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Phosphanyl-substituted tin(II) half sandwich complexes are reported. Due to the Lewis acidic tin center and

Lewis basic phosphorous atom they form head-to-tail dimers. Their properties and reactivities were

investigated both experimentally and theoretically. Furthermore, related transition metal complexes of

these species are presented.
Introduction

Organometallic complexes exhibiting h5-bonded cyclopentadienyl
(Cp) ligands are well-known species nowadays. The most common
variants are complexes with two h5-Cp ligands, commonly referred
to as metallocenes, and complexes with only one h5-Cp ligand,
usually referred to as half-sandwich complexes.1 While many
examples of such species are known for transitions metals, this
structural motif can also be found in p-block chemistry.2 For
instance, the rst example of a group 14 half-sandwich complex
was cyclopentadienyltin chloride, CpSnCl, which was reported by
Noltes et al. in 1972,3 about 16 years aer Fischer and Grubert had
described the related metallocene parent compound stannocene,
Cp2Sn,4 and a few years before Lappert et al. and Veith reported the
rst diorganostannylenes with s-bonded substituents (Chart 1).5

While the latter are commonly regarded as the rst examples of
stable diorganostannylenes, stannocene, Cp2Sn, and cyclo-
pentadienyltin chloride, CpSnCl, are also divalent tin(II)
compounds of the general type R2Sn, but differ signicantly from
“typical” stannylenes in their properties and reactivities. Among
other things, the central tin atoms in Cp2Sn and CpSnCl exhibit
mostly electrophilic character but only minor nucleophilic
character.6

Nowadays, different half-sandwich complexes of tin(II) with
various cyclopentadienyl groups and different substituents bound
to the tin atom are known, but noteworthy, the substitution patterns
on the Cp ligands are almost exclusively limited to H atoms, or alkyl
and aryl groups.2b,3,7,8 Donor groups at the Cp ligands of tin half-
sandwich complexes on the other hand are unknown as of yet.
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Since low valent tin species have attracted wide attention for
their applications ranging from coordination chemistry to small
molecule activation and homogeneous catalysis,9 and following
our recent studies on phosphanyl-functionalized stannocenes and
other main-group metallocenes,10 we herein report the related
phosphanyl-functionalized tin half-sandwich complexes, which
exhibit Lewis amphiphilic character due to a Lewis acidic tin atom
and a Lewis basic phosphanyl group attached to the Cp ligand.

Results

Recently, our group reported on diphosphanylstannocenes,
which exhibit moderate Lewis amphiphilic character, due to
Lewis basic phosphorus centres and mildly Lewis acidic tin
atoms.10 Following established procedures for the synthesis of
tin(II) half-sandwich complexes,2,7 we reacted
Chart 1 Overview of selected R2Sn(II)-type compounds.

RSC Adv., 2023, 13, 10249–10253 | 10249

http://crossmark.crossref.org/dialog/?doi=10.1039/d3ra01384g&domain=pdf&date_stamp=2023-03-31
http://orcid.org/0000-0002-5969-6618
https://doi.org/10.1039/d3ra01384g
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3ra01384g
https://rsc.66557.net/en/journals/journal/RA
https://rsc.66557.net/en/journals/journal/RA?issueid=RA013015


RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

1 
M

ar
ch

 2
02

3.
 D

ow
nl

oa
de

d 
on

 7
/2

4/
20

25
 5

:5
1:

09
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
bis(diisopropylphosphanyl)stannocene, dippSn, with tin(II)
chloride and obtained the heteroleptic system 1a (Scheme 1).
Furthermore, the corresponding triate 1b could be obtained,
by reacting 1a with trimethylsilyltriate, in analogy to literature
reports (Scheme 2).11

To gain further insight into the electronic properties of
phosphanyl-functionalized half-sandwich compound 1a,b and
to assess whether the CpSnCl and 1a,b do indeed possess more
Scheme 1 Synthesis of 1a by the reaction of dippSn with SnCl2.

Scheme 2 Synthesis of 1b via treatment of 1a with Me3SiOTf.

Fig. 1 Fluoride ion affinities (FIA; green), and global electrophilicity
indices (GEI; red), for Cp2Sn, dippSn, CpSnCl, 1a and 1b calculated at
B3LYP-D3/def2-TZVP.

