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of atomic force microscopy
images of organic solar cells†

Yasuhito Kobayashi,ab Yuta Miyake,c Fumitaka Ishiwari, cde Shintaro Ishiwata a

and Akinori Saeki *cd

The bulk heterojunction structures of organic photovoltaics (OPVs) have been overlooked in their machine

learning (ML) approach despite their presumably significant impact on power conversion efficiency (PCE). In

this study, we examined the use of atomic force microscopy (AFM) images to construct an ML model for

predicting the PCE of polymer : non-fullerene molecular acceptor OPVs. We manually collected

experimentally observed AFM images from the literature, applied data curing and performed image

analyses (fast Fourier transform, FFT; gray-level co-occurrence matrix, GLCM; histogram analysis, HA)

and ML linear regression. The accuracy of the model did not considerably improve even by including

AFM data in addition to the chemical structure fingerprints, material properties and process parameters.

However, we found that a specific spatial wavelength of FFT (40–65 nm) significantly affects PCE. The

GLCM and HA methods, such as homogeneity, correlation and skewness expand the scope of image

analysis and artificial intelligence in materials science research fields.
Introduction

Scalable and low-cost solar energy conversion devices are
indispensable to fostering sustainability in society. Conse-
quently, lightweight and colour-tunable organic photovoltaics
(OPVs) composed of binary and ternary organic semiconductors
have assumed a prominent position in scientic inquiry and
application to industries.1–3 Owing to recent advancements in
high-performance p-type conjugated polymers and n-type non-
fullerene acceptor molecules (NFA),4–6 the power conversion
efficiency (PCE) of OPVs has signicantly increased to nearly
20%.7–11 High performance is achieved through efficient pho-
toenergy conversion processes comprising photoabsorption,
exciton diffusion, charge separation and charge transport with
minimal loss.12–15 One of the essential factors in facilitating
these multi-physical phenomena is optimising the bulk heter-
ojunction (BHJ) structure of a p/n-blended lm, which is
fabricated through a solution process, including a p/n blend
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ratio, solvent, additive and annealing.16–21 The resulting
morphological and crystalline features of the BHJs are charac-
terized by atomic force microscopy (AFM),22–24 transmission
electron microscopy (TEM),25–27 X-ray diffractometry (XRD)28–30

and neutron scattering.31–33 Researchers typically assess the
quality of the morphology based on observed domain size,
surface roughness and uniformity. Generally, the morphology
of BHJ with small and ne domains shows a higher PCE than
that with large and coarse ones, owing to the large p/n surface
and high charge separation efficiency. However, advanced
analyses of massive image data and a deeper understanding
have been lacking so far.

Machine learning (ML) empowered by articial intelligence
(AI) has garnered signicant attention as an alternative
approach to rapidly discovering new materials and scientic
principles.34–37 In this context, ML has been increasingly
deployed for the exploration of organic electronic materials,
such as OPVs,38–45 organic light-emitting diodes (OLEDs)46–48

and organic thin-lm transistors (OTFTs).49–51 Typically, digital
ngerprints associated with chemical structures, molecular
properties obtained from experiments and quantum chemical
calculations and other extracted feature variables are learned in
conjunction with the respective objective variables, such as PCE
of OPVs, photoluminescence quantum yield of OLEDs and
charge carrier mobility of OTFTs. While the lm morphology of
these thin-lm devices is crucial to their performance, attempts
to incorporate image analysis data into ML models remain
challenging. Some examples of AFM (or TEM) image analysis
relating to OPVs include a fast Fourier transform (FFT) analysis
of poly(3-hexylthiophene) (P3HT) : [6,6]-phenyl-C61-butyric acid
RSC Adv., 2023, 13, 15107–15113 | 15107
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methyl ester (PCBM) lm,22 image recognition of brous
structures of P3HT lm,52 miscibility of binary/ternary mixture
in the framework of Flory–Huggins theory53 and electron spec-
troscopic imaging to identify polymer and NFA domains.54

Despite the informative acquisition of lm surface morphology
by widely used AFM, quantitative and comprehensive analyses
of these images in large datasets have remained unexplored,
possibly due to the non-uniformity in image quality, scattered
location in digital space and diverse image processing methods.

