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gaps of MOFs on small data by
deep transfer learning with data augmentation
strategies†
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An Su * and Yuan-Bin She *

Porphyrin-based MOFs combine the unique photophysical and electrochemical properties of

metalloporphyrins with the catalytic efficiency of MOF materials, making them an important candidate

for light energy harvesting and conversion. However, accurate prediction of the band gap of porphyrin-

based MOFs is hampered by their complex structure–function relationships. Although machine learning

(ML) has performed well in predicting the properties of MOFs with large training datasets, such ML

applications become challenging when the training data size of the materials is small. In this study, we

first constructed a dataset of 202 porphyrin-based MOFs using DFT computations and increased the

training data size using two data augmentation strategies. After that, four state-of-the-art neural network

models were pre-trained with the recognized open-source database QMOF and fine-tuned with our

augmented self-curated datasets. The GCN models predicted the band gaps of the porphyrin-based

materials with the lowest RMSE of 0.2767 eV and MAE of 0.1463 eV. In addition, the data augmentation

strategy rotation and mirroring effectively decreased the RMSE by 38.51% and MAE by 50.05%. This study

demonstrates that, when proper transfer learning and data augmentation strategies are applied, machine

learning models can predict the properties of MOFs using small training data.
Introduction

The excessive consumption of fossil fuels has led to the emis-
sion of large amounts of greenhouse gases and carbon dioxide
into the atmosphere, as well as to a global energy crisis. The
photocatalytic reduction of CO2 into valuable solar fuel by
simulating natural photosynthesis using semiconductor mate-
rials is considered one of the best solutions to the above
problems.1–3 Photocatalysts with suitable band gap values are
indispensable in photocatalytic CO2 reduction reactions.4

Metal–organic frameworks (MOFs) are crystalline porous
materials composed of metal or metal ion clusters as nodes and
organic molecules as bridging ligands connected by coordina-
tion bonds.5 Among them, porphyrin-based MOFs have the
advantages of tunable band structure, abundant active sites,
large specic surface area, and uniform tunable cavities, which
makes them a very promising photocatalytic material.6

Porphyrin-based MOFs utilize porphyrins as bridging ligands.
Due to their unique large ring cavity and large pyrrole ring,
porphyrins exhibit strong interactions with CO2, making
g University of Technology, Hangzhou
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porphyrin-based molecular materials attractive for CO2 capture
and conversion.7 By introducing porphyrins into the design of
metal–organic framework structures, the favorable photo-
chemical properties of porphyrin molecules can be combined
with the structural advantages of the framework materials to
achieve a synergistic optimization effect.

Theoretical and experimental data in materials science have
grown exponentially in the last few decades. In computational
materials science, this abundance of data is largely due to the
success of density functional theory (DFT) and signicant
advances in computational power.8–10 On the other hand,
machine learning models extract lower-order features into more
complex and abstract higher-order features and discover
internal trends and patterns from large data sets. There have
been many applications of ML in the materials eld11–13 and
satisfactory prediction performance has been achieved on the
properties of MOFs.7,14 However, advanced machine learning
models (e.g. deep neural networks) require a large amount of
data for training to make convincing predictions, which is
difficult to meet for certain types of materials, such as
porphyrin-based MOFs. In the machine learning of drug-like
small molecules on limited data, transfer learning and data
augmentations are two strategies that are considered to be
effective in improving prediction performance,15–19 but such
methods have been less commonly used for the ML of materials
science.13,20–23
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In this work, we proposed a deep transfer learning approach
combined with data augmentation strategies to predict the
band gaps of porphyrin-based MOFs. A new dataset of the band
gaps of porphyrin-based MOFs (PMOFs) was curated by density
functional theory (DFT)-based calculations. In addition, data
augmentation strategies on MOF structures, such as rotation
and mirroring, were performed on this dataset. On the other
hand, transfer learning was performed by rst training four
graph neural network models on a large open-source database,
QMOF, which consists of 20 375 MOF materials, to equip the
models with basic knowledge of MOF structures. These pre-
trained models were further trained (ne-tuned) with original
or augmented PMOF datasets for predicting the band gaps of
porphyrin-based MOFs. The paper mainly focuses on discus-
sing the effect of transfer learning and different data augmen-
tation strategies on improving the performance of the graph
neural network models in the prediction of PMOF band gaps.
Methods
Curation of the porphyrin-based MOFs (PMOF) dataset

