaction time of 60 min and $n(WCl_6)$: $n(SHCl_3)$ or $(CH_3)_2$ SiHCl) = 0.7. The conversion rate for $(CH_3)_2$ SiHCl was 22.7 times that for SiHCl₃ in the reactions of $SiHCl₃/(CH₃)₂SiHCl$ with WCl₆.

The mechanisms for the reactions of $SiHCl₃/(CH₃)₂SiHCl$ with $\text{WCl}_6/\text{MoCl}_5$ were explored in detail with density functional

theory calculations. The differences in the reactions of $SiHCl₃$ and $(CH_3)_2$ SiHCl with WCl₆ or MoCl₅ were found to lie in the energy barriers of the SiCl₃ and $(\text{CH}_3)_2$ SiCl· reactions with $WCl_x/MOCl_x$. The energy barriers for the reactions of $WCl_x (3 \leq x)$ \leq 6) with SiCl₃ were higher than those for the $(CH_3)_2$ SiCl \cdot reaction. The same is true of M_0Cl_x ($3 \le x \le 5$). On the whole, the energy barrier differences for WCl_6 reactions with $SiHCl_3$ and $(CH_3)_2$ SiHCl were higher than those for MoCl₅ reactions with $SiHCl₃$ and $(CH₃)₂SiHCl$. The experimental results were in good agreement with the calculation results. $(CH_3)_2$ SiHCl is converted to $(CH_3)_2$ SiCl₂ in a chlorination reaction, which is conducive to the removal of carbonaceous impurities from $SiHCl₃$ by distillation in the improved Siemens method. RSC Advances

Table 8 Lengy Lenies are Gibbs bee every change in PoC_v, then α March 2023. The common in the material in the common common in the common common in the common common in the common in the common in the c

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was financially supported by the Major Science and Technology Project of Xinjiang Bingtuan (No. 2017AA007, 2020AA004) and the Major Science and Technology Project of Shihezi (No. 2020ZD02).

References

- 1 F. Chigondo, From Metallurgical-Grade to Solar-Grade Silicon: An Overview, Silicon, 2017, 10, 789–798.
- 2 J. Gong, C. Li and M. R. Wasielewski, Advances in solar energy conversion, Chem. Soc. Rev., 2019, 48, 1862–1864.
- 3 N. Zhang, Q. Zheng, Y. Wang, D. Wang, W. Peng, J. Zhang, J. Zhang and J. Liu, Theoretical study on the reaction mechanism of $Si₂Cl₆$ and HCl catalyzed by amine catalysts, New J. Chem., 2022, 46, 17977–17984.
- 4 Q. Geng and G. Huang, Catalytic conversion of carboncontaining impurity methyldichlorosilane to purify raw material trichlorosilane of polysilicon production, React. Chem. Eng., 2022, 2022, 1544–1554.
- 5 S. Ranjan, S. Balaji, R. A. Panella and B. E. Ydstie, Silicon solar cell production, Comput. Chem. Eng., 2011, 35, 1439– 1453.
- 6 G. Huang and M. Zhang, Reactive distillation purification method and device for removing carbon-containing impurities from chlorosilane, CN Pat., CN110980742A, 2020.
- 7 H. Wang, J. Chen, C. Hua and Y. Liu, Device and method for preparing high-purity trichlorosilane by adsorption of methyl chlorosilane impurities, CN Pat., CN109205627A, 2018.
- 8 Y. Wan, J. Xiao, D. Yan and J. Liu, Removal of methyldichlorosilane from trichlorosilane via photochemical chlorination, Jingxi Huagong, 2020, 37, 201– 206.
- 9 M. Zhang and G. Huang, Conversion reaction process of methyldichlorosilane in chlorosilane, Jingxi Huagong, 2020, 37, 758–764.
- 10 M. Ishida, S. Hiroshi and H. Masyuki, Method for producing trichlorosilane, JP Pat., JP2014152093A, 2013.
- 11 H. Wang, J. Chen, C. Hua, Y. Liu and F. Li, Device and method for removing methyldichlorosilane from trichlorosilane by means of reactive distillation, WIPO Pat., WO2020103799A1, 2020.
- 12 K. Chulsky and R. Dobrovetsky, $B(C_6F_5)_3$ -Catalyzed Selective Chlorination of Hydrosilanes, Angew. Chem., Int. Ed., 2017, 56, 4744–4748.
- 13 Y. Fu, Y. Jiang, H. Yin, L. Shen, Y. Feng and A. Wang, Catalytic chlorination of methylphenyldichlorosilane with gaseous chlorine to chlorinated methylphenyldichlorosilanes over Lewis acids, J. Ind. Eng. Chem., 2014, 20, 1022–1029.
- 14 H. Firouzabadi, N. Iranpoor and B. Karimi, Tungsten Hexachloride (WCl₆) in the Presence of Dimethylsulfoxide Promoted Facile and Efficient One-Pot Ring Expansion-Chlorination Reactions of 1,3-Dithiolanes and 1,3- Dithianes, Synlett, 1999, 1999, 413–414. Published on 11. March 2023. Downloaded on 11. March 2023. Downloaded on 2023. Downloaded on 2023. Downloaded on 4/14/2025 11:06:20 AM. This article is licensed under a Common Common Common Common Common Common Common Comm
	- 15 B. Boualy, L. E. Firdoussi, M. A. Ali and A. Karim, Allylic chlorination of terpenic olefins using a combination of MoCl5 and NaOCl, J. Braz. Chem. Soc., 2011, 22, 1259–1262.
	- 16 A. A. Mekkaoui, M. Laayati, H. Orfi, L. El Firdoussi and S. El Houssame, Catalytic Allylic Chlorination of Natural Terpenic

Olefins Using Supported and Nonsupported Lewis Acid Catalysts, J. Chem., 2020, 2020.

- 17 S. Huo, H. Chen and W. Zuo, Selective Chlorination of Methane Photochemically Mediated by Ferric Chloride at Ambient Temperature, Chin. J. Org. Chem., 2021, 41, 1683– 1690.
- 18 M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, et al., Gaussian 16 Revision C. 01, Gaussian, Inc., Wallingford CT, 2016.
- 19 C. Gonzalez and H. B. Schlegel, Reaction path following in mass-weighted internal coordinates, J. Phys. Chem., 1990, 94, 5523–5527.
- 20 R. V. G. Ewens and M. W. Lister, The structures of molybdenum pentachloride and tungsten hexachloride, Trans. Faraday Soc., 1938, 34, 1358–1362.
- 21 Y. Kawashima, The rotational spectrum of chlorodimethylsilane using Fourier transform microwave spectroscopy, J. Mol. Struct., 2001, 563–564, 227–230.
- 22 H. Takeo and C. Matsumura, The Microwave Spectra, Molecular Structures, and Quadrupole Coupling Constants of Methyltrichlorosilane and Trichlorosilane, Bull. Chem. Soc. Jpn., 1977, 50, 1633–1634.
- 23 J. D. DeSain, L. Valachovic, L. E. Jusinski and C. A. Taatjes, Reaction of chlorine atom with trichlorosilane from 296 to 473 K, J. Chem. Phys., 2006, 125, 224308.