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g with stochastic surface walking
for machine learning force fields in iron's bcc–hcp
phase transitions

Fang Wang,a Zhi Yang, a Fenglian Li,b Jian-Li Shao *c and Li-Chun Xu *a

This study developed a machine learning-based force field for simulating the bcc–hcp phase transitions of

iron. By employing traditional molecular dynamics sampling methods and stochastic surface walking

sampling methods, combined with Bayesian inference, we construct an efficient machine learning

potential for iron. By using SOAP descriptors to map structural data, we find that the machine learning

force field exhibits good coverage in the phase transition space. Accuracy evaluation shows that the

machine learning force field has small errors compared to DFT calculations in terms of energy, force,

and stress evaluations, indicating excellent reproducibility. Additionally, the machine learning force field

accurately predicts the stable crystal structure parameters, elastic constants, and bulk modulus of bcc

and hcp phases of iron, and demonstrates good performance in predicting higher-order derivatives and

phase transition processes, as evidenced by comparisons with DFT calculations and existing

experimental data. Therefore, our study provides an effective tool for investigating the phase transitions

of iron using machine learning methods, offering new insights and approaches for materials science and

solid-state physics research.
1 Introduction

Iron is a critical material in both industrial and military appli-
cations, and its phase transition has been an evergreen topic in
the elds of materials science, condensed matter physics and
geoscience.1–4 Understanding this phase transition and its
dynamic evolution is essential for improving material proper-
ties and manufacturing processes, as well as deepening our
knowledge of the Earth's mantle. Bancro et al.5 discovered in
1956 that when iron is subjected to shock loading, it undergoes
a phase transition from bcc to hcp at a pressure of 13 GPa. Since
then, scientists have conducted theoretical and experimental
research to better understand the microscopic mechanism
involved.6–12

Based on the extended X-ray absorption ne structure
(EXAFS) technique, Wang and Ingalls13 initially proposed three
possible microscopic mechanisms for the phase transition from
bcc to hcp. The rst two mechanisms involve different paths of
bcc-to-hcp transition, while the third mechanism involves
a path from bcc to an intermediate fcc phase and then to hcp
phase. From an energetic standpoint, the third mechanism
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presents a more advantageous route for the phase transition.
However, research evidence conrming its existence remains
scarce. Kadau et al.14 employed classical molecular dynamics to
simulate the phase transition in single-crystal iron under shock
compression. They found that the bcc–hcp transition occurs
when two adjacent crystal planes slip relative to each other
along the [110] crystal direction, consistent with the Burgers
relationship. Kalantar et al.15 directly observed the bcc–hcp
phase transition in impaction iron via nanosecond X-ray
diffraction (XRD). Moreover, based on rst-principles calcula-
tions, Lu et al.16 argued that the transferable fcc state during the
transition process is energetically unfavorable. Due to the small
size of the unit cell typically employed in rst-principles
calculations, phase transitions involving larger atomic scales
cannot be simulated. Moreover, temperature plays a crucial role
in the dynamic phase transition process, and a thermodynamic
energy-based description alone is inadequate to provide
a comprehensive and accurate depiction of the kinetics of the
phase transition. In simulations of phase transitions in iron,
atomic-scale information requires molecular dynamics simu-
lations that take into account temperature.17–24 The accuracy of
molecular dynamics simulations heavily relies on the choice of
interatomic potential. Quantum-mechanical potentials are
computationally expensive for large-scale systems,25–27 while
commonly used empirical potentials may have deviations in
describing the high-energy transition region of phase transi-
tions. Therefore, an efficient and high-precision empirical
© 2023 The Author(s). Published by the Royal Society of Chemistry
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potential will benet a deeper understanding of the phase
transition process in simulations.

In recent years, various new interatomic potentials28–32 have
been applied to simulate the atomic phase transition of iron
under different loading conditions and initial microstructures
at high pressure. Among them, machine learning force elds
(MLFFs), as a typical representative of the new paradigm of “AI
for science”, are increasingly being used by researchers in
molecular dynamics simulations.33–38 In MLFF models, the
potential energy is described as a function of descriptors rep-
resenting the atomic structure of the material, and the param-
eters of the function are optimized to reproduce rst-principles
(FP) quantities, including the total energy, forces, and stress
tensor components, to accurately and efficiently predict inter-
atomic potentials.