Table 1 31P NMR chemical shifts and acceptor numbers (AN) of trieth
CpSnCl, and 1a,b

Compound d31Pa (ppm) (Dd31P = d31Psam

Et3PO 46.2
Cp2Sn$OPEt3 49.4 (Dd31P = 3.4)
dippSn$OPEt3 46.7 (Dd31P = 0.5)
CpSnCl$OPEt3 61.1 (Dd31P = 14.9)
1a$OPEt3 61.8 (Dd31P = 15.6)
1b OPEt3 64.0 (Dd31P = 17.8)

a C6D6; r.t.

10250 | RSC Adv., 2023, 13, 10249–10253
Lewis acidic central atoms than the related homoleptic metal-
locenes, we performed DFT calculations to obtain uoride ion
affinities (FIA) and global electrophilicity indices (GEI) (Fig. 1).12

The results suggest that the metallocene-type compounds
Cp2Sn and dippSn possess GEIs of 1.32 to 1.35 eV, while GEIs of
1.98 to 2.26 eV are computed for CpSnCl and 1a,b. Similarly,
lower FIAs are computed for Cp2Sn and dippSn than for CpSnCl
and 1a,b. Thus, these results suggest that 1a,b do indeed
possess a more pronounced Lewis acidity than their stannocene
counterparts. To obtain experimental evidence for this, we
conducted measurements following the Gutmann–Beckett
method (Table 1).13 Indeed, signicantly higher Dd31P values of
14.9 to 17.8 ppm and acceptor numbers (ANs) of 32.9 to 39.3 are
obtained for CpSnCl and 1a,b, than for their metallocene
counterparts, Cp2Sn and dippSn, which is in qualitative agree-
ment to the afore discussed DFT calculations.

1a and 1b exhibit 119Sn NMR chemical shis of
d119Sn(1a)(CP/MAS) = −709 and d119Sn(1b)(CP/MAS) = −928,
which is rather unusual for a tin(II) half sandwich compound
(e.g. d119Sn(CpSnCl)(CP/MAS) = −1580).14 Moreover, the solid
state 31P{1H} NMR spectra, exhibit signals at d31P(1a)(CP/MAS)
= 4.3 and d31P(1b)(CP/MAS) = 19.2, accompanied by 117/119Sn
satellites with coupling constants of 1JPSn = 950 Hz (1a), 1JPSn =
1460 Hz (1b), clearly reecting an Sn–P bonding interaction. To
gain further insight into the structures of 1a and 1b, we deter-
mined the crystal structures via X-ray diffraction. 1a crystallized
in the monoclinic space group P21/c and 1b in the triclinic space
group P�1, each with one formula unit ((iPr2PC5H4)SnX) per
asymmetric unit. Interestingly, due to its Lewis amphiphilic
character and inability for intramolecular quenching, 1a,b form
head-to-tail dimers with Sn–P contacts of 279.08(13) pm (1a)
and 279.58(4) pm (1b) (Fig. 2 and 3). Compared to related
compounds, these Sn–P bonds are relatively long ([(TMS2N)2-
Sn(Cl)PPh]2: d(Sn–P)= 257.06(6) pm (ref. 15)). Furthermore, the
Cp rings in 1a and 1b are bound in what may best be described
as a heavily distorted h5 coordination. Although the Sn–CCp

bonds are relatively unequal (1a: 243.56(44) to 315.68(43) pm;
1b: 245.73(18) to 300.45(19) pm), the C–C bonds within the Cp
rings are fairly uniform (1a: 138.81(57) to 141.65(64) pm; 1b:
139.48(24) to 142.84(22) pm), indicating a certain degree of
aromaticity.

The Sn–Cl bond length in 1a is 247.54(12) pm, which is
considerably shorter than in CpSnCl (324 to 326 pm16), but this
is related to the different structure of CpSnCl in the solid-state.
ylphosphine oxide and corresponding adducts with Cp2Sn, dippSn,

ple − 46.2) AN (2.21 × (d31Psample − 46.2))

0
7.5
1.1

32.9
34.5
39.3

© 2023 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3ra01384g


Fig. 2 Molecular structure of 1a in the crystal (displacement ellipsoids
at 50% probability level, hydrogen atoms omitted for clarity). Selected
bond lengths [pm]: Sn–Cl: 247.54(2); Sn–P: 279.08(2).