We collected and selected 17 porphyrin-based MOFs materials
with various organic ligands, metal ions or clusters, and overall
structures from Cambridge Crystal Structure Database (CSD)
and the literature.24 The porphyrin-based central metals of
these 17 porphyrin-based MOFs materials were changed several
times to obtain the nal PMOF dataset which contains 202
porphyrin-based MOFs materials. An example of the structure
of a porphyrin-based MOF is shown in Fig. 1.
Fig. 1 A representative porphyrin-based MOF structure in PMOF202 dat
Zn; views of the single-layer structure of PMOF along (b) X-axis, (c) Y-ax

© 2023 The Author(s). Published by the Royal Society of Chemistry
The bandgap calculations were based on the density func-
tional theory (DFT) using generalized gradient approximation
(GGA) for exchange-correlation potential. In our calculations,
the structures were represented by primitive cell. We used the
PBE function25 for GGA as implemented in VASP.26,27 The widely
used and computationally tractable PBE exchange-correlation
functional with Grimme's D3 dispersion correction28 and
Becke–Johnson (BJ) damping29 was used to generate the
porphyrin-based MOFs dataset for training machine learning
models. PBE with dispersion corrections has been shown to
accurately capture the geometries of MOFs.30,31 Hubbard
corrections were applied (PBE+U) to improve the description by
the GGA of the highly-localized orbitals of the transition metal
atoms.32 We used Ueff values of 3.1, 3.5, 4.0, 4.0, 3.3, 6.4, and
4.0 eV for V, Cr, Mn, Fe, Co, Ni, and Cu, respectively.33 About
spin-polarization, any d-block metals (excluding Zn, Cd, and
Hg) were initialized with a magnetic moment of 5 mB. The
energy cutoffs, convergence in energy, and force were set to
520 eV, 10−6 eV, and 0.03 eV Å−1, respectively. The Brillouin
zone was sampled using G-centered k-points meshes with
a resolution of 2p × 0.04 Å−1.

From the 202 MOFs in the database, 34 MOFs were selected
as the test set, following a uniform band gap distribution,
named PMOF34. The remaining 168 data were used for training
and validation, named PMOF168.
Quantum MOF (QMOF), the database for pre-training

The Quantum MOF (QMOF) database (https://doi.org/10.6084/
m9.gshare.13147324, accessed on March 9, 2023) which
aset: AlMOF-Zn. (a) Aerial view of the single-layer structure of AlMOF-
is and (d) Z-axis.
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currently contains 20 375 MOFs34 was used as the pre-training
dataset in this study. The band gap of QMOF was calculated
using the Perdew–Burke–Ernzerhof (PBE) exchange-correlation
functional in the Vienna ab initio Simulation Package (VASP)
soware. A Python package pymatgen was used to obtain the
band gap.
Models

In material science, structure and composition are the two basic
features of materials. Therefore, the types and coordinates of
the atoms constitute the most basic structure of materials data.
In a graph neural network (GNN), the atoms in a material
molecule are considered nodes, while the atom interactions or
chemical bonds are described as edges. The nodes and edges
constitute a graph representation of a material. In this study, we
used the Matdeeplearn platform35 (https://github.com/vxfung/
MatDeepLearn, accessed on March 9, 2023), an open-source
graph neural network framework for materials chemistry that
contains several state-of-the-art GNN models. The framework
rst converts the input graph structure information into
a matrix of specied dimensions and then feeds the matrix into
multiple graph convolution layers. Four different convolutional
neural networks were selected in this study for comparison, and
their convolutional operators are represented by eqn (1)–(4),
and the architecture of the selected models is shown in Fig. 2.