In addition to the robustness of the model itself, the dataset
required for tting the model is crucial. To simulate the phase
transition process, the dataset needs to cover the relevant
congurations during the phase transition, enabling the model
to predict the entire process through interpolation. In this
study, we propose a systematic ML approach to construct an Fe
interatomic potential, including the sampling process of the
dataset, feature analysis of descriptors, and tting process of
the potential function. We demonstrate that this Fe MLFF can
achieve close-to-DFT accuracy over a wide range of properties,
including energy, forces and stress tensor, elastic properties.
Importantly, it can also simulate the phase transition process of
iron effectively.

2 Methods
2.1 SOAP descriptor and Bayesian formalism

Machine learning force elds require the establishment of
a mapping relationship between atomic arrangements and
potential energy surfaces (PES). The atomic arrangements in
different materials are complex and varied, but there are oen
rotational, translational, and permutational symmetries in the
materials. To simplify the force eld model, it is common
practice to transform the atomic arrangements into structural
descriptors, and then use machine learning algorithms to t the
mapping relationship between the descriptors and PES. Due to
the strong shielding effect within metals, it is a reasonable
approximation to neglect long-range interactions when simpli-
fying simulations. Therefore, we adopt atomic local environ-
ments as structural descriptors to encode the different
congurations of iron. Existing local descriptors include radial
distribution functions (RDFs),39,40 bond-orientational order
parameters (BOOPs),41,42 localized Wannier functions (LWFs),43

and smooth overlap of atomic positions (SOAP).44 The recently
developed Atomic Cluster Extension (ACE) method45 also
provides an efficient and complete representation of local
atomic environment, most previous descriptors can be regarded
as special cases or minor variations of the ACE formalism.
Among them, our work specically focuses on the SOAP
descriptor. SOAP uses Gaussian functions to dene atomic
neighborhood densities and employs spherical harmonics
expansion to represent the chemical environment in the atomic
© 2023 The Author(s). Published by the Royal Society of Chemistry
neighborhood. This representation method has continuity and
differentiability and is invariant to global rotation, reection,
and atomic permutation. Furthermore, SOAP can adjust its
parameters to control the smoothness and sensitivity of simi-
larity measurement, making it suitable for various chemical
environments in the phase transition of iron.

Once the atomic congurations have been converted into
structural descriptors, a labeled dataset is necessary to train the
model. In the case of machine learning force elds, the dataset is
labeled with the total energies of the congurations and the
forces on each atom. At the time of our research, publicly avail-
able datasets specically focused on the structures formed by the
Fe element were not identied. However, subsequent to our
research work, we came across a recent paper46 that provides
a dataset on iron clusters. Regrettably, there remains a lack of
available data on the bulk structure, which is directly relevant to
our work. To efficiently construct the required dataset, we used
a Bayesian learning algorithm with diverse samplingmethods for
real-time data collection andmodeltting. Aer data collection is
complete, a post-processing step involves using singular value
decomposition to solve the system of linear equations in the ridge
regression method to improve the model's accuracy.
2.2 Training data sampling

The accuracy of machine learning predictions for interpolating
data is signicantly higher than for extrapolating data, thus
constructing a dataset for a machine learning force eld
requires good coverage of the studied problem. In order to
efficiently construct the database, we used Bayesian error to
estimate the true prediction error of new congurations in all
sampling methods (Fig. 1), which was used to determine
whether the existing dataset can accurately predict the proper-
ties of new congurations. Sampling only occurs when the
Bayesian error estimate of one force exceeds the threshold. The
initial threshold was set to 0.002 eV Å−1, and then dynamically
adjusted based on the average Bayesian errors, typically ranging
from 0.02 eV Å−1 to 0.06 eV Å−1. Simultaneously, rst-principles
calculations were performed to label the total energy and forces
on each atom of this new sampled conguration.

In this paper, we used two sampling methods to construct
a database suitable for phase transition studies. The construc-
tion of our training set is a fundamental component of our
methodology, and we will provide an extended and more
detailed description as follows.

