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Artificial intelligence has become more prevalent in broad fields, including drug discovery, in which the

process is costly and time-consuming when conducted through wet experiments. As a result, drug

repurposing, which tries to utilize approved and low-risk drugs for a new purpose, becomes more

attractive. However, screening candidates from many drugs for specific protein targets is still expensive

and tedious. This study aims to leverage computational resources to aid drug discovery by utilizing drug-

protein interaction data and estimating their interaction strength, so-called binding affinity. Our

estimation approach addresses multiple challenges encountered in the field. First, we employed a graph-

based deep learning technique to overcome the limitations of drug compounds represented in string

format by incorporating background knowledge of node and edge information as separate multi-

dimensional features. Second, we tackled the complexities associated with extracting the representation

and structure of proteins by utilizing a pre-trained model for feature extraction. Also, we employed

graph operations over the 1D representation of a protein sequence to overcome the fixed-length

problem typically encountered in language model tasks. In addition, we conducted a comparative

analysis with a baseline model that creates a protein graph from a contact map prediction model, giving

valuable insights into the performance and effectiveness of our proposed method. We evaluated the

performance of our model using the same benchmark datasets with a variety of matrices as other

previous work, and the results show that our model achieved the best prediction results while requiring

no contact map information compared to other graph-based methods.
1 Introduction

The typical drug development process is expensive, time-
consuming, and requires considerable time to conrm
a drug's safety. Over the past few years, COVID-19 has had direct
and indirect effects worldwide. We could treat it quickly
through drug repurposing, using the existing medicines with
safety approval for purposes different than their original
intent.1–3

With the evolution of machine learning, several computa-
tional techniques and strategies demonstrated their effective-
ness for various applications, including predicting drug-target
binding affinity (DTA),4,5 which is a task predicting a score that
indicates the strength of drug-target pair interaction and can be
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used to estimate how well a candidate drug can bind with
a target protein. As a result, binding affinity has become
a criterion for selecting candidate compounds and sped up the
entire drug development process. Furthermore, the predicted
compounds from DTA can be used in further experiments to
obtain a nal result rather than developing a new drug whose
time cost and nancial expenses are incredibly high.6,7

Although early computational models for predicting drug-
protein interactions were developed by manually extracting
drug and target properties, they required much biological and
chemical knowledge. Because drugs and proteins are repre-
sented as text sequences by manual extraction, some informa-
tion, such as structural information, was lost. While known
structural proteins having crucial information, such as docking
sites, can use computational techniques to carry out the results,
unknown-structural proteins, which have less information
except for the sequence, become challenging.

In earlier research, DTA prediction is oen treated as
a binary classication task8–10 by predicting whether a drug and
target protein interact. However, to make it more realistic, most
recent works predict a value of affinity score to determine the
strength of interaction and switching to a regression task.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Recently, several machine learning models have shown
remarkable results in DTA prediction. For example, the early
work DeepDTA11 took an advancement of convolution neural
network (CNN) applied to DTA prediction by using a 1-dimen-
sional (1D) convolution technique to capture the patterns of
data from drug and protein sequences, then passed those
representations through several hidden layers and regressed to
get the DTA scores. On the other hand, MT-DTI12 took advantage
of a natural language processing (NLP) technique called
“Transformer” to extract molecular representation by treating
a molecule sequence as a text and applying the same method as
DeepDTA to get a prediction result.

To acquire a better representation of data, GraphDTA13

proposed a graph-based representation learning of drug mole-
cules capable of extracting the structural information and
enhancing the predictive performance while representing
a protein in a 1D-CNN network. The DGraphDTA14 was an
extension of the GraphDTA in which drug molecules and
protein sequences were dened as a 2D graph, employing
a protein structure prediction approach called contact map to
predict protein structure. The authors of GraphDTA also
proposed GEFA,15 an early fusion method that combined drug
and protein features in the early stage before extracting their
representations. The authors contrasted GEFA with GraphDTA,
a late fusion method that learned the representations of drug
and protein separately. In addition to DGraphDTA, the same
authors also released a new work called WGNN,16 which
improved the representation using weighted graphs with the
weights determined from the contact strength of the contact
map prediction.

Another graph-CNN method called MGraphDTA17 used
a technique called multi-scale to help a model learn to capture
the local and global structures of a compound or a protein
simultaneously by learning a variety of scales from shallow to
deep and aggregating features from all scales to get a multi-
scale feature for each drug and protein. Apart from the graph-
based method, SMT-DTA18 achieved a promising result for
this task using a transformer-based model trained with a semi-
supervised technique by setting one task as a masked language
model and another as a DTA task where both shared
parameters.