Fig. 3 Molecular structure of 1b in the crystal (displacement ellipsoids
at 50% probability level, hydrogen atoms omitted for clarity). Selected
bond lengths [pm]: Sn–O: 233.48(14); Sn–P: 279.58(4).

Fig. 4 Relative energy differences between monomeric 1a, related
chloro-bridged dimer, and P–Sn dimer, 1a, calculated at B3LYP-D3/
def2-SVP (energies in kJ mol−1).

Scheme 3 Synthesis of 2a,b by the reaction of 1awith (COD)PdCl2 and
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Noteworthy, the 31P NMR chemical shis in solution are very
similar to the ones observed in the solid-state (d31P(1a)(CD2Cl2)
= 3.6 and d31P(1b)(CD2Cl2) = 19.8), suggesting the dimeric
structures may be persistent in solution. Dimeric/oligomeric
structures are not uncommon for tin(II) half-sandwich halides
in the solid state, although CpSnCl forms a chloro-bridged
polymer.16 To investigate the dimerization energy of 1a, we
conducted DFT calculations (Fig. 4).

These calculations clearly suggest that a head-to-tail dimer
with dative Sn–P bonds is preferred over a chloro-bridged
structure and that the overall dimerization energy is
167.7 kJ mol−1. This is in line with the assumption that 1a and
1b exist predominantly as dimers in solution at room
temperature.

Inspection of the frontier orbitals reveals that the LUMO has
a large coefficient at the tin atom in the shape of a p orbital,
which is typical for stannylene-type compounds. The HOMO
corresponds to the lone-pair at the phosphorous atom, in-line
with the compounds Lewis amphiphilicity and its head-to-tail
dimerization, while the lone-pair at the tin atom is lower in
energy and corresponds to the HOMO-3 (Fig. S25†).17
© 2023 The Author(s). Published by the Royal Society of Chemistry
As many phosphines and tetrylenes are potent ligands for
metal fragments and the latter can undergo oxidative addition
reactions, we probed the reactivity of 1a towards metal halides
and reacted it with palladium dichloride and platinum
dichloride (Scheme 3). In both cases, an oxidative addition
reaction at the low valent tin centres takes place and the cor-
responding stannylide complexes 2a,b were obtained. Storage
of solutions of 2a,b at 253 K afforded red (2a) and orange (2b)
crystals, suitable for single crystal X-ray diffraction analysis.
Both compounds crystallize in the monoclinic space group C2/c
with half a formula unit ((iPr2PC5H4)SnCl2M0.5) per asymmetric
unit (Fig. 5). The structures show two stannylide ligands per
metal centre coordinated in a bidentate square-planar fashion
with Sn–[M] bond lengths of 256.34(4) pm ([M] = Pd)/257.02(4)
pm ([M] = Pt) and P–[M] bond length of 233.48(4) pm ([M] =
Pd)/232.58(10) pm ([M] = Pt). This is in-line with bond lengths
found in related complexes ([ClPd(SnCl2Ph)(PPh2Py)2]:18

252.49(3) pm; [Pt(Sn(CH3)2(m-C2H4)(PPh2))2]:19 259.73(5) to
260.47(5) pm). Two short and three long C–C bonds within the
Cp rings in 2a,b indicate a diene-type situation, with h1/s
bound tin atoms. The coordination geometry of the group 10
metal is distorted square planar (2a: Sn–Pd–P: 82.2°, 97.7°; 2b:
Sn–Pt–P: 82.1°, 97.8°).

With the aim of increasing the Lewis acidity of the tin centre,
we explored the possibility to generate a (diisopropylphos-
phanyl)-cyclopentadienyl tin cation. However, treatment of 1a
with lithium and sodium salts of weakly coordinating anions
(e.g. lithium hexauorophosphate and sodium tetrakis-(penta-
uorophenyl)borate) to abstract the chloride and obtain the
corresponding stannyliumylidene were unsuccessful and led to
complex mixtures of products. We therefore investigated the
PtCl2.

RSC Adv., 2023, 13, 10249–10253 | 10251
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Fig. 5 Molecular structures of (a) 2a and (b) 2b in the crystal
(displacement ellipsoids at 50% probability level, hydrogen atoms
omitted for clarity). Selected bond lengths [pm] and angles [°]: (a): Sn–
Pd: 256.34(1); P–Pd: 233.48(1); Sn–Pd–P: 82.185(1); Sn–Pd–P:
97.735(1); (b): Sn–Pt: 257.02(1); P–Pt: 232.58(1); Sn–Pd–P: 82.131(1);
Sn–Pd–P: 97.824(1).