Molecular dynamics (MD) sampling. To collect a sufficiently
diverse set of congurations, our initial structures were
prepared by randomly perturbing and scaling the 2 × 2 × 2
supercell of relaxed standard crystal structures, including bcc,
fcc, and hcp structures. To create a diverse set of structures, we
took the following steps in the dataset preparation. We
considered three different scales for lattice constants: 101%,
100%, and 95% of the original lattice constant. For each scale,
we introduced structural deformations of 0.03 in cell volume
and 0.01 in atomic positions, and generated a total of 50 per-
turbed structures at these three scales. These perturbed struc-
tures, along with the original structures, were used to enhance
RSC Adv., 2023, 13, 31728–31737 | 31729
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Fig. 1 Schematic diagram for constructing the machine learning force
fields (MLFFs) combining Bayesian inference and different sampling
methods. Sampling is to perform molecular dynamics and SSW
simulations on the initial structures, and perform errors based on
Bayesian inference for each configuration of the simulation outputs to
decide whether to sample.
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the diversity of the dataset and to ensure that the sampled
structures covered a wide range of congurations. Additionally,
slabs with (100), (110), (111) and vacancy defect structures were
also included as sources of structural diversity. The MD simu-
lations were conducted using both the NVT (constant number of
particles, volume, and temperature) and NPT (constant number
of particles, pressure, and temperature) ensembles. We per-
formed simulations at temperatures ranging from 300 K to 800
K to ensure coverage across a broad temperature range. When
implementing molecular dynamics simulations started from
different phase structures, we employed the VASP program,
which integrates a real-time force eld-based Bayesian infer-
ence. This method uses a force eld constructed based on the
current dataset to evaluate the properties of the current frame
structure in molecular dynamics. The Bayesian error, a measure
of the discrepancy between the real-time force eld's predic-
tions and the observed properties, is calculated for each frame,
and if the error fell below a predened threshold, we collected
data for that structure. If, within a 2 ps interval, all structures
demonstrated errors below the specied threshold, we
concluded the molecular dynamics simulation for that initial
31730 | RSC Adv., 2023, 13, 31728–31737
conguration and proceeded to sample the next initial cong-
uration. The congurations obtained from the MD-based
sampling methods typically cover the potential energy surface
near the lowest energy congurations. However, we recognize
that MD has limitations in overcoming high potential energy
barriers, and as such, the coverage of this dataset in the phase
transition state region may be insufficient.

Stochastic Surface Walking (SSW) sampling. To address the
limitation of MD in exploring the phase transition state region,
we incorporated a second sampling method based on the
stochastic surface walking (SSW)47,48 approach. The SSW
method draws inspiration from bias-potential driven dynamics
and metropolis Monte Carlo sampling. By introducing bias
potentials along a soened random direction, SSW smoothly
manipulates the structure on the potential energy surfaces
(PES). The resulting SSW trajectories encompass diverse struc-
tural congurations on the PES, ranging fromminima to saddle
points and even fragmented structures with high energy. In this
process, we integrated the SSW method with the soware
LASP49 and the VASP program, which includes real-time force
eld-based Bayesian inference. The data collected from the
molecular dynamics simulations served as the initial dataset for
the real-time force eld. Starting from bcc and hcp phase
congurations, we initiated random walks on the potential
energy surface. The integration of these two programs served
the purpose of signicantly improving sampling efficiency. The
purely random walking method oen results in congurations
mostly located near the ground state, and it may suffer from the
issue of repetitive sampling of short-distance structures. By
integrating a real-time force eld, we could bypass a substantial
portion of the demanding rst-principles calculations, facili-
tating the acquisition of diverse congurations, particularly in
the high-energy range. This integration was a key element in our
methodology and played a crucial role in gathering data repre-
sentative of the entire potential energy surface. This compre-
hensive sampling efficiently explores the global potential energy
surfaces (PES), including the challenging phase transition state
region. Sampling these diverse structures is pivotal for con-
structing machine learning potentials suitable for studying
phase transition processes.

In all sampling methods, each conguration was labeled
with its energy, stress, and the forces on all atoms in it, which
were calculated based on spin-polarized density functional
theory (DFT).50 The DFT calculations were performed with the
Perdew–Burke–Ernzerhof (PBE)51 exchange-correlation func-
tional with projector-augmented wave (PAW)52 pseudopoten-
tials implemented in the VASP code.53 The energy cutoff of
500 eV was used consistently across all congurations, which is
much greater than 1.3 times the ENMAX of iron's pseudopo-
tential. The strict condition of 1 × 107 eV was used to break the
electronic self-consistent loop, and the Methfessel–Paxton
smearing was set for each orbital occupation with 0.1 eV
broadening. The k-space sampling of the rst Brillouin zone was
performed in gamma-centered Monkhorst–Pack grids with
a linear density of 0.18 Å−1, the related SOAP descriptor and
Bayesian formalism used in this work were implemented in the
VASP(Version 6.3.2).53
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Distribution of the configurations in (a) the energy–volume
space and (b) Steinhardt order parameter. The green path represents
the classic Burgers phase transition path.
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3 Results and discussion
3.1 Data selection