(1) The SchNet36 convolutional operator:
Fig. 2 Four graph neural network model architectures selected in this s

16954 | RSC Adv., 2023, 13, 16952–16962
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(1)

where di,j is the interatomic distance between atom i and atom j,
hQ is a neural network containing dense layers which generate
lters from interatomic distances.

(2) The Crystal Graph Convolutional Neural Network
(CGCNN)37 convolutional operator:
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where s and g are sigmoid and soplus functions
respectively.

(3) The MatErials Graph Network (MEGNet)38 convolutional
operator:

e
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xi4xj4ei;j
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x

0
i ¼ hQv

  
1

NðiÞ
X
j˛NðiÞ

ei;j
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(3)

where at beginning of each MEGNet graph convolutional block,
two dense layers are added. hQe and hQv are edge and node
update functions, which are used in two dense layers.

(4) The Graph Convolutional Network (GCN)39 convolutional
operator:
tudy.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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x
0
i ¼ Q

X
j

1ffiffiffiffiffiffiffiffi
d̂ i d̂ j

q xj (4)

where Q is a purely linear update function.

Data augmentation

Unlike graphical information in computer vision, molecular
graphical information that records material structure cannot be
arbitrarily altered, so common data augmentation methods in
other elds, such as noise addition, coordinate scaling, rota-
tion, cropping, and copy augmentation, cannot be used for
material information. Fortunately, rotation and mirroring are
two methods that can be used for the data augmentation of
material structure information. Each structure in PMOF168 is
rotated and mirrored in 5 different ways similar to a previously
developed method16 to augment the number of data from 168 to
1008, and the augmented dataset was named DA1008. More
details on the data augmentation are provided in Fig. S1 in the
ESI.†

Fused ne-tuning datasets

Another data augmentation strategy was tried by moving MOFs
similar to PMOFs from the QMOF pre-training set to the ne-
tuning set. The Average SOAP kernel7,30–32 is a featurization
method that encodes information about local atomic environ-
ments in a structure and then uses an appropriate kernel
function to measure the structural similarity between every pair
of structures in a given dataset. Different number of MOF
structures with the highest similarity to porphyrin-based MOFs
were screened from the QMOF database and merged with the
DA1008 dataset to obtain fused ne-tuning datasets.

Training-test split and evaluation metrics

The QMOF pre-training dataset was divided into training and
validation sets in the ratio of 8 : 2. The ne-tuning datasets,
including PMOF168, DA1008, and the fused ne-tuning data-
sets, were divided into the training and validation sets in the
ratio of 8 : 2, respectively. PMOF34 was xed as the test set for
the nal evaluation of the model performance. The root mean
square error (RMSE) and mean absolute error (MAE) were
selected to quantitatively describe the accuracy of the model
predictions.
Fig. 3 The procedure of deep transfer learning of porphyrin-based MO

© 2023 The Author(s). Published by the Royal Society of Chemistry
Results

The workow of this study is shown in Fig. 3. First, data from
the public MOF dataset QMOF was used to pre-train four graph
neural network models. Next, four datasets created by different
data augmentation strategies were used to ne-tune the pre-
trained models: (1) the original PMOF168 dataset calculated
in this study; (2) the DA1008 dataset given by the PMOF dataset
being augmented by rotation and mirroring; (3) the SOAP1200
dataset which consists of QMOF structures that are most similar
to PMOF, found by the Average SOAP kernel; and (4) the fused
datasets containing the SOAP1200 dataset merged with
PMOF168 or DA1008 datasets. The models ne-tuned by these
different datasets were evaluated on the PMOF34 test set for
their performance in the prediction of PMOF band gaps.