However, these models frequently describe drug and protein
structures but ignore the relationship and information between
nodes, which is not a natural way to represent compounds or
proteins formed by atoms and bonds. In this paper, we propose
an approach called iEdgeDTA to predict binding affinity by
utilizing one of the variants of graph neural network (GNN)
known as graph convolutional network (GCN)19 and improve it
by including a multi-dimensional edge feature in an encoding
space of the compound. We also considered using a pre-trained
model for extracting a node embedding to use as a protein node
(an amino acid) representation fed to GNN by constructing a 1D
graph from the sequence and incorporating the global feature
of the protein. It is noteworthy that the whole process used only
SMILES and protein sequences.

The main contribution of this study can be summarized as
follows.
© 2023 The Author(s). Published by the Royal Society of Chemistry
� We enhanced drug molecular representation by adding
edge information between each node of a drug molecule into
graph operation.

�We introduced a 1D sequential graph and pseudo structure
to represent the protein sequence and utilized GNN to overcome
a x-length problem.

� We extracted protein features from a sizeable pre-trained
model and used it to obtain a global feature. So our method
uses both node-level and sequence-level features to learn
a variety of scales and get a better representation.
2 Materials and methods
2.1 Benchmark datasets

To compare the performance of our model with other previous
works, we followed DeepDTA to use the same benchmark
datasets, Davis11,20 and KIBA.11,21

Davis dataset contains 30 056 drug-target interactions of 68
inhibitors and 442 kinase proteins that cover more than 80% of
the human catalytic protein kinome. It uses the dissociation
constant (Kd) value to describe the strength of the interaction.
Similar to DeepDTA and other works, we transformed the Kd

value into a log scale called pKd (see DeepDTA11).
KIBA dataset also comprises interactions of kinase inhibitors

but constructed from a different bioactivity source, including Ki,
Kd, and IC50. The KIBA score was made by optimizing these
values, and we used this score to determine the binding affinity
for this task. The original KIBA database contains a bioactivity
matrix comprising 52 498 compounds and 467 targets,
including 246 088 observations, and He et al.22 removed all
drugs and proteins with fewer than ten interactions to get
a ltered dataset, which we used in this work. The ltered KIBA
dataset comprises 118 254 drug-target interactions of 2111 and
229 unique drugs and proteins.
2.2 Drug representation

Provided by the benchmark datasets, our input drug compound
is in SMILES format, and we utilized TorchDrug23 and RDKit
library24 to extract node feature, edge features, and adjacency
lists from drug SMILES to generate a graph as illustrated in
Fig. 1. We represented node and edge features as shown in
Table 1 with one-hot vectors (see ESI Table S1† for detailed
features). Edge features make our data more elaborate and
informative. In contrast, earlier work only used edges to connect
nodes or weighted edges to express an edge's importance. Other
work, for example, RGCN,25 proposed using independent weight
computation for different edge types.

We employed a multidimensional edge feature in this study
to pass additional information to each convolution layer. The
edge characteristics comprise bond type, bond stereo, and
stereo atom, and the drug compound graph is a symmetric
network representing a bidirectional graph for our congura-
tion. To capture comprehensive information, including both
the neighborhood and the individual node itself, we incorpo-
rated self-loops for all nodes in the graph. This self-loop ensures
RSC Adv., 2023, 13, 25218–25228 | 25219
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Fig. 1 Construction of drug molecular graph with multidimensional edge feature.

Table 1 Node and edge one-hot features for drug representation

Feature Size

Node features (66)
Atomic symbol 18
Atomic chiral tag 4
degree of atom 8
Number of formal charge 11
Number of explicit and implicit Hs 7
Number of radical electron 8
Atom hybridization 8
Is aromatic 1
Is in ring 1
Edge features (18)
Bond type 4
Bond direction 7
Bond stereo conguration 6
Bond is conjugated 1
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that the model learns the state embedding, which contains the
surrounding nodes' context and the node's features.
2.3 Protein representation

One of the most difficult protein-related issues is how we can
extract helpful protein features based on only its sequence. In
Fig. 2 Construction of protein 1D graph representation where amino
feature) are extracted from the pre-trained model.