Aer obtaining the sampling dataset, analyzing the distribution
characteristics of the dataset is benecial to discuss the
sampling efficiency. The dataset contains a total of 9156
congurations. This dataset includes crystal structure infor-
mation, structural energy, cell stress, and the forces acting on
each atom. Out of the total dataset, 8016 congurations were
obtained through molecular dynamics (MD) sampling. These
congurations were derived as follows: (1) 2800 congurations
were obtained from MD sampling initiated from bcc and its
perturbed structures. (2) 1915 congurations were obtained
from MD sampling initiated from hcp structures. (3) 2988
congurations were obtained from MD sampling initiated from
fcc structures. (4) 73 congurations were collected from MD
sampling of surface structures. (5) 240 congurations were
acquired through MD sampling of defect structures. The
remaining 821 congurations were obtained using the
stochastic surface walking (SSW) method. In addition to the
above congurations, we incorporated 309 congurations ob-
tained from elastic deformation tting data and 10 congura-
tions representing classic Burgers' reference states, bringing the
total number of congurations to 9156.

We rst analyzed the distribution characteristics of the data
in the energy–volume space. As shown in Fig. 2(a), based on
Bayesian inference, the energy distribution of the dataset is
reasonable and generally normal. Among them, it should be
noted that the number of samples in the low-energy region of
the dataset is very rare, and the lower boundary presents
a volume–energy relationship curve conforming to the law of
the equation of state. This feature reects the advantage of
Bayesian inference in constructing dataset. Based on prior
experience of existing data, it can infer whether new structures
need to be added to the dataset before rst-principles calcula-
tion, which avoids the problem of repeated sampling of struc-
tures. In the low-energy region, the structural changes are so
small that a few samples can cover the typical atomic local
environment. With the increase of energy, the degree of chaos
of atomic arrangement increases rapidly. At this time, a large
number of samples are added to the dataset, which increases
the coverage of samples to the energy space, and thus the
extrapolation ability of the dataset corresponding to the
potential function. In order to analyze the descriptive ability of
a dataset on phase transitions, we constructed a classical
Burgers phase transition path and embedded it into an energy–
volume curve. As shown by the green dotted line in Fig. 2(a), this
dataset can essentially cover the region traversed by the phase
transition path, and high-energy data still exist in regions with
energies higher than the transition state. Therefore, the energy
distribution of the dataset is reasonable.

Aer solving the problem of sample coverage to the energy
space, we further analyzed the distribution characteristics of the
dataset in the structural phase space. Due to the inherent
symmetry of crystal structure, the current common means of
machine learning potential function is to transform the
© 2023 The Author(s). Published by the Royal Society of Chemistry
structure into a local environment descriptor, and regression
modeling is carried out between the descriptor and the energy
and force properties of the structure. Therefore, we also adopted
atomic local environment characteristics to analyze the distri-
bution characteristics of samples in the structural phase space
of the dataset.

The Steinhardt order parameters are a set of parameters that
characterizes the local atomic environment and is popularly
used to distinguish crystal structures, and its expression is as
follows:

QiðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p

2l þ 1

Xl

m¼�l
jqlmðiÞj2

vuut (1)

where qlmðiÞ ¼
1

~NbðiÞ
X~NbðiÞ

k¼0

qlmðkÞ, qlmðiÞ ¼ 1
NbðiÞ

XNbðiÞ

j¼1

YlmðrijÞ, the
core idea is to use spherical harmonic function group to
represent the local coordination environment of atoms. As
shown in Fig. 2(b), the data samples based on the Steinhardt
order parameter exhibit several clustered distributions, which
reects its advantage in characterizing short-range ordering of
crystal structures and distinguishing between different crystal
congurations. However, the dataset has a low coverage of the
Burgers phase transition path indicated by the green solid line,
RSC Adv., 2023, 13, 31728–31737 | 31731
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especially with low distinguishability of congurations in the
intermediate region of the phase transition. If the Steinhardt
order parameter is used as the structural descriptor to construct
a machine learning potential, this potential is not suitable for
describing structural phase transitions.