Porphyrin-based MOFs (PMOF202)

17 porphyrin-based MOFs (PMOFs) were collected from the
Cambridge Crystal Structure Database (CSD) and the literature
(Table 1 and Fig. 4). Aerward, we changed the porphyrin core
metals (Mg, Ca, Sr, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, and Cd) of
these PMOFs to obtain more PMOFs. The structures of all
PMOFs were veried aer solvent removal. These structures
were further optimized by density functional theory (DFT) and
the corresponding band gaps were calculated to form the
PMOF202 dataset containing 202 PMOFs (Table S1†).

Model pre-training

QMOF was used to pre-train the four graph neural network
models, CGCNN, GCN, MEGNet, and SchNet. The initial
learning rate was set to 0.002 for CGCNN and GCN and 0.0005
for MEGNet and SchNet, and the learning rate was automati-
cally reduced. The performance of the pre-training models is
shown in Table 2. The MEGNet model gave the best results with
an MAE value of 0.6492 eV for the PMOF34 test set, while the
CGCNN model performed the worst with an MAE value of
0.6564 eV. The learning curves are shown in Fig. S3.†

Performance of the models ne-tuned with PMOF168
(without data augmentation)

Table 3 shows the performance of the models pre-trained with
QMOF and ne-tuned with PMOF168, without any data
Fs in this study.

RSC Adv., 2023, 13, 16952–16962 | 16955
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Table 1 Porphyrin-based MOFs materials collected from CSD and literature

Porphyrin-based MOFs Porphyrin linkers Metal ions or clusters Ref.

[BMI]2{Mn[Mn(H2O)2–TCPP](H2O)2} TCPP MnO cluster 40
Al-MOF TCPP AlO cluster 41
[(CH3)2NH2][Zn2(HCOO)2(Mn–TCPP)]$5DMF$2H2O TCPP ZnO cluster 42
[(CH3)2NH2][Cd2(HCOO)2(Mn–TCPP)]$5DMF$3H2O TCPP CdO cluster 42
RuTBPZn-Cl TCPP RuO cluster 43
RuTBPZn-OH TCPP RuO cluster 43
[Ca(HBCPP)2(H2O)2]n(DMF)1.5n BCPP CaO cluster 44
[Mg(HBCPP)2(DMF)2]n$(DMF)7n BCPP MgO cluster 44
{[Cd(DMF)T3CPP]

4−$4(CdCl)+}n$(xDMF)n T3CPP CdO cluster 45
[(HgI2)2TPyP]$4 TCE TPyP Hg 46
[(ZnBr2)2TPyP]$6 TCE TPyP Zn 46
Ag[H2tpyp](NO3) TPyP Ag 47
[{Cu(hfacac)2}CuTPyP$6H2O]n TPyP CuO cluster 48
UTSA-57 TPPyzP Mn4Cl(ttz)8-(H2O)4 cluster 49
ZnPO-MOF DPBPFP ZnO cluster 50
DpyP – self-complementary tecton DPyP — 51
[Co(DpyDtolP)]6$12H2O DPyDtolP — 52
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augmentation applied. The learning curves are shown in Fig. S4.†
The results show that the validation error is signicantly higher
than the training error, suggesting that 168 data instances are too
few for proper ne-tuning of the pretrained models.
Fig. 4 Porphyrin linkers of collected porphyrin-based MOFs materials.

16956 | RSC Adv., 2023, 13, 16952–16962
Performance aer data augmentation

The PMOF168 dataset was augmented to the DA1008 dataset by
the rotation and mirroring methods introduced in the method
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 2 The prediction performance of four QMOF-pretrained models on the QMOF training set, QMOF validation set, and PMOF34 test set

Models

Training Validation Test (PMOF34)

RMSE (eV) MAE (eV) RMSE (eV) MAE (eV) RMSE (eV) MAE (eV)

CGCNN 0.0531 0.0280 0.3922 0.2496 0.7855 0.6564
GCN 0.3804 0.2569 0.5616 0.3961 0.7558 0.6457
MEGNet 0.0307 0.0231 0.3472 0.2118 0.7377 0.6492
SchNet 0.1159 0.0671 0.4036 0.2624 0.7429 0.6430