25220 | RSC Adv., 2023, 13, 25218–25228
contrast to drugs, whose structure information is given in
SMILES format, proteins are considerably more complex.
Although we can independently extract protein characteristics
based on each amino acid property, such as residue-symbol,
aliphatic, and polarity, the function is altered when amino
acids link together and form a complex structure. Therefore, in
this study, we adopted a pre-trained model known as “Evolu-
tionary Scale Modeling” or ESM,26 a transformer protein
language model, to extract valuable and dependable protein
features from its sequence (details in Pre-trained protein
language section).

Many proteins have unknown structures. To extract
structural information, we require a very complex model,
such as AlphaFold,27 which is resource-intensive to yield
a precise result. In addition, prior work learned patterns
from protein sequences using CNN or NLP, whereas other
structural models used the predicted protein structure of
other trained models. This paper proposes a novel way to
solve the xed-length problem of CNN and NLP using a GNN.
First, we establish a pseudo-structure in which each amino
acid represents a node and create an edge from its adjacency
node in the sequence. This pseudo-structure allows us to
utilize graph message-passing operations in a sequence
string. We illustrate the process of protein graph construc-
tion in Fig. 2.
acid-level feature (node feature) and sequence-level feature (global

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Long-sequence protein feature approximation from the pre-
trained model.
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With the constrained sequence length to be fewer than 1024
amino acids of the ESM, while about 20–25% of our protein
sequences comprise more than 1024 amino acids (ESI Fig. S1†),
we must introduce a way to approximate long-sequence protein
feature. Our approach divided a protein sequence into several
pieces to make sub-sequences, where one sub-sequence with
a xed length of 500 (windows) and a step of 5 (stride), having
495 amino acids overlapping with the consecutive sub-sequence
for a better approximation, and the nal sequence feature being
the average of all sub-sequences as described in Algorithm 1
and depicted in Fig. 3.

2.4 Pre-trained protein language

To achieve a more accurate representation of a protein
sequence than its amino acid features, we employed a model
that has been pre-trained with a vast amount of protein data
and can predict a node feature from a protein sequence.

In our study, we conducted experiments using two pre-
trained models, namely ProtTrans28 and Evolutionary Scale
Modeling (ESM).26 The ndings of these experiments are pre-
sented in the Module analysis section. Both pre-trained models
employ a self-supervised transformer-based model with
© 2023 The Author(s). Published by the Royal Society of Chemistry
masking, in which each input token is corrupted by randomly
substituting an amino acid with a unique token. Then, they
were trained to predict the missing token from the corrupted
sequence to learn a pre-training task.

ProtTrans28 is a language model taken from the NLP tech-
nique. It has many variants, and the one we experimented on
was the T5-XL model, an encoder-decoder model trained on the
BFD dataset29,30 and ne-tuned on the UniRef50 dataset,31 which
contains 2122 and 45 million protein sequences, respectively.
The T5-XL model extracts protein features by employing
a transformer model and predicting token-level and protein-
level classication tasks. We extracted the embedding features
with 1024 dimensions per residue from the last hidden layer
before predicting both tasks of the transformer model.

ESM26 is also a transformer-based languagemodel developed
by Facebook research, trained on only the UniRef90 dataset32

comprising 98 million diverse protein sequences with 1280
dimensions of embedded features per residue. However, ESM
has a restriction on sequence length, as it was trained with
a xed context size of 1024 tokens for positional embedding.
Therefore, for protein sequences that are longer than 1024
amino acids, they used the random crop to reduce the protein
sequence length to 1024 tokens for every training epoch to get
sample sequences.
2.5 Model architecture

The model used in our study takes both inputs, a protein
sequence and a drug compound in SMILES format, and trans-
forms them into graph structures (Fig. 4). The drug branch
(Edge-GCN layer) creates a graph using an actual contact, e.g.,
the graph's edges representing bonds between two atoms. On
the other hand, the protein branch (GCN layer) creates a 1D
graph from its sequence by sequentially connecting each amino
acid to its adjacent neighbors instead of an actual contact,
which is a complex piece of information. Instead of employing
a xed-length technique, such as padding or truncating, which
is necessary for CNN and NLP, we used the whole sequence for
feature extraction and model calculation with the GNN tech-
nique, which accepts an arbitrary-length input. Furthermore,
due to the potentially extensive length of protein sequences,
which requires a vast number of GCN layers to acquire infor-
mation from the entire sequence (a single GCN layer can only
gather information from neighboring nodes within one hop),
we introduced an additional branch (Linear layer) for extracting
a global feature, a sequence level feature. This feature is ach-
ieved by averaging the node-level features from the sub-
sequences of the entire sequence and passing them through
a linear layer to learn a comprehensive representation.