In this article, the descriptor we used is smooth overlap of
atomic positions (SOAP), which utilizes a local expansion of
a Gaussian-smoothed atomic density with orthonormal
Fig. 3 Smooth overlap of atomic positions (SOAP) descriptors
combined with principal component analysis. The small figure shows
the classification data obtained by different sampling methods.

31732 | RSC Adv., 2023, 13, 31728–31737
functions that are based on spherical harmonics and radial
basis functions. When using the typical truncation radius (5 Å),
8 radial basis functions, and 4 spherical harmonics quantum
numbers in the construction of the SOAP descriptor, the char-
acteristic dimension of each atom's local environment reached
5000. In order to analyze the distribution characteristics of the
data aer being mapped by the SOAP descriptor, we performed
principal component analysis (PCA) to map the 5000-dimen-
sional features into a 2-dimensional principal component
space. To evaluate the sampling efficiency, we split the dataset
according to the sampling method and included the number of
data samples for each method. As shown in Fig. 3, the distri-
bution of principal components of the SOAP descriptor covers
a wide range, completely covering the region traversed by the
classical Burgers path, which suggests that mapping the dataset
with the SOAP descriptor is reasonable for studying phase
transition problems.

In addition, principal component analysis (PCA) based on
different sampling methods revealed that the data distributions
obtained by different methods were relatively concentrated,
with signicant differences in the coverage areas. The elastic
sampling method obtained the tted equation-of-state (EOS)
structures by perturbing the structure through stretching or
compressing. The obtained data showed that the SOAP
descriptors could reect the continuity of structural changes
when describing structural features, which is necessary for
studying phase transitions in variable cell solids.

The trajectory sampling data obtained by performing high-
temperature molecular dynamics simulations based on the
hcp equilibrium structure were highly concentrated (0.2 < PC1 <
0.05, 0.05 < PC2 < 0.1) even though the number of trajectories
reached 1915. The trajectory sampling data obtained based on
the bcc equilibrium structure had a larger coverage area (0.1 <
PC1 < 0.3, 0.1 < PC2 < 0.3), but the overlap between the two types
of structures obtained by the bcc and hcp molecular dynamics
simulations was small, which was not conducive to accurately
describe the phase transition between the two. The trajectory
sampling data obtained by performing high-temperature
molecular dynamics simulations based on the fcc equilibrium
structure had the largest number of trajectories, and the
distribution could cover the area between bcc and hcp struc-
tures well, which was related to some reports stating that fcc is
the intermediate phase in the bcc–hcp phase transition.
Nevertheless, the efficiency of the molecular dynamics
simulation-based sampling methods was generally low in
describing the intermediate processes of the bcc–hcp phase
transition, and the dataset may have better coverage of the bcc–
fcc phase transition (transition temperature 1180 K) instead.
The iron phase diagram shows that the bcc–hcp phase transi-
tion can be driven by pressure, which requires considering
sampling at different pressures in molecular dynamics simu-
lations. However, the ability of ordinary molecular dynamics
simulations to cross high-energy barriers is low, making it
difficult to obtain samples near the transition saddle point
using this sampling scheme. To quickly and specically obtain
a dataset and a machine learning potential suitable for studying
phase transition problems, we also tried the random walk
© 2023 The Author(s). Published by the Royal Society of Chemistry
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algorithm on the potential energy surface. This algorithm can
cross high energy barriers and obtain continuous phase tran-
sition paths, which is very helpful for constructing phase tran-
sition research dataset. We further added Bayesian inference to
the original algorithm to infer whether new samples can be
described by the existing dataset while randomly walking. This
set can accelerate the construction of the dataset and avoid the
collection of duplicate samples. The red data points in Fig. 3
show the data obtained by the sampling method based on the
Stochastic Surface Walking (SSW) approach. The random walk
started from the bcc ground state structure. It can be seen from
the gure that the sampling in the initial stage was in line with
the Hamburg path, diverged in the middle area, and nally
converged near the hcp ground state. Compared with the
molecular dynamics-based sampling methods, the dataset ob-
tained based on the random potential energy surface walking
scheme had higher coverage of phase transitions, which is
conducive to training potentials with stronger generalization
ability and more suitable for phase transition research. More-
over, the surface model and defect model had signicant
advantages over ideal crystals in obtaining local congurations,
which could increase the diversity of sampling data.
Fig. 4 Kernel-based Bayesian regression model predictions
compared with first-principles results for (a) the energy, (b) the force,
3.2 Model training and optimization

MLFF was used in this work to investigate these potentials on
the same dataset. MLFF assumes that the potential energy of
conguration system can be expressed as a sum of local atomic
energies, which are the functional of the local coordination
environment around each atom. The local environment is
described as a rotation-invariant descriptor. Further, the
mapping relationship between descriptors and congurational
potential energy can be established using machine learning
methods, and the correlation coefficients in the mapping rela-
tionship can be tted using the constructed dataset to nally
obtain the available MLFF.