Table 3 The prediction performance of four PMOF168-finetuned models on the PMOF168 training set, PMOF168 validation set, and PMOF 34
test set

Models

Training Validation Test

RMSE (eV) MAE (eV) RMSE (eV) MAE (eV) RMSE (eV) MAE (eV)

CGCNN 0.0244 0.0173 0.3489 0.2050 0.3731 0.2197
GCN 0.1960 0.1004 0.4243 0.2842 0.4500 0.2989
MEGNet 0.1436 0.0714 0.3883 0.2451 0.4420 0.2717
SchNet 0.1868 0.1225 0.3427 0.2270 0.3949 0.2543

Table 4 The prediction performance of four models fine-tuned by
DA1008 on the DA1008 training and validation sets

Models

Training Validation

RMSE (eV) MAE (eV) RMSE (eV) MAE (eV)

CGCNN 0.0068 0.0051 0.0078 0.0059
GCN 0.0135 0.0104 0.0148 0.0113
MEGNet 0.0488 0.0226 0.0640 0.0261
SchNet 0.0070 0.0054 0.0069 0.0053
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section, which was also used to ne-tune the pretrainedmodels.
Comparing the test results of the four models (Table 4 and
Fig. 5), CGCNN, GCN, and SchNet had lower errors than the
models ne-tuned with PMOF168. CGCNN performed the best
in the nal test set with an RMSE of 0.2079 eV and an MAE of
0.1488 eV. In addition, we chose a pair of learning curves to
demonstrate the impact of data augmentation by rotation and
mirroring on the prediction performance of the models (Fig. 6).
The learning curves display the loss in the training set and the
loss in the validation set. The smaller the difference between the
two losses, the better the model generalizes (i.e. its ability to
predict samples it has never seen before). Such a difference in
the model ne-tuned by PMOF168 was about 0.2 higher than
the difference for the model ne-tuned by DA1008 (Fig. 6),
indicating this data augmentation method could signicantly
improve the ability of the models to predict unseen samples.
The complete learning curves of all four models are shown in
Fig. S5.†
Effect of Average SOAP kernel on transfer learning

The impact of the Average SOAP kernel on the transfer learning
of the models was evaluated. The Average SOAP kernel extracted
1200 MOFs from the QMOF database that had the highest
© 2023 The Author(s). Published by the Royal Society of Chemistry
average similarity to PMOFs to form the SOAP1200 dataset
(Fig. S2†). The dataset was then mixed with PMOF168 and used
to ne-tune the pretrained models (Table 5). Compared to Table
3 which shows the performance of models ne-tuned with
PMOF168, the performance of the models trained with addi-
tional SOAP data shows a signicant decrease of RMSE for GCN
(13.4%), MEGNet (29.1%), and SchNet (15.1%). The results
demonstrate that, when combined with PMOF168 and being
used as a fused ne-tuning dataset, SOAP1200 could further
improve the prediction performance of the models. The
learning curve is shown in Fig. S6.†

In addition, the pre-trained models were ne-tuned by
SOAP1200 only without any exposure to the PMOF dataset
(Table 6). The results show a test error about twice of themodels
ne-tuned with PMOF168 (Table 3), in addition, compared to
the models without any ne-tuning (Table 2), the ne-tuning by
SOAP1200 could only slightly improve the performance (e.g.
a 1.83% decrease of RMSE for CGCNN). Therefore, in this case,
the SOAP1200 dataset cannot replace the PMOF dataset, and the
Average SOAP kernel should not be used alone as a data
augmentation strategy.

Finally, we ne-tuned the models with the fused dataset
containing DA1008 and SOAP1200 to observe the effect of using
both data augmentation and Average SOAP kernel on the ne-
tuning of pre-trained models (Table 7 and Fig. S7†). The
results show the test error signicantly increased for CGCNN,
GCN, and SchNet compared to the one of the models ne-tuned
with DA1008 only (Table 4).