In this study, we present an approach where AFM images
were integrated into an ML model for predicting the PCE of
binary (polymer and NFA) BHJ-OPVs. Aer gathering AFM
images from literature sources, we performed data curation and
analysis, followed by the construction of an ML model. We
examined the combinational effects of material properties such
as bandgap (Eg) and highest occupied molecular orbital
(HOMO) of both polymers and NFAs. Our results indicate that
even though achieving high prediction accuracy of PCEs is
challenging, the characteristic FFT wavelength proved to be
crucial to PCE prediction. Our study establishes a basis for
interpreting AFM images and sets the stage for future explora-
tion of OPV materials.
Results and discussion

The workow of this study is illustrated in Fig. 1. The basis data
are binary polymer : NFA OPVs (the number of data = 1318),
which were previously collected by us from literature (the
number of papers, n = 558).24,55 The dataset comprises simpli-
ed molecular input line entry system (SMILES) of chemical
structure, HOMO, the lowest unoccupied molecular orbital
(LUMO), Eg, weight-averaged molecular weight (Mw) and poly-
dispersity index (PDI) of both polymer (SMILES is a repeating
Fig. 1 Schematic of the workflow in this study. The example AFM
images are taken from a literature24 with permission.

15108 | RSC Adv., 2023, 13, 15107–15113
unit) and NFA (M = the molecular weight and PDI = 1), along
with the OPV parameters (PCE; short-circuit current density, JSC;
open-circuit voltage, VOC; ll factor, FF). We dene HOMO,
LUMO, Eg, Mw (M) and PDI as the material properties and
polymer : NFA blend ratio, solvent and additive as the process
parameters (Table S1 (ESI†)). SMILES were converted to 2-
dimensional Mordred descriptors (1613 descriptors, Table S2
(ESI†))56 and used as the inputs. Then, we manually extracted an
AFM image (topography and phase) of each OPV device and
converted them to a jpg format. The image size (spatial length)
and height scale (the minimum height was shied to zero) were
also digitized. Totally, 1062 topography and 649 phase images
were obtained. The statistics of spatial size and height scale of
topographic images are shown in Fig. S1 (ESI†), where the
typical image size is 2 × 2 or 5 × 5 mm2, and the typical height
scale is 5–20 nm. Subsequently, we selected AFM images by
considering (1) no superimposition such as a sample name and
scale bar in the active area (750 × 750 nm2) and (2) height scale
availability. As a result, 890 images with a spatial size of 750 ×

750 nm2 and pixel size of 128 × 128 pixel2 (5.86 nm per pixel)
were extracted and applied to data curing (conversion to
a greyscale and brightness normalization by height). We did not
make data augmentation of images (e.g. rotation and inversion),
which is oen used for articial neural network. Each AFM
image corresponds to an individual device, where image
extraction at a different position in the same AFM image was
not performed. The AFM images in greyscale were analysed by
FFT,57,58 grey-level co-occurrence matrix (GLCM)59,60 and histo-
gram analysis (HA). The obtained parameters were used in the
ML investigation.

Fig. 2a shows FFT analysis of AFM images for the low
(1.03%),61 middle (8.02%)62 and high (17.1%)63 PCE. The 2-
Fig. 2 FFT analysis of AFM images. (a) Upper panels: original AFM
images (grey-scale); lower panels: their FFT images. The AFM images
of BHJ films (A, B, and C) were taken from literature61–63 with
permission and showed PCE of 1.03, 8.02 and 17.1%, respectively. (b)
IFPS of A, B, and C.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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dimensional Fourier power spectra (FPS) were converted to
isotropic ones (IFPS), which exhibit multiple characteristic
peaks at shorter than 100 nm (Fig. 2b). The minimum and
maximum spatial wavelengths are 11.72 (= 5.86 × 2) and 1500
(= 750 × 2) nm, respectively. For a comparison of spatial
wavelength among different height-scale AFM images, IFPS was
normalized by the intensity at 1500 nm. And then, the power
values for each spatial wavelength (from 11.72 to 300 nm, 124
points in total) were used as the input parameters in the ML
analysis. Instead of losing height information in the normali-
zation and high pass lter (>300 nm−1) process, HA data (the
maximum, mean, variance, energy, contrast, entropy, skewness,
and kurtosis values shown in Fig. S2 (ESI†)) were incorporated
together with IFPS. For example, the variance and skewness of
the histogram are related to the surface roughness.