In this work, we applied the kernel-based Bayesian regres-
sion model integrated within the VASP code.34 In this model,
a variant of the smooth overlap of atomic positions was adopted
as the descriptors Xi, and a kernel function K was used to
measure the similarity between a local conguration and the
reference local conguration. The cutoff radius of radial
descriptors and angular descriptors were 8.0 Å with a 0.5 Å
Gaussian broadening. The descriptors were expanded by radial
basis functions (N= 12) and spherical harmonics (Lmax= 4), the
weight of radial descriptors in the kernel was set to 0.1. Bayesian
linear regression was employed to get the tting coefficients wiB

in the linear equations for the energies U and kernel functions
K,

U ¼
XN
i¼1

Ui ¼
XN
i¼1

XNB

iB¼1

wiBKðXi;XiBÞ: (2)

The threshold for the CUR algorithm used in the sparsi-
cation of local reference congurations was 10−9, the conver-
gence criterion for the optimization of parameters was 10−15.
© 2023 The Author(s). Published by the Royal Society of Chemistry
3.3 Accuracy evaluation

Fig. 4 shows the comparison between the energy, force, and
stress components predicted by the DFT and the MLFF using
the training dataset. It is worth noting that this comparison
based on training data only veries whether the MLFF can
capture the complex relationship between local environmental
and (c) the stress.
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changes and energy and force. For these three quantities, the
MLFF’s predictions are consistent with the DFT results with
uniform slopes. For the energy, force and stress components,
the root mean square errors (RMSE) between the DFT andMLFF
predictions were 4.27 meV per atom, 0.05 eV Å−1 and 0.51 GPa,
respectively. The predicted errors indicate that the constructed
MLFF exhibits lower overall errors and is suitable for related
research within the given error range. To demonstrate the reli-
ability of these errors, we provide some tting error data for the
Fe empirical model. For instance, the GAP-SOAP model pre-
sented in ref. 31 has root mean square errors (RMSEs) of 0.92
meV per atom for crystals and defects, and 4.07 meV per atom
for liquid structures. While the energy of the Fe EAM potential,
as reported by Byggmästar J. et al.,31 is found to be 5.29 ± 0.05
meV per atom, with a corresponding RMSE of 0.16± 0.06 eV Å−1

in the force predictions. It's important to note that direct
comparisons of which model is “better”may not be meaningful
due to differences in the characteristics of the testing sets. The
performance of models can vary depending on the specic test
structures used. For example, the GAP-SOAP model exhibits
a higher energy error for liquid structures, primarily due to their
greater disorder. Our kernel-based Bayesian regression model
demonstrates competitive accuracy in both energy and force
predictions.

Table 1 provides a comparison of the Fe MLFF model
predictions for the lattice constants and elastic properties of bcc
and hcp Fe with experiments. It is found that the calculated
lattice constants for bcc and hcp phases by the model are in
excellent agreement with DFT and experimental values. The
elastic properties of bcc Fe predicted by MLFF are also in good
agreement with DFT. For instance, the predicted values of C11,
C12, and C44 are 267, 145, and 86 GPa, respectively, with errors of
4.3%, 3.6%, and 7.5% compared to DFT, while the errors of
EAM are signicantly higher at 10.2%, 3.6%, and 46.3%.54,55

However, the elastic properties of hcp Fe predicted by MLFF
show relatively larger errors compared to DFT. The volume
modulus estimated using the Voigt–Reuss–Hill approximation56

shows good agreement with DFT, but the volume modulus from
the MEAM potential is greatly underestimated.