Therefore, by summarizing the results of Tables 5–7, we
could conclude that the SOAP1200 dataset, obtained by the
Average SOAP kernel method, would only improve the perfor-
mance of the model when it is combined with the original
PMOF dataset. The Average SOAP kernel could only serve as an
auxiliary data augmentation strategy when the size of the orig-
inal ne-tuning dataset was too small.
RSC Adv., 2023, 13, 16952–16962 | 16957
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Fig. 5 The prediction performance of fourmodels fine-tuned by DA1008.on the PMOF34 test set. (A) GCN; (B) CGCNN; (C) MEGNet; (D) SchNet.

Fig. 6 The learning curves of the GCNmodel fine-tuned by (A) PMOF168 and (B) DA1008. Note: the ranges of the two vertical axes are different.
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Computational cost

The training was completed on a desktop computer with
a single NVIDIA RTX 3060 12 GB GPU, DDR4 32 GB RAM, and
16958 | RSC Adv., 2023, 13, 16952–16962
Intel Core i7-11700 CPU. The computational costs of CGCNN
and SchNet are about the same, GCN has the least computa-
tional cost, and MEGNet has the most computational cost. The
specic values are shown in Table 8.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 5 The prediction performance of four models fine-tunedwith the SOAP1200-PMOF168 dataset on the SOAP1200-PMOF168 training and
validation sets and the PMOF34 test set

Models

Training Validation Test

RMSE (eV) MAE (eV) RMSE (eV) MAE (eV) RMSE (eV) MAE (eV)

CGCNN 0.0291 0.0177 0.3427 0.2283 0.3523 0.2327
GCN 0.0648 0.0453 0.4363 0.2957 0.3895 0.2778
MEGNet 0.0217 0.0164 0.3285 0.2146 0.3135 0.2140
SchNet 0.1035 0.0752 0.3632 0.2444 0.3353 0.2320

Table 6 The prediction performance of fourmodels fine-tuned by SOAP1200 on the SOAP1200 training and validation sets and PMOF34 test set

Models

Training Validation Test

RMSE (eV) MAE (eV) RMSE (eV) MAE (eV) RMSE (eV) MAE (eV)

CGCNN 0.0789 0.0550 0.2076 0.1409 0.7711 0.6719
GCN 0.0831 0.0526 0.4160 0.2910 0.7499 0.6099
MEGNet 0.0323 0.0242 0.2452 0.1480 0.7754 0.6821
SchNet 0.1030 0.0687 0.2474 0.1739 0.6611 0.5750

Table 7 Prediction performance of four models on the training set and validation set with the fine-tuning set SOAP1200+DA1008

Models

Training Validation Test

RMSE (eV) MAE (eV) RMSE (eV) MAE (eV) RMSE (eV) MAE (eV)

CGCNN 0.0135 0.0094 0.2213 0.1134 0.3350 0.2238
GCN 0.0558 0.0350 0.3062 0.1752 0.3823 0.2407
MEGNet 0.0087 0.0062 0.2239 0.1122 0.3633 0.2274
SchNet 0.0396 0.0265 0.2293 0.1269 0.3959 0.2668

Table 8 Average training time (units in seconds) of four models

Models
QMOF-pre-training
(500 epoch)

QMOF-DA1008 ne-tuning
(250 epoch)

CGCNN 6132 225
GCN 2716 112
MEGNet 14 056 481
SchNet 5983 224
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Discussions