In this study, our focus is on predicting affinity scores, which
are continuous values. To accomplish this, we employed GCN as
a layer for feature extraction to produce the node-level repre-
sentation of both drug and protein, using sequence-level
features to create the whole protein sequence representation
and a fully connected layer to gather information and produce
the predicted affinity scores.
RSC Adv., 2023, 13, 25218–25228 | 25221
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Fig. 4 The architecture of proposed model.
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2.5.1 Graph neural network. Convolutional Neural
Network (CNN) is widely used in many tasks involving data in
Euclidean space, such as 1D (sequence) or 2D (grid) data, but in
a task with non-euclidean data like a graph, we need a new
method to handle this. Due to their capacity to handle graph
structure data, GNN have recently garnered a great deal of
attention, and several graph data types, such as social networks
and drug-protein graphs, have become popular. This paper
focuses on one of the variations of GNN that apply convolution
over a graph, the Graph Convolutional Network (GCN),19

initially developed to address semi-supervised tasks like node
classication. In this work, we will use GCN for graph-level
feature extraction. The propagation rule of GCN consists of
message passing, aggregate, and feature update, formulated as
eqn (1),19 and illustrated in Fig. 5A.
Fig. 5 (A) Example of the propagation rule on node v1 in a GCN layer, w
transforms the aggregated output into a new hidden state h0 i. (B) Example
a hidden state of node i, ei is an edge feature of node i, and W is the lear
state h0i.

25222 | RSC Adv., 2023, 13, 25218–25228
H ðlþ1Þ ¼ s

0
@ ~D

�1
2 ~A ~D

�1
2H ðlÞW ðlÞ

1
A (1)

where ~A is an adjacency matrix of a graph with a self-loop
connection. ~D is the diagonal node degree matrix of ~A in
measuring the degree of each node to maintain the scale of the
output feature vector, while H(l) is a previous hidden layer
output. W(l) represents learnable parameters, and s is an acti-
vation function such as the Rectied Linear Unit (ReLU).

2.5.2 Graph convolutional network with edge feature. To
better represent a drug graph with a multi-dimensional edge
feature from the preprocessing stage, we improved a graph
message passing by including an edge feature in every
here hi is a hidden state of node i, and W is the learnable weight that
of the propagation rule on node v1 in our Edge-GCN layer, where hi is

nable weight that transforms the aggregated output into a new hidden

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Hyperparameters setting for our model

Hyperparameter Setting

Epoch 1000
Optimizer AdamW
Batchsize 128
Learning rate 0.001
Weight decay 0.01
Dropout rate 0 (see batch normalization)
Latent size aer GCN 128
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convolution step as part of the GCN propagation rule in eqn (2)
called Edge-GCN illustrated in Fig. 5B.

H ðlþ1Þ ¼ s

 
~D
�1
2 ~A~D

�1
2
��
HðlÞ þ EWðlÞ

e

�
W ðlÞ

!
(2)

In whichH(l) in eqn (1) is replaced withH(l) + EW(l)
e , where E is

a multi-dimensional edge feature and W(l)
e is a learnable

parameter that transforms the dimension of an edge feature
into the dimension of a node feature. Note that the edge in the
drug graph is undirected, which means that the connected
nodes utilize the same edge feature for message propagation.

In our architecture, we transformed drug SMILES and
protein sequences into a graph before giving them to two GCNs,
each consisting of a three-layer convolutional network for
extracting a representation from a graph. A global pooling layer
is placed aer the two GCNs to ensure that a graph-level
representation with the same dimension is obtained. Each
operation may be regarded as a hyperparameter when calcu-
lating a global pooling layer as a sum, mean, or max. In this
work, we used the global mean pooling layer, eqn (3), where x is
a feature matrix for each node in the GCN output. N is the
number of nodes in the sequence, and r is the pooling output
representation with a size of (1, F), where F is the number of
output channels for the last layer.

ri ¼ 1

Ni

XNi

n¼1

xn (3)

2.5.3 Protein global feature. Since a protein is a highly
complicated substance, it is challenging to discern its general
function from node-level data. Since a pre-trained model
learned from an extensive model and dataset, we considered
extracting the global feature by averaging a node feature from
a pre-trained to obtain a per-sequence feature with 1280
dimensions for each sequence, which then passed through
three fully connected layers before being concatenated to the
structural representation of drug and protein.