To further investigate predictions of force and lattice
dynamics using Fe MLFF, phonon dispersion curves for bcc and
Table 1 Calculated lattice parameter (a, c), energy (E) elastic constants
(cij), bulk modulus (B), vacancy formation energy (Ev), migration energy
(Em) with the DFT, MLFF, and experiments

bcc hcp

Exp DFT MLFF Exp DFT MLFF

a 2.866 2.832 2.831 2.347 2.458 2.461
c — — — 3.797 3.887 3.863
E — −8.237 −8.234 — −8.153 −8.169
C11 256 267 527 655
C12 140 145 178 219
C44 80 86 164 186
B 180 185 289 347
Ev 2.16 1.91 0.05 0.03
Em 0.69 0.89 1.49 1.64

31734 | RSC Adv., 2023, 13, 31728–31737
hcp Fe 3 × 3 × 3 supercell were calculated by the nite
displacement method, as shown in Fig. 5(a and b). The pre-
dicted phonon dispersion curves of bcc and hcp Fe are in good
agreement with those calculated by DFT and measured by the
experiments. The imaginary frequency is not observed, and the
lowest frequency is located at the point. The deviation of the
results calculated by DFT and MLFF mainly occurs in the range
of high-frequency phonons. To determine the effect of these
deviations on thermal properties, we calculated the Helmholtz
free energy (A), entropy (S) and constant volume molar thermal
capacity (Cv) of bcc and hcp Fe by DFT andMLFF. Both methods
show nearly identical curves for all three quantities, demon-
strating the accuracy of machine-learned potential functions in
simulating thermal properties (Fig. 5(c and d)).

To explore whether the constructed machine learning
potential function can simulate the phase transition process, we
performed variable-cell double-ended surface walking method
simulations57 using MLFF to determine the phase transition
process. The 32-atom bcc Fe supercell was assumed as initial
state, and hcp Fe was the nal state. The energy trajectories
from bcc to hcp phase was shown in Fig. 6, the phase transition
from bcc to hcp needs to overcome a energy barrier of 0.12 eV,
which is very close to the previous DFT calculation results
(0.132 eV,58 0.156 eV,46 0.112 eV,8 0.185 eV59). We also calculated
the energies of these intermediate congurations using DFT.
The energies of DFT and MLFF on the side of the bcc phase are
very consistent, and there is a certain deviation between the two
on the side of the hcp phase, and the largest deviation occurs on
the transition state structure. This is related to the lack of high-
energy region data used in the tting, although we use the SSW
sampling method to avoid this problem. This phenomenon is
not unique to our model; the PES calculated by Jana et al.46 used
Dragoni's GAP potential28 and Mendelev's EAM potential60 also
exhibit similar behavior. The low weight of transition state
structures in the tting process, owing to their small proportion
in the dataset, contributes to the challenges in accurately
capturing their energy during the tting process. To evaluate
the impact of potential functions, we employed three publicly
available potentials: Dragoni's GAP potential, Mendelev's EAM
potential, and Jana's TurboGAP potential. We applied these
potentials to compute the energy of these same structures in
PES, depicted in Fig. 6(b). Our ndings reveal that, while
Dragoni's GAP potential and Mendelev's EAM potential offer
insights into the relative energy relationship between bcc and
hcp structures, they fall short of characterizing the phase
transition barrier between them. The most recent Jana's Tur-
boGAP potential and our constructed potential demonstrate
comparable predicted energies, both of which are slightly lower
than those obtained through DFT calculations. However, it's
essential to acknowledge that differences in data sets and
variations in force predictions affect the assessment. For
Dragoni's GAP potential and Mendelev's EAM potential, the
structures near the boundary are not ground states, potentially
impacting their ability to describe the potential energy surface
for the phase transition. Notably, when comparing these
results, it becomes evident that Dragoni's GAP potential,
despite its GAP-type nature, is constrained by the limitations of
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Phonon dispersion curves of (a) bcc and (b) hcp Fe, Helmholtz free energy (A), entropy (S), and constant volume molar thermal capacity
(Cv) of (c) bcc and (d) hcp Fe calculated by the MLFF and DFT.

Fig. 6 (a)IS, TS, FS structures and (b) reaction energy profile along the
Fe bcc-to-hcp phase transition pathway the double-ended surface
walking trajectories from bcc to hcp phase, calculated by our MLFF,
DFT, Mendelev's EAM potential,60 Dragoni's GAP potential28 and the
latest Jana's TurboGAP potential46 with the same structures based on
our MLFF PES. The dashed line represents the barrierless prediction
using MLFF trained without SSW data.

© 2023 The Author(s). Published by the Royal Society of Chemistry

Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

0 
O

ct
ob

er
 2

02
3.

