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oxide heterojunction as a high
performance anode material for lithium ion
batteries

Li Wang,a Kun Yuan,b Hongyu Bai,c Ping Xuan,d Na Xu,d Chaofan Yin,a Kechen Li,b

Pengju Hao,b Yang Zhou *b and Binbin Dong *a

MXene/graphene oxide composites with strong interfacial interactions were constructed by ball milling in

vacuum. Graphene oxide (GO) acted as a bridge between Ti3C2Tx nanosheets in the composite material,

which could buffer the mechanical shear force during the ball milling process, avoid the structural

damage of nanosheets and improve the structural stability of the composite material during the lithium

process. Partial oxidation of Ti3C2Tx nanosheets is caused by high temperatures during ball milling, which

is beneficial to improve the intercalation of lithium ions in the material, reduce the stress and

electrostatic repulsion between adjacent layers, and cause the composite to have better lithium storage

performance. Under the high current density of 2.5 A g−1, the reversible capacity of the Ti3C2Tx/GO

composite material after 2000 cycles was 116.5 mA h g−1, and the capacity retention was as high as 116.6%.
1. Introduction

With the development of portable electronic devices and elec-
tric vehicles, lithium-ion batteries became a research hotspot
because of their high energy density, lack of memory effect and
wide operating voltage window. Ti3C2Tx has the advantages of
adjustable layer spacing, abundant surface functional groups
and multiple active sites, which had unique advantages in the
eld of lithium-ion battery electrode materials. However, the
layer spacing decreased due to the van der Waals attraction
between the layers, which seriously hindered the penetration of
electrolyte, reducing the rapid migration of lithium ions, and
affecting the electrochemical performance.1,2

In order to further improve the lithium storage performance
of Ti3C2Tx, one of the most promising strategies was to combine
Ti3C2Tx nanosheets with other nanomaterials to form hetero-
geneous structures.3,4 At present, many materials such as tran-
sition metal oxides (TMOs),5–7 transition metal sulphides
(TMDCs),8,9 phosphorus,10,11 silicon,12,13 polymers,14,15 and
carbon materials16–19 are loaded between Ti3C2Tx nanosheets,
which could increase the ion transport rate and buffer the
volume expansion of the nanoparticles, and ensure the fast
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charge transport in the heterojunction materials. The existence
of a Ti3C2Tx nano-sheet layer could avoid the agglomeration of
nano-particles, which is benecial to the effective utilization of
surface active sites, thus improving the electrochemical prop-
erties of heterojunction composites.

In this paper, the Ti3C2Tx/GO heterojunction composites
were prepared by high-speed ball milling in vacuum. Graphene
oxide acted as a spacer between Ti3C2Tx nano-layers in order to
enlarge the space between them, which increased the charge
storage capacity of the composite and promoted the diffusion of
electrolyte in the electrode reaction. Moreover, graphene oxide
exhibited high conductivity, which contributed to interlayer
charge transfer and improved the multiples properties of the
composites.
2. Experimental
2.1 Preparation of Ti3C2Tx and GO

Graphene oxide (GO) was prepared by the oxidation reaction of
graphite powder (99.9% purity, Alfa Aesar, USA) using a modi-
ed Hummers' method [18]. H2SO4 (12 mL), K2S2O8 (2.5 g) and
P2O5 (2.5 g) were mixed and heated in a ask, and graphite
powder (3 g, 325 mesh) was added at 80 °C and kept at this
temperature for 4.5 h. Aer heating, dilute it with 500 mL
deionized water and cool it to room temperature naturally. Let it
stand for 10 h before removing it. The seed water is drained and
ltered to remove residual acid and dried. Subsequently, the
product was placed in concentrated sulfuric acid (120 mL)
under ice bath conditions and KMnO4 (15 g) was slowly added.
Aer stirring for 2 h, dilute with 250 mL deionized water and
continue stirring for 2 h. Aer that, 700 mL of deionized water
RSC Adv., 2023, 13, 26239–26246 | 26239
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was added to dilute the solution, and 20 mL of 30%H2O2 was
used to neutralize the solution until the color of the mixture
turned bright yellow with bubbling. The mixture is then ltered
and washed with 10% HCl solution to remove metal ions, and
then washed repeatedly with deionized water until the pH value
of the ltrate is ∼6. Finally, the precipitate is dried in a freezer
to obtain graphene oxide (GO). It was then ball milled at
500 rpm for 12 h to be used as backup for reserve.