We added batch normalization (BatchNorm)33 aer every
output layer in fully connected layers and graph normalization
(GraphNorm)34 for GCN layers, each activated by the Rectied
Linear Unit (ReLU) function. We then concatenated the repre-
sentation of the drug's latent feature, protein's latent feature,
and protein's global feature to two fully connected layers to
predict an affinity score.

2.5.4 Loss function and hyperparameter tuning.Our task is
to minimize the affinity score difference between our model
prediction and ground truth label during training. Since our
task is a regression task, we use mean square error (MSE) as
a loss function, which is calculated as the summed square of the
difference between the predicted value (P) and ground truth
label (Y), as shown in eqn (4).

MSE ¼ 1

n

Xn
i¼1

ðPi � YiÞ2 (4)
© 2023 The Author(s). Published by the Royal Society of Chemistry
We optimized our model via AdamW35 optimization algo-
rithm, which improves regularization in Adam by decoupling
the weight decay from the gradient update. We set a weight
decay parameter as 0.01 for both datasets to prevent overtting.
In addition, we used the learning rate decay, starting from 0.001
and decaying by scaling down to 80% for every 100 epochs to
improve the learning of complex patterns in the late iteration
process.

We tuned most of the hyperparameters manually and
selected some others from the prior work, as shown in Table 2
as we employed cross-validation techniques, and the training
process took a signicant amount of time to complete.
3 Results and discussion

We used Nvidia DGX A100 for training and testing and built our
model with PyTorch and PyTorch Geometric (PyG),36 conducted
model comparisons and selections based on ve-fold cross-
validation, and chose a candidate model to evaluate the
performance over the independence test set. First, we selected
the candidate model with the best result averaged from the
validation set result of each fold and then evaluated the
candidate model by using each fold's weight for predicting the
independent test set (unseen data). Then, we calculated the
nal result by averaging the test results obtained from each
fold. Note that we used the training part of each fold, excluding
the validation part, to train the model for nal evaluation (see
ESI Fig. S2†).
3.1 Evaluation metrics

We implemented the same metrics used by the baseline and
state-of-the-art methods to make our work comparable. Since
we are working on a regression problem, we used MSE and
Concordance Index (CI) as the primary metrics of the DTA task.
MSE is a prevalent metric used in regression tasks. It measures
the difference between the predicted and actual values. A
smaller MSE means the predicted value from our model is
closer to the true value. Unlike MSE, the CI score is interested in
the order of predictions, not the prediction value itself, and
calculated by eqn (5), where bi is the prediction value for the
larger affinity di, bj is the prediction value for the smaller affinity
dj, Z is a normalization constant, and h(x) is the step function as
shown in eqn (6).
RSC Adv., 2023, 13, 25218–25228 | 25223
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CI ¼ 1

Z

X
di . dj

h
�
bi � bj

�
(5)

hðxÞ ¼

8>><
>>:

1; if x. 0

0:5; if x ¼ 0
0; if x\0

(6)

Another metric used by some work is the Pearson correlation
coefficient, eqn (7), which measures the strength of the linear
relationship between two variables, predicted and ground truth
in our case, where cov is the covariance between the predicted
value p and the actual value y, and s(p), s(y) indicates the
standard deviation of the predicted p and actual y respectively.

Pearson ¼ covðp; yÞ
sðpÞsðyÞ (7)
3.2 Benchmarking with the state-of-the-art models

We compared our method with the previous works. To make
a fair comparison, we tested the performance with the unseen
data on the independent test set and reported the same evalu-
ation metrics, including MSE, CI, and Pearson correlation
coefficient with standard deviation. Note that due to different
evaluation settings, we reproduced the nal result of some
previous work in this benchmarking section and also provided
the original results reported in their papers along with the
modied evaluation of our model based on their setting in ESI
Table S2.†

Tables 3 and 4 show the benchmarking results of our model
compared with other methods, differently representing drug
compounds and proteins, including CNN-based, graph-based,
and transformer. Our technique combining Edge-GCN and
1D-GCN achieved considerable improvements inMSE and CI on
the Davis dataset, reaching 0.216 for MSE, 0.897 for CI, and
0.855 for Pearson correlation on the independence test set. The
KIBA dataset showed that our model outperformed other
methods by having the lowest MSE and highest Pearson corre-
lation. It also had the highest CI score among other graph-based
methods (same rank as MGraphDTA), while SMT-DTA,
Table 3 Model performance on independence test set based on the Da

Model Compound Protein

DeepDTA11 CNN CNN
MT-DTI12 Transformer CNN
GraphDTA13,a GIN CNN
DGraphDTA14,a GCN GCN(contact)
GEFA15 GCN GCN(contact)
WGNN16,a GCN WGCN(contact)
MGraphDTA17,a MGNN MCNN
SMT-DTA18 Transformer Transformer
Our Edge-GCN 1D-GCN

a These results were taken from our reproduction.