 D
ow

nl
oa

de
d 

on
 7

/1
9/

20
25

 4
:0

5:
24

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
the dataset, making it somewhat inadequate in describing the
potential energy surface for the phase transition.

To explicitly demonstrated how SSW-added workow
outperforms standard MD sampling in the transition state
region, we specically tted a machine learning potential using
the subset of data collected through MD simulations (8016 data
points) with the same parameters as a reference. This reference
model, based on the “no-ssw data”, was then utilized to calcu-
late the potential energy barrier between bcc and hcp struc-
tures. Simulated by variable-cell double-ended surface walking
method simulations, within a system of 32 atoms, the energy of
the transition state is only marginally higher (0.001 eV) than
that of the bcc structure. Considering numerical errors, this
implies the absence of a substantial energy barrier between the
two states. This behavior closely resembles the response of the
EAM and GAP potential functions, as shown in Fig. 6(b). This
phenomenon may be attributed to the complexity of force
properties. For each conguration, it necessitates the labeling
of one total energy, six stress values, and as many as 3Natom

force values. While machine learning can predict a single total
energy value easily using interpolation, it becomes notably
challenging for the 3Natom force values. Interpolation in such
cases is intricate, and errors tend to amplify, making accurate
force predictions more challenging, particularly when data is
limited. When force predictions are inaccurate, it becomes
impossible to derive precise phase transition paths. Therefore,
in Fig. 6(b), we present a failed schematic representation of the
RSC Adv., 2023, 13, 31728–31737 | 31735
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barrierless prediction using MLFF trained without SSW data. In
the absence of SSW data, the assessment of forces within the
intermediate state encounters limitations. These limitations, in
turn, undermine the meaningfulness of calculating the energies
associated with these structures. Upon the inclusion of 821 data
points generated through the SSW sampling process
(comprising only 1/10 of the data from MD sampling), the
constructed potential can accurately model the energy barrier
between bcc and hcp structures, which means that both the
force and the energy predictions are reasonable. This compel-
ling evidence underscores the signicance of the SSW sampling
strategy and highlights the necessity of SSW in addressing the
limitations of traditional MD sampling when studying phase
transitions. These additional insights conrm the advantages of
our workow in modeling phase transitions with improved
accuracy and efficiency. We have shown that our approach is
more efficient, requiring SSW data to achieve comparable or
better accuracy in predictions.

Considering the phase transition process from bcc to hcp as
a whole, our MLFF model can reasonably reproduce the
potential energy surface, energy, and force predictions,
providing a reasonable representation of the phase transition
behavior and reasonable barrier heights. In addition, due to the
limitations of the current machine learning force eld model
and the large amount of calculation required to construct
a database containing atomic oriented magnetic moments, the
properties of magnetic moments are not explicitly reected in
the current force eld model, which also limits an accurate
description of phase transitions in magnetic materials.

4 Conclusions

This paper developed a machine learning force eld for pre-
dicting the bcc–hcp phase transitions of iron. By employing
traditional molecular dynamics sampling methods and SSW
sampling methods, combined with Bayesian inference, we
construct an efficient machine learning force eld. Analyzing
the distribution characteristics of the constructed dataset in the
energy–volume space and Steinhardt order parameter space, we
nd that using SOAP descriptors to map structural data exhibits
good coverage in the phase transition space through PCA
analysis. Subsequently, a machine learning force eld is con-
structed using a Bayesian linear regression model. Through
energy, force, and stress evaluations, we nd that the RMSE
between the machine learning force eld and DFT calculations
is only 4.27 meV per atom, 0.05 eV Å−1, and 0.51 GPa, indicating
excellent reproducibility of the dataset labels by the machine
learning force eld. With the machine learning force eld, we
obtain the stable crystal structure parameters, elastic constants,
and bulk modulus of bcc and hcp phases of iron. By comparing
with DFT calculation results and experimental data, the
predictive capability of the machine learning force eld for
basic structural properties is demonstrated. To evaluate the
predictive capability of the force eld for higher-order deriva-
tives, we calculate the phonon dispersion relations, which show
good agreement between the machine learning force eld, DFT
calculations, and existing experimental data. Finally, to validate
31736 | RSC Adv., 2023, 13, 31728–31737
the predictive capability of the force eld for phase transition
processes, we employ variable-cell double-ended surface
walking method simulations, which demonstrate that the
machine learning force eld can obtain smooth phase transi-
tion processes that follow the Burgers pathway.
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