The commercial Ti3AlC2 powder was purchased from 11
Technology Co., Ltd (Jilin, China). The layered Ti3AlC2 was
chemically etched to remove the Al layer by wet etching as
follows: aer 1 g LiF and 20 mL 9 M HCl solution were
magnetically stirred in a Teon beaker for 30 min, 1 g Ti3AlC2

powder was slowly added into the above solution, and the
etching reaction was carried out for 36 h at 35 °C under
magnetic stirring. Subsequently, the precipitation was obtained
by centrifugation at 6000 rpm and washed with deionized water
several times until the pH value reached∼6. Then, the sediment
was placed in 200 mL 0.25 M LiOH solution, ultrasonic treat-
ment and stirred for 24 h. The alkalized mixture is repeatedly
ltered and washed with deionized water until the pH of the
solution reaches ∼8. Finally, the precipitate was dried in
a freeze-dryer to obtain multilayer Ti3C2Tx MXene (multi-
Ti3C2Tx). Subsequently, Ti3C2Tx was obtained by ball milling at
500 rpm for 12 h in a vacuum environment for backup.

2.2 Preparation of Ti3C2Tx/GO composite

The multi-Ti3C2Tx and GO nanosheets were taken in a mass
ratio of 9 : 1 and placed in a vacuum environment with mixed
ball milling at a speed of 500 rpm for 12 h. Aer that, by
calcination at 300 °C for 3 h under inert atmosphere with
a heating rate of 2 °C min−1. The as-prepared product was
designated as Ti3C2Tx/GO. Control the GO content but different
composite materials was prepared.

2.3 Electrochemical measurements

As for the lithium-ion battery tests, all of the CR2032-type coin
cells were assembled in an Ar-lled glove box. The working
electrode was prepared by mixing Ti3C2Tx or S–Ti3C2Tx, acety-
lene black, and polyvinylidene uoride (PVDF) in N-methyl-2-
pyrrolidinone (NMP) with a weight ratio of 6 : 2 : 2. Lithium
foil was used as counter electrode, Celgard polypropylene as
separators and 1 M LiPF6 in ethylene carbonate (EC) and
dimethyl carbonate (DMC) a volumetric ratio of 1 : 1 as the
electrolyte. All electrochemical performance tests were con-
ducted under 25 °C. Cyclic voltammetry experiments were per-
formed by LAND CT2001A battery testing system at a scan rate
of 0.1 mV s−1 between 0.05 and 3 V. Electrochemical impedance
spectroscopy (EIS) measurements were performed using an AC
amplitude of 10 mV and a frequency range of 200 kHz to
0.01 Hz.

2.4 Characterization

The morphology and structural information were conducted by
SEM (SU-8020, Hitachi) and TEM (JEOL JEM-2100F). The XRD
patterns were collected on a Bruker D8 diffractometer (Cu Ka
26240 | RSC Adv., 2023, 13, 26239–26246
radiation, l = 1.5406 Å). The element surface analysis was
carried out by XPS (Axis Ultra DLD, Kratos Analytical) with Al Ka
radiation. The specic surface area of the sample was deter-
mined by N2 absorption at 77 K with a BeiShiDe 3H-2000PM1
instrument. The Raman spectra were collected on a Raman
spectrometer (Labram-010) using 532 nm laser.

3. Results and discussion

As shown in Fig. 1a, Ti3C2Tx presented a typical layered struc-
ture aer chemical etching, but there was still a serious self-
stacking phenomenon. GO had very large horizontal and
vertical dimensions, with internal three-dimensional holes
connected to each other (Fig. 1b).20 When the two mixtures were
milled and treated at high temperature, the size of the particles
was signicantly reduced, but the ake graphene was like
a ribbon oating between the Ti3C2Tx particles (Fig. 1c and d).

In order to deeply analyze the morphological structure of
Ti3C2Tx/GO composites, transmission electron microscopy
(TEM) was used for further characterization. According to
Fig. 2a and b, it can be clearly seen that GO is coated in the
outermost layer of the material, where the lattice spacing of
0.22 nm and 0.35 nm corresponds to Ti3C2Tx (103) and TiO2

(110) crystal planes, respectively. In addition, the interface
structure of TiO2/Ti3C2Tx appeared in Fig. 2c and d,21–23 and
there is an obvious lattice fringe interruption phenomenon,
which indicated that Ti3C2Tx is partially oxidized due to
mechanical ball milling and large transverse shear force. The
XRD results (Fig. 3a) further conrm the presence of a small
amount of TiO2,22,24 which was consistent with TEM results.
Raman spectra (Fig. 3b) further conrmed the successful
recombination of Ti3C2Tx and GO. The vibrational peak at
141.9 cm−1 in the Ti3C2Tx/GO composite represented the A1g
symmetric out-of-plane vibrations of the titanium atoms in the
material, while the vibrational peaks at 417.2 and 692.6 cm−1