25224 | RSC Adv., 2023, 13, 25218–25228
a transformer-based model, had the highest CI score at 0.894.
Our model is highly effective compared to the graph-based
methods, e.g., GEFA, which previously got the lowest MSE of
0.228 on Davis. Notably, our model does not use protein
structure compared to existing graph-based methods that
extract protein graphs from contact map prediction, and our
model still gets a better result. Therefore, it may imply that the
pre-trained model, i.e., ESM, learned how proteins are formed
or learned some structural information.
3.3 Module analysis

3.3.1 Batch normalization. The implementation of batch
normalization was an additional effective strategy we utilized to
improve the regularization of our model. Deep learning
commonly uses batch normalization to normalize the input
data within each mini-batch during training. By normalizing
the activations, batch normalization reduces the internal co-
variate shi, which is the phenomenon of a shi in the distri-
bution of layer inputs as model parameters change. This
stabilization effect helps the model converge more quickly. In
addition, estimating expectations and variance from many
small data subsets also provides a model's regularization effect.

We illustrate the impact of batch normalization in Fig. 6.
During the early epochs before the red dashed line, the model
incorporating batch normalization exhibits faster convergence
than the model without. However, in the later epochs, the
model's mean squared error (MSE) without batch normalization
decreases, indicating a better t to the training set. Neverthe-
less, the results on the validation set depicted in Fig. 7 reveal
that the model without batch normalization performs worse
than the other models, suggesting the presence of an overtting
issue and showing how the batch normalization helps gener-
alize the model. In summary, we achieved additional regulari-
zation without a dropout layer by incorporating batch
normalization into our model, expedited the training process,
and improved overall performance (see ESI Fig. S3† for the
performance of the dropout layer).

3.3.2 Pre-trained models. This study aims to apply graph
neural network to a protein based on the protein's sequence,
assuming that we cannot obtain the actual or predicted protein
structure. Therefore, it would be best to utilize a pre-trained
model because it has learned a massive dataset and might
vis dataset

MSE (std) CI (std) Pearson (std)

0.261 0.878(0.004) —
0.245 0.887(0.003) —
0.251(0.003) 0.882(0.003) —
0.238(0.005) 0.888(0.004) 0.840(0.003)
0.228 0.893 0.846
0.244(0.004) 0.888(0.002) 0.837(0.002)
0.233(0.005) 0.885(0.004) 0.843(0.004)
0.219 0.890 —
0.216(0.004) 0.897(0.001) 0.855(0.002)

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 4 Model performance on independence test set based on the KIBA dataset

Model Compound Protein MSE (std) CI (std) Pearson (std)

DeepDTA11 CNN CNN 0.194 0.863(0.002) —
MT-DTI12 Transformer CNN 0.152 0.882(0.001) —
GraphDTA13,a GAT&GCN CNN 0.186(0.009) 0.871(0.001) —
DGraphDTA14,a GCN GCN(contact) 0.148(0.002) 0.889(0.002) 0.885(0.002)
MGraphDTA17,a MGNN MCNN 0.150(0.004) 0.890(0.002) 0.883(0.003)
SMT-DTA18 Transformer Transformer 0.154 0.894 —
Our Edge-GCN 1D-GCN 0.139(0.001) 0.890(0.001) 0.892(0.001)

a These results were taken from our reproduction.

Fig. 6 Training performance of the model with different batch
normalization setting, the model without batch normalization (blue)
get the best performance in training set (lower is better).
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implicitly store some information about the protein structure.
Consequently, we chose two pre-trained models to create
a protein input feature for our model and evaluated their
prediction performance on the Davis dataset, as shown in
Table 5.

The ndings indicated that both pre-trained models per-
formed better than the baseline model (DGraphDTA), which
Fig. 7 Validation performance of the model with different batch
normalization settings, the model with both BatchNorm and Graph-
Norm (green) gets the best performance in validation set (lower is
better).