Fig. 6 Molecular structure of 3 in the crystal (displacement ellipsoids
at 50% probability level, hydrogen atoms and anions omitted for
clarity). Selected bond lengths [pm]: Sn–Cl: 283.66(18)/285.26(19); P–
Ag: 238.49(13)/238.57(15); Ag–Cl: 285.03(17); Sn–Cpcentriod: 223.51(5)/
224.50(4).
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possibility of using a silver tetrakis(peruoro-tert-butoxy)
aluminate salt as chloride abstraction agent. This strategy was
reported to be successful for the generation of a cyclo-
pentadienyltin cation, by Krossing et al.20 Thus, we reacted 1a
with silver tetrakis(peruoro-tert-butoxy)aluminate in
dichloromethane and indeed a chloride abstraction and
precipitation of silver chloride was observed, along with the
arise of a new resonance in the 119Sn{1H} NMR spectrum at
d119Sn NMR = −2122 (Scheme 4).

Storage of the reaction solution at 253 K resulted in the
formation of colorless crystals suitable for single crystal X-ray
diffraction. Most interesting, the solid-state structure did not
reveal the targeted cation, but a complex with two (diisopro-
pylphosphanyl)cyclopentadienyl tin cation units complexing
a silver chloride moiety (Fig. 6). The Sn–Cp bonding in silver
complex 3 can best be described as distorted h5, with relatively
uniform C–C bond lengths within the Cp ring (138.81(13) to
143.69(74) pm), indicating a certain degree of aromaticity. The
Sn–Cl bonds measure 283.66(18) and 285.26(19) pm which is
signicantly longer than in 1a (247.54(2) pm), in-line with the
Sn–Cl–Sn multi-centre bond, but shorter than Sn–Cl contacts in
CpSnCl (324 to 326 pm (ref. 7a)). The P–Ag bonds in 3 are
238.49(13) and 238.57(15) pm, which is slightly shorter than in
comparable complexes ([(Ph3P)2AgCl]:16 246.7(2)/247.2(2) pm;
[(Ph3P)3AgCl]:21 252.0(1)/255.2(1)/255.6(1) pm). Most interest-
ingly, the Ag–Cl distance in 3measures 285.03(17) pm, which is
signicantly longer than what is found in “traditional” silver
Scheme 4 Synthesis of 3[WCA]2 by the reaction of 1a with Ag[WCA]
(WCA = Al(OC(CF3)3)4).

10252 | RSC Adv., 2023, 13, 10249–10253
chloride phosphine complexes ([(Ph3P)3AgCl]:21 255.2(1) pm;
[(Ph3P)2AgCl]:16 259.6(2) pm), indicating a rather weak Ag–Cl
bonding interaction. This elongation results from the unique
bonding motive in 3, in which the chloride atom exhibits
a formal coordination number of three, as it is bonded to the
two tin atoms in addition to the silver centre, giving it a dis-
torted trigonal planar geometry (Ag–Cl–Sn: 100.7°, 103.3°; Sn–
Cl–Sn: 151.1°). Similarly, the silver atom also exhibits a dis-
torted trigonal planar coordination environment (P–Ag–Cl:
98.8°, 96.3°; P–Ag–P: 164.8°). The structure of 3 is maintained in
solution, as the 31P{1H} NMR spectrum shows two doublet
which arises from coupling with the 107Ag and 109Ag nuclei
(1J31P107Ag = 471 Hz; 1J31P109Ag = 544 Hz). However, prolong stirring
of a solution of 3[WCA]2 in benzene-d6 led to decomposition.
Conclusions

Wewere able to synthesize the rst phosphanyl substituted tin(II)
half-sandwich complexes, 1a,b, which properties differ signi-
cantly from previously reported CpSnCl. In the solid state, head-
to-tail dimers with Sn–P bonds are observed, which are main-
tained in solution. Transition metal complexes 2a and 2b could
be synthesized by oxidative addition reactions, which both
exhibit a square planar geometry at the central transition metal
atom in the solid state. By the reaction of 1a with silver tetra-
kis(peruoro-tert-butoxy)aluminate, a cationic silver chloride
complex, 3, with two tin half-sandwich moieties was obtained.
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