In addition to the FFT and HA analyses, we used GLCM that
is a conventional but useful image texture analysis method
applied to various images.59,60 As shown in Fig. 3a, an original
grey-scale AFM image, each pixel of which possesses a bright-
ness level (0–255), was analysed by counting the pixel values in
the neighbour. The denition of neighbour is given by (d, q),
where d (from 1 to the maximum pixel size) is the distance from
the centre pixel, and q (from 0 to 90°) is the angle from the
horizontal axis. An example of (d, q) = (1, 0°) is illustrated in
Fig. 3b, together with the acquired GLCMmatrix: P(i, j). The row
(i) and column (j) of the matrix correspond to the neighbour
pixel level and centre pixel level, respectively. This matrix
example indicates high values in the le top, which means that
the pixels with low brightness levels (1 or 2) locate at a specic
region. The example also shows a convergence along the diag-
onal line, which indicates that the change in brightness level is
moderate. If high counted values appear in the right top and/or
le bottom, the change of brightness level is steep. The
Fig. 3 Schematic of GLCM analysis of AFM image. (a) Original grey
scale image (the colour is inverted for an easier looking). (b) Matrix P (i,
j) calculated from the original image with (d, q) = (1, 0). The purple cell:
P (1, 2) is calculated by counting the neighbours indicated by the
arrows in (a). (c) Equations (homogeneity, contrast, dissimilarity, ASM,
energy, and correlation) for the analysis of GLCM.

© 2023 The Author(s). Published by the Royal Society of Chemistry
acquired GLCM with different d (2–10 pixels) and the horizontal
direction (q = 0°) was then subjected to various statistics such
as homogeneity, contrast, dissimilarity, angular second
moment (ASM), contrast, energy and correlation (Fig. 3c).

A linear regression using least absolute shrinkage and
selection operator (LASSO)64,65 was performed using Mordred
descriptors, material properties and process parameters as the
input parameters. The correlation of experimental and pre-
dicted PCE values are displayed in Fig. 4a, where the train data
(n = 623) and test data (n = 267) exhibited the correlation
coefficient (r) values of 0.802 and 0.747, respectively. The root-
mean-square error (RMSE) values are appended in the
caption. The r of train data is lower than those obtained by
random forest (RF) regression (r = 0.83–0.85 for 5-fold cross
validation) in the previous study using similar explanatory
variables.55 However, we used LASSO in this study to discuss the
polarity of variable coefficients. The negative and positive
coefficients (top 30 for each sorted in decent order) are shown in
the le and right panels of Fig. 4b, respectively (the list is
provided in Table S3 (ESI†)). Most of the important variables are
Mordred descriptors derived from the chemical structures,
while the material properties of LUMO of NFA, PDI of polymer
and Eg of NFA along with the process parameter of 1,2,4-tri-
methylbenzene solvent (Solvent_TMB) are ranked on the high
level. The most important positive and negative parameters are
averaged and centred Moreau-Broto autocorrelation of lag
0 weighted by ionization potential (AATSC0i) of polymer and
Geary coefficient of lag 6 weighted by intrinsic state (GATS6s) of
NFA, respectively.66,67 They are obtained by calculating auto-
correlation and quantifying the clustering in 2-dimensional
space, although their meaning is difficult to correlate directly
with a physical property. However, multi-collinearity calcula-
tions of these parameters revealed that AATSC0i appears to
correlate with AMID_X (averaged molecular ID on halogen
atoms) and nF (number of F atoms) with r = 0.881 and 0.863,
respectively (Table S4 (ESI†)). The addition of halogen atoms
(typically uorine) in the polymer is thought to ne-tune its
energy level and improve the BHJ morphology. GATS6s was also
found to correlate with NtN (the sum of nitrogen atoms) and
C1SP1 (sp carbon bound to 1 other carbon) with r = −0.753
Table S5 (ESI†). This is linked to the cyano substituent (–CN)
widely appended to efficient NFAs. Meanwhile, the positive,
large coefficient of –LUMO of NFA indicates that the deepened
LUMO level of NFA contributes to the increase of PCE, which is
understood from the increased offset for efficient electron
transfer from LUMO of polymer to that of NFA.

Even aer additional inclusion of GLCM and HA data into
the explanatory variables, the prediction accuracy was not
improved. As shown in Fig. 4c, the r values of train and test data
are 0.814 and 0.752, respectively, similar to those of Fig. 4a. The
ranking of coefficients in Fig. 4d was also very similar, while the
GLCM parameters were ranked on the 2nd (homogeneity of d =
2) and 13th (correlation of d= 4) in the negative polarity (the list
is provided in Table S6 (ESI†)). In addition, the maximum
height of HA was ranked the 6th in the negative polarity. These
parameters represent the smoothness of a lm, and thus, their
RSC Adv., 2023, 13, 15107–15113 | 15109
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Fig. 4 Results of LASSO regression. (a) and (b) The explanatory variables are chemical structures (Mordred descriptors), material properties
(bandgap, etc.), and process parameters (solvent, etc.). (c) and (d) The aforementioned parameters plus GLCM and HA data. (e) and (f) The
aforementioned parameters plus FFT and HA data. The upper panels (a, c, and e) are the regression plots of experimental (horizontal) and
predicted (vertical) PCE. The white-blue (n = 623) and dark blue (n = 267) circles are the train and test data, respectively. The correlation
coefficient (r) values of the train and test data are appended. The lower panels (b, d, and f) are the feature importance in decent order. The green,
red, orange, and blue bars correspond to the material properties and process parameters, GLCM parameters, HA parameters, and FFT
parameters, respectively. A complete list of rankings is provided in Tables S3, S6, and S7 (ESI†).
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negative impact on PCE (the smaller, the better) is readily
reasonable.

As shown in Fig. 4e, the additional use of FFT and HA data as
the explanatory variables exhibited almost unchanged, but
marginal improvement in the r values of train (0.817) and test
data (0.756). Notably, FFT parameters appeared on the high
rank in their coefficient intensities (Fig. 4f). The spatial wave-
lengths of 65.22 and 40.54 nm were ranked the 2nd and 5th in
the positive polarity, respectively. Interestingly, the positive
impact of 40–65 nm spatial wavelength (their half-pitch is 20–33
nm) is consistent with the exciton diffusion length in OPV (∼20
nm),68,69 where a narrow bicontinuous network of BHJ maxi-
mizes the efficiencies of exciton diffusion and charge separation
that benet the OPV performance. Meanwhile, a spatial
distance much larger than the exciton diffusion length causes
a radiative and non-radiative loss of exciton, leading to the
decrease in JSC and PCE. This nding is the same as the previous
FFT study on P3HT : PCBM lms with different thermal
annealing process;22 however, it should be emphasized that the
general importance of ne bicontinuous network shorter than
∼30 nm was found in a large data set (n = 890) comprising
various types of polymers and NFAs.

Additionally, we examined RF algorithm instead of LASSO by
using the same explanatory variables (Fig. S3†). The r values of
15110 | RSC Adv., 2023, 13, 15107–15113
train data were high (0.947–0.968), whereas those of test data
showed a large decrease (0.814–0.781), possibly due to some
overtting. Similarly to the previous report55 and LASSO results,
the most important feature was StN of Mordred descriptor for
all models (Tables S9–S11 (ESI†)), which is associated with the
number of triple bonds nitrogen of the cyano substituent. In the
GLCM and HA-based model, the correlation of d = 2 of GLCM
was ranked the 22nd. In the case of FFT and HA-based models,
no FFT spatial wavelength was ranked in the top 30th. This
indicates that LASSO is more suitable than RF to focus on AFM-
derived parameters.

Since LASSO is a sparse model and reduces the parameters
aer optimization, detailed examination over the whole spatial
wavelength of FFT is unable to access. We, therefore, performed
Ridge regression by using FFT and HA descriptors. Fig. 5a
displays the results for the train and test data, of which r values
are 0.844 and 0.755, respectively, mostly identical to those of
LASSO. However, the ranking features appear to drastically
change (Fig. 5b). Many material properties and process
parameters are ranked on the top level in both positive and
negative coefficients. In addition, HA parameters such as
maximum height, mean, skewness and variance are ranked
higher than 20th. These parameters are associated with the
height scale roughness of a BHJ lm.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Results of Ridge regression. The explanatory variables are
chemical structures (Mordred descriptors), material properties
(bandgap, etc.), process parameters (solvent, etc.), and FFT and HA
data. (a) Regression plot of experimental (horizontal) and predicted
(vertical) PCE. The white blue (n = 623) and dark blue (n = 267) circles
are the train and test data, respectively. The correlation coefficient (r)
values of the train and test data are appended. (b) Regression coeffi-
cient ranking in decent order. The green, orange, and blue bars
correspond to the material properties and process parameters, HA
parameters, and FFT parameters, respectively. A complete list of
rankings is provided in Table S8 (ESI†).

Fig. 6 LASSO (red) and Ridge (blue) regression coefficient spectra of
FFT. The vertical value is normalized by the maximum, while the
horizontal values correspond to the spatial wavelength of FFT. The
yellow part is the region of BPF used in (c) and (d). (b) Original noise
image generated for demonstration. Reconstructed image after
applying FFT to the original image with (c) BPF-1 (25–100 nm) or (d)
BPF-2 (>150 nm) and inverse FFT.
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An in-depth comparison of LASSO and Ridge results about
the FFT spatial wavelength is provided in Fig. 6a. The contin-
uous Ridge spectrum is very similar to the discrete LASSO
spectrum, where the wavelength regions at 25–100 nm exhibit
a positive impact on PCE. In the Ridge model, negative coeffi-
cients are observed at >150 nm. Such a large-scale structure is
much larger than the exciton diffusion length and would dete-
riorate the device performance.