Making accurate predictions for material properties is a chal-
lenging task, especially when the data availability of the desired
materials is limited. Despite the wealth of studies on porphyrin-
based MOFs in the past, no comprehensive datasets have been
established for systematic analysis. On the other hand, calcu-
lating the properties of materials using a uniform DFT method
consumes a signicant amount of computational resources. In
this study, we have discussed three strategies and their
combinations to solve this problem: (1) pre-training the model
based on a big and general QMOF database. (2) Mirroring and
rotation of PMOFs to expand the amount of ne-tuning data. (3)
Average SOAP kernel method to nd QMOFs most similar to
PMOFs to expand the ne-tuning data. We presented in Fig. 7
© 2023 The Author(s). Published by the Royal Society of Chemistry
the error histogram of the QMOF-pretrained graph convolu-
tional network (GCN) model as an example to summarize the
effect of different ne-tuning strategies. The positive inuence
of these ne-tuning datasets on the prediction performance of
the models from highest to lowest was DA1008 >
SOAP1200+DA1008 > SOAP1200+PMOF168 > PMOF168 >
SOAP1200 > no ne-tuning. Aer all, such an obvious advantage
of data augmentation by rotation and mirroring was observed
for all four models (Fig. 8). Compared to the models ne-tuned
by PMOF168, the decline of RMSE was 44.28% (CGCNN),
38.51% (GCN), 16.79% (MEGNet), 32.46% (SchNet) for the
models ne-tuned by DA1008.

With the application of QMOF pre-training and data
augmentation strategy of rotation and mirroring, the best result
of this study was the MAE of 0.1465 eV from the GCN model.
The result was compared with the QMOF bandgap data pre-
dicted using the MEGNet model reported by Rosen et al.53 in
2022, which had an MAE value of 0.228 eV. Such a signicantly
smaller MAE demonstrates the advantage of our deep transfer
learning and data augmentation strategy. Furthermore, no
overall increase of validation loss was observed on the learning
curves of GCN (Fig. 6), which demonstrated that our data
augmentation strategy could avoid overtting, a common
problem when the size of the training set was too small.
RSC Adv., 2023, 13, 16952–16962 | 16959
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Fig. 8 The heat map of the relative decrease in RMSE and MAE for the
validation set and test set (PMOF-34) from models fine-tuned by
PMOF168 to the ones fine-tuned by DA1008. The colors in the figure
indicate the magnitude of the change in RMSE and MAE values in eV.
The percentages in the grid indicate the relative decrease.

Fig. 7 Error histogram of the GCN model in predicting the test set with different fine-tuning strategies.
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It is worth noting that, similar to the band gaps calculated by
DFT, the band gaps predicted by deep learning models trained
on DFT-calculated data are usually lower than the experimen-
tally measured band gaps. We recommend two approaches to
deal with this problem. The rst approach is to use a linear
regression model to correct the DFT-calculated values to
experimental values. The study by Morales-Garcia et al.
provided two linear regression models that convert the band
16960 | RSC Adv., 2023, 13, 16952–16962
gaps calculated by PBE functional to experimentally determined
band gaps for semiconducting and insulating materials.54 The
other approach is to generate data using a functional that
calculates values closer to the experimental values to ne-tune
the deep learning models. Choudhuri and Truhlar demon-
strated that the MSE (with respect to experimental values) of the
MOF band gaps calculated with HSE06 was lower than the MSE
of the band gaps calculated with PBE or PBE+U.55 Due to the
computational resource and time constraints, we were unable
to use HSE06 in this study, but a previous study of ours showed
that data calculated by a functional different from the one
generating the pre-training dataset was effective in ne-tuning
the deep learning model with good results.23
Conclusion

Bandgap calculation of porphyrin-based MOFs (PMOFs) is
expensive and complex, and obtaining sufficient data to support
the training of neural network models for predicting PMOF
band gaps is difficult. To address these issues, we rst con-
structed a small porphyrin-based MOFs (PMOF) dataset and
used DFT to calculate their band gaps. Aerward, four graph
neural network models were pre-trained with the open-source
QMOF database and ne-tuned using this PMOF dataset. Two
data augmentation strategies were applied including rotation
and mirroring and an Average SOAP kernel approach. The
results found the best performance on the models pre-trained
by the QMOF database and ne-tuned by the PMOF dataset
augmented by rotation and mirroring. With such a training
strategy, GCN was the best model with a MAE as low as
© 2023 The Author(s). Published by the Royal Society of Chemistry
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0.1463 eV for predicting out-of-sample material band gaps.
These results demonstrated that the deep transfer learning-
based approach proposed in this paper could effectively
predict the properties of materials with small data volumes and
complex structures.
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