© 2023 The Author(s). Published by the Royal Society of Chemistry
relied on manually craed features for protein representation.
However, ESM-1v provided superior performance to PortT5,
where the MSE value was 0.201, and the CI value was 0.898. As
a result, we selected ESM-1v as our pre-trained model for nal
evaluation.

3.3.3 Edge and global features. Since we could extract an
edge feature of the drug compound, we also passed it to our
modied GNN model to include the edge feature for every
message-passing process. However, extracting an edge feature
for protein is still challenging. Hence, we instead pulled out an
independent global feature by averaging its pre-trained node-
level feature and learning to draw out a latent property via
three dense layers. The performance of introducing the
compound's edge and protein's global features into the model
is shown in Table 5.

The results indicated that edge features on only the drug
branch could improve the performance to achieve 0.198 for the
MSE value and 0.899 for the CI value. Then, we assessed the
performance of the protein's global feature, and the ndings
indicated that this feature also helped improve the prediction
result, with MSE lowering to 0.195 and CI score increasing to
0.901 for the optimal iteration.

Besides, we compared our edge feature integration method
to existing methods such as RGCN, which improves prediction
by employing independent weights for each relation type rather
than sharing weights across all nodes and edges. In this task,
the bond type is passed as a relation type consisting of a single
Table 5 Performance of model component on average five-fold
Davis's cross validation set

Model MSE (std) CI (std)

Baseline (DgraphDTA) 0.212(0.006) 0.885(0.004)

Pre-trained choice
ProtT5 0.206(0.008) 0.895(0.005)
ESM-1v 0.202(0.007) 0.897(0.005)

Edge feature
ESM-1v w/o edge feature 0.202(0.007) 0.897(0.005)
ESM-1v w/edge feature 0.198(0.006) 0.899(0.002)

Protein global feature
ESM-1v w/edge feature 0.198(0.006) 0.899(0.002)
iEdgeDTA(ESM + edge + global) 0.195(0.005) 0.901(0.002)

RSC Adv., 2023, 13, 25218–25228 | 25225
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Table 6 Comparison of the edge integration approachwith a five-fold
Davis's cross validation set

Model Edge feature MSE (std)

RGCN Relation 0.201(0.006)
Our (GCN) None 0.201(0.006)
Our (Edge-GCN) Muti-dimension 0.198(0.006)

Table 7 Performance of applying an edge feature to DGraphDTA
model on five-fold Davis's cross validation set

Model MSE (std) CI (std)

DGraphDTA 0.212(0.007) 0.888(0.004)
w/Edge-GCN 0.207(0.006) 0.895(0.002)

Table 8 Individual contribution of node-level and sequence level
feature with a CNN baseline model on five-fold Davis's cross validation
set

Model Method MSE (std) CI (std)

CNN baseline CNN 0.210(0.007) 0.891(0.003)
Node feature 1D-GCN 0.198(0.005) 0.899(0.002)
Global feature Linear 0.202(0.005) 0.896(0.003)
iEdgeDTA 1D-GCN + Linear 0.195(0.005) 0.901(0.002)

Table 9 Performance of 1D-GCN compared with predicted contact
map from various contact map predictionmodels on average five-fold
Davis's cross validation set

Contact map model MSE (std) CI (std)

DGraphDTA
pconsc4 0.212(0.006) 0.885(0.004)
1D-GCN 0.211(0.007) 0.893(0.001)

iEdgeDTA
pconsc4 0.197(0.005) 0.901(0.003)
RaptorX 0.196(0.006) 0.899(0.004)
ESM 0.198(0.004) 0.900(0.004)
1D-GCN 0.195(0.005) 0.901(0.002)
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bond, double bond, triple bond, aromatic, and self-loop,
resulting in ve distinct weights. As shown in Table 6,
utilizing RGCN does not increase model performance on a ve-
fold cross-validation set. This result may be related to our
approach leveraging multidimensional edge features, whereas
RGCN can only accept a single feature as the relation type.

Furthermore, we incorporated our Edge-GCN approach into
our baseline model, DGraphDTA, to assess the efficacy of inte-
grating an edge feature into drug representations. In this
experiment, we replaced the original GCN layers with our Edge-
GCN layers in the drug branch, using the same edge feature
introduced in this paper. The results are shown in Table 7,
revealing that introducing an edge feature to the graph neural
network improves both MSE and CI scores.