We next demonstrate a generation of virtual BHJmorphology
suitable for an efficient OPV. An original grey-scale image
generated by applying noise (Fig. 6b) was processed by FFT with
a band pass lter (BPF), and new images were reconstructed by
inverse FFT. The IFPS with/without BPF are appended in Fig. S4
(ESI†). As shown in Fig. 6c, a narrow brous network was
acquired aer applying BPF-1 that corresponds to the preferred
wavelength at 25–100 nm. In contrast, wide and rough features
are observed aer applying BPF-2 at the un-preferred wave-
length at >150 nm (Fig. 6d). We thus exemplied the
© 2023 The Author(s). Published by the Royal Society of Chemistry
importance of high frequency (wavelength: 40–65 nm and their
half-pitch is 20–33 nm) bicontinuous network in BHJ, which is
general regardless of the polymers and NFAs. To examine the
direct effect of AFM images on the solar cell performance, we
performed LASSO, Ridge and RF by solely using AFM data
(GLCM, HA, FFT and their combinations) as the explanatory
variables (Fig. S5 (ESI†)). The r values of LASSO and Ridge were
very low (0.3–0.4) for both train and test data. The RF model
showed a high r of ∼0.85 for train, but a signicantly low r of
0.3–0.5 for test, due to overtting. Accordingly, the PCE
prediction with moderate accuracy needs material properties
and process parameters. Given the almost unchanged r values
irrespective of using AFM data, the chemical structures and
material properties may implicitly involve miscibility and BHJ
information for a target polymer : NFA blend. This envisions
a complete virtual screening of OPV materials without explicitly
considering the BHJ structure.
Conclusions

We conducted a study on binary BHJ-type polymer : NFA OPVs
using ML techniques. This involved the incorporation of AFM
images (n = 890) collected from device data (n = 1318) found in
existing literature (n = 558). Our analysis, utilizing the LASSO
regression model, resulted in moderate, yet mostly consistent
accuracy (r = 0.80–0.82 for training and 0.75–0.76 for testing)
regardless of GLCM, FFT and HA parameters obtained from the
AFM image analysis. Importantly, we discovered that the spatial
wavelength of FFT, specically 40–65 nm (their half-pitch is 20–
33 nm), had a positive and signicant impact on the PCE of
OPVs, while longer wavelengths beyond 150 nm had a negative
effect on performance. The former wavelength corresponded
RSC Adv., 2023, 13, 15107–15113 | 15111
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with the typical exciton diffusion length, providing support for
the validity of our ndings. Other parameters, such as homo-
geneity, correlation and skewness, also demonstrated some
impact, which could be related to the smoothness of the lm.
While we did not achieve an improvement in ML prediction
accuracy for the AFM-included dataset, our work successfully
identied crucial spatial wavelengths among a large dataset and
demonstrated a path toward more efficient BHJ OPVs.
Experimental

The solar cell performance (maximum PCE), chemical struc-
tures (SMILE), material properties (Eg, HOMO, LUMO and
molecular weight), and process parameters (solvent, additive
and p/n ratio) of binary polymer : NFA OPVs were based on our
previous report that collected these data from the literature (n=

1318, available free of charge in American Chemical Society
website).55 The AFM images were manually collected from cor-
responding papers and processed, giving n = 890 dataset in
a normalized size (750 × 750 nm2) and resolution (128 × 128
pixel2; 5.86 nm per pixel). No data augmentation (rotation and
inversion) on the images was applied. FFT (IFPS), GLCM and HA
analyses were performed using Numpy (OpenCV), Scikit-image
and Numpy in Python, respectively. ML modelling (LASSO,
Ridge, and RF) was implemented by the Scikit-learn package in
Python. A sample code of LASSO is provided in ESI.†. The
hyperparameters for LASSO, Ridge and RF were optimised by
Bayesian optimisation using Optuna with a 5-fold cross vali-
dation score (LASSO and Ridge: 100 trials, RF: 300 trials).
Data availability

The dataset of polymer : NFA OPV is available in our previous
report.55 Feature importance lists are provided in ESI.†
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44 X. Rodŕıguez-Mart́ınez, E. Pascual-San-José and M. Campoy-
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