indicated the in-plane shear vibrations (Eg) of Ti, C and surface
oxygen-containing functional groups in the Ti3C2Tx material,
respectively, where the vibrational peak at 292.3 cm−1 peak then
veried the production of TiO2 in the material.25,26 Meanwhile,
the typical peaks of the carbon material were located at 1346.5
and 1599.9 cm−1, corresponding to the D and G peaks of gra-
phene oxide, respectively, indicating the generation of amor-
phous carbon during the reaction.25,27 Aer graphene oxide
composite Ti3C2Tx, the intensity ratio (ID/IG) of the two peaks
increased from 0.92 to 1.08, indicating that most of the oxygen
functional groups on its surface were removed and TiO2 was
directly embedded into the graphene surface, increasing the
large number of defects generated and exposing more active
sites on the composite surface, which is conducive to increasing
the contact area of the electrolyte and promoting the ion and
charge diffusion.28

In order to analyze the chemical composition and surface
electronic states of Ti3C2Tx/GO composites, XPS spectroscopy
was performed, as shown in Fig. 4. In the XPS full spectrum, the
addition of GO material resulted in a signicant increase in the
intensity of the C 1s characteristic peak of the composites, and
the increase in the intensity of the O 1s characteristic peak was
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 SEM images of (a) Ti3C2Tx; (b) GO; (c and d) Ti3C2Tx/GO composites.

Fig. 2 (a and b) TEM images of Ti3C2Tx/GO and (c and d) TEM images of TiO2/Ti3C2Tx.
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attributed to the oxidation of Ti3C2Tx nanosheets by high
temperature during the ball milling composite. In the XPS high-
resolution spectra of Ti 2p orbitals (Fig. 5a and b), there are four
distinct characteristic peaks in Ti3C2Tx. The characteristic
© 2023 The Author(s). Published by the Royal Society of Chemistry
peaks at 455.1 and 460.6 eV correspond to Ti(II) (2p3/2 and 2p1/2),
456.6 eV corresponds to Ti(III) (2p3/2), while the Ti–C peak at
461.3 eV corresponds to the Ti 2p1/2 orbital, and the charac-
teristic peaks at 458.5 and 464.3 eV correspond to Ti(2p3/2 and
RSC Adv., 2023, 13, 26239–26246 | 26241
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Fig. 3 (a) XRD pattern of GO, Ti3C2Tx and Ti3C2Tx/GO; (b) Raman spectrum.

Fig. 4 XPS spectra of Ti3C2Tx and Ti3C2Tx/GO composites.
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2p1/2).29,30 Aer the composite graphene oxide, the characteristic
peaks on the Ti 2p orbitals show a signicant change and the
Ti–C intensity in the structure is weak, which is still mainly due
to the generation of TiO2 in the material and is wrapped by the
graphene oxide on its surface along with Ti3C2Tx. As shown in
Fig. 5c and d), the main characteristic peaks present in the C 1s
are C–C (284.8 eV), C–O (286.2 eV), C–Ti–O (282.2 eV) and
O–C]O (288.8 eV), and the intensity of the C–C peak in the
composite was signicantly higher than the other characteristic
peaks, which then indicated the presence of a large number of
C–C bonds in it, which could be attributed to the graphene
oxide. Fig. 5e and f) showed the O 1s high-resolution spectra of
Ti3C2Tx, Ti3C2Tx/GO composites with characteristic peaks cor-
responding to Ti–O (530.1 eV), C–Ti-(OH)x (531.2 eV) and O]C–
OH (533.2 eV), respectively, where O was mainly present in
Ti3C2Tx materials in the form of Ti–O bonds, followed in the
form of oxygen-containing functional groups on the surface of
Ti3C2Tx, while in the composites, the residual oxygen functional
groups of GO caused a slight increase in the peak intensity.
26242 | RSC Adv., 2023, 13, 26239–26246
Ti3C2Tx/GO composite was used as working electrode and
lithium sheet as paired electrode to investigate its electro-
chemical properties in lithium-ion battery. In the voltage range
of 0.05–3.0 V, the CV curve of the Ti3C2Tx/GO composite at
sweep velocity of 0.1 mV s−1 is shown in Fig. 6a). At 0.99 V, the
irreversible peak appeared on the rst discharge curve, which
was mainly due to the formation of SEI lm on the electrode
surface and the irreversible reaction between lithium ion and
the functional groups on the material surface. In the subse-
quent cycle, redox peaks at 0.68 V and 1.7 V correspond to
lithium ion intercalation/desorption by the following
mechanisms:26,31

Ti3C2Tx + yLi + ye− 4 Ti3C2TxLiy (1-1)