To assess the impact of individual contributions of node-
level and sequence-level features for protein feature extrac-
tion, we selected a CNN architecture as our baseline due to its
prevalence in prior studies and its suitability for assessing the
effectiveness of our 1D-GCN in addressing the xed-length
problem. We set the hyperparameters of the CNN following
GraphDTA13 work. Specically, we xed the protein sequence
length at 1000 amino acids, padded shorter sequences, and
truncated longer sequences. In Table 8, we present the results
obtained from the experiment, showing the performance of the
individual node-level and sequence-level features as standalone
versions. These results demonstrate the improvement achieved
by each feature independently and highlight their respective
contributions. Moreover, integrating both node-level and
sequence-level features within the 1D-GCN model yielded
signicant enhancements, surpassing the performance of the
baseline model. This outcome shows the benets of combining
these features, further improving prediction accuracy.

3.3.4 Contact map performance. Lastly, we conducted an
additional analysis to investigate the inuence of protein
structure on our model. Specically, we replaced a 1D sequence
graph with a contact map obtained from various contact map
model predictions. For this experiment, we selected three
works: pconsc4,14,37 utilized by our baseline model DGraphDTA,
RaptorX38 employed by GEFA, and the ESM26 contact map
prediction model. These models provide a probability
25226 | RSC Adv., 2023, 13, 25218–25228
indicating the likelihood of an amino acid pair being in contact,
where contact determination is based on a threshold set as 0.5.
To conduct this analysis, we maintained consistent model
architecture and froze all hyperparameters while modifying the
construction of the protein graph. Additionally, we employed
our 1D sequence graph in the DGraphDTA model to assess the
impact of 1D-GCN in a different model setting. The results of
this analysis are presented in Table 9.

Our ndings revealed that the performance of the 1D-GCN
setting is on par with that of a model utilizing a contact map.
Furthermore, the 1D-GCN approach exhibited slightly superior
performance in our work and the DGraphDTA experiment
compared to the contact maps derived from other prediction
models. These results indicated that the structural information
obtained from contact map predictions might contain noise
that could potentially degrade model performance, suggesting
that achieving enhanced performance requires either a genuine
contact map or highly accurate predictions. Nonetheless, our
comparative evaluation highlights that the 1D-GCN approach
delivers similar performance without using contact maps.
Moreover, given that actual protein contact maps are a limited
resource, generating experimentally determined contact maps
for proteins can be difficult and time-consuming, requiring
specic equipment, specialized knowledge, and substantial
resources, making them less accessible and limited to specic
research facilities. Many strategies employ machine learning
algorithms or statistical methods to infer residue–residue
contacts based on the available protein sequence. However, due
to the complexity of the nature of proteins, accurately predicting
contact maps remains a challenging problem that requires
substantial computational resources. Our model holds promise
© 2023 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3ra03796g


Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

4 
A

ug
us

t 2
02

3.
 D

ow
nl

oa
de

d 
on

 1
2/

2/
20

24
 1

2:
52

:5
9 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
for real-world applications, such as high-throughput virtual
screening, using only protein sequences.

However, iEdgeDTA does have limitations. First, using a 1D
representation poses a drawback, as the protein's folding
determines the binding pocket, and the 1D model does not
guarantee that the binding pocket will correspond to a series of
adjacent amino acids in the sequence string. Therefore, visu-
alizing or predicting the binding pocket solely from the 1D
representation remains a challenging problem. Second, a limi-
tation lies in the pre-trained model, which may generate noise
during extracting long protein sequences, as estimated in
Algorithm 1. Using a more accurate pre-trained model that can
handle arbitrary sequence lengths will reduce the model's
sensitivity to noise, which may improve its performance.

4 Conclusions

Accurate drug target affinity prediction is essential for identi-
fying promising candidates in developing and optimizing the
design of new drugs. It can also help reduce drug discovery costs
and time via drug repositioning to assess if existing drugs can
bind to a specic protein target. In this study, we introduced
a graph-based deep learning model that enhanced the predic-
tion performance by incorporating background knowledge,
adding a multidimensional edge feature, and using a more
complicated node feature of proteins from the pre-trained
model. By comparing the performance of our model to other
recent research employing a range of methodologies, we found
that our method improves prediction accuracy. In addition, we
evaluated the effectiveness of our model when we included
protein structure based on a contact map, and the results
indicated that protein structure is optional for our model to
achieve good prediction accuracy. As our model only incorpo-
rates an edge feature in the drug branch, future work could
improve the model's accuracy by enhancing the protein node
and edge feature extraction.
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