The good overlap of the CV curves in the 3rd and 4th circles
then indicated that the Ti3C2Tx/GO composite has excellent
cycling stability in the electrochemical lithium storage process.
Fig. 6b shows the charge/discharge curves of the Ti3C2Tx/GO
composite electrode at a current density of 0.1 A g−1, which
could correspond well with the CV curves with initial charge/
discharge specic capacities of 506.1 and 814.6 mA h g−1,
respectively, and a rst Coulomb efficiency of 62.13%, due to
the presence of abundant functional groups on the surfaces of
GO and Ti3C2Tx nanosheets that the hybrid ball milling of GO
and Ti3C2Tx nanosheets exposed a large number of active sites
at the same time as reducing their corresponding sizes,
increasing their lithium storage capacity. The subsequent
overlap of charge/discharge curves also conrmed the more
excellent cycling stability of Ti3C2Tx/GO composites.32

Aer ball milling, the reduction of material particle size
shortened the diffusion path of ions and charges and promoted
the penetration of electrolyte, which made Ti3C2Tx/GO exhibit
a more excellent multiplicative performance than Ti3C2Tx, as
shown in Fig. 6c. The reversible specic capacities of Ti3C2Tx/
GO reached 275.6, 210.1, 172.8, 147.2, and 130.8 mA h g−1 at
current densities of 0.5, 1.0, 1.5, 2.0, and 2.5 A g−1, respectively,
and the specic capacities at each current density were much
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 High resolution XPS spectra of Ti3C2Tx/GO and Ti3C2Tx: (a and b) Ti 2p; (c and d) C 1s; (e and f) O 1s.

Fig. 6 (a and b) CV curve and charge–discharge curve of Ti3C2Tx/GO composites; (c and d) Ti3C2Tx and Ti3C2Tx/GO composites multiplier
properties and cycle properties.
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larger than those of the Ti3C2Tx material aer ball milling
alone. When the current density was reduced to 0.5 A g−1,
Ti3C2Tx/GO could recover to a reversible specic capacity of
© 2023 The Author(s). Published by the Royal Society of Chemistry
263.6 mA h g−1, showing excellent reversibility. Subsequently,
Ti3C2Tx/GO as well as Ti3C2Tx materials were tested for 1200
cycles of performance, as shown in Fig. 6d. At a current density
RSC Adv., 2023, 13, 26239–26246 | 26243
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Fig. 7 Long cycle performance of Ti3C2Tx/GO composites at 2.5 A g−1 current density.
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of 0.5 A g−1, the specic capacity of Ti3C2Tx/GO was much
higher than that of Ti3C2Tx. During the rst 500 cycles, the
electrolyte continuously penetrated between the active particles
and the lithium ions were de-embedded several times, which
enabled the exposure of more surface active sites, resulting in
a gradual increase in the lithium storage capacity of both.
However, the capacity of Ti3C2Tx materials decayed aerwards,
mainly due to the small size of the particles aer ball milling,
Fig. 8 (a) CV results of Ti3C2Tx/GO composites at various scan rates from
log(scan rate n). (c) CV curve with corresponding capacitive contribut
Contribution ratio of the capacitive and diffusion-controlled charge stor

26244 | RSC Adv., 2023, 13, 26239–26246
which prompted the agglomeration of small particles under the
continuous embedding of lithium ions and impeded the
wetting of the electrolyte, and the irreversible SEI lm on the
surface of the particles, which seriously affected the rapid ion
and charge transport, and the internal lithium storage sites
were not fully utilized, resulting in the decay of their capacity.28

However, graphene oxide in Ti3C2Tx/GO composites, due to its
unique ribbon structure, played a bridging role in it, prompting
0.1 to 3 mV s−1. (b) Relationship between the log(peak current i) and
ion of the Ti3C2Tx/GO composites at a scan rate of 0.8 mV s−1. (d)
age at various scan rates.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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the activation process of thematerial to continuously expose the
active sites and utilize them effectively, showing extremely
excellent cycling stability. Then, the Ti3C2Tx/GO composite was
further tested for long cycles at a high current density of
2.5 A g−1, as shown in Fig. 7. The specic capacity of Ti3C2Tx/GO
composite aer 2000 cycles was 116.5 mA h g−1, with a capacity
retention rate of 116.6%, which fully indicated that the Ti3C2Tx/
GO composite retained good structural stability and had
excellent cycling performance aer graphene oxide composite.
It has excellent cycling performance.

In order to further investigate the electrochemical behavior of
Ti3C2Tx/GO composites, the CV curves of different sweep rates
were analyzed accordingly (Fig. 8a). Based on the formula i= avb,
where a is a constant and the value of b can be determined by the
slope of the log(v)− log(i) curve. From the tting curve of Fig. 8b,
the b values of reduction peak and oxidation peak are 0.752 and
0.822, respectively. In contrast, diffusion-controlled embedding
mechanism and surface pseudocapacitance mechanism coexist
in Ti3C2Tx/GO electrodes, but the surface-induced pseudo-
capacitance process still dominated. In addition, the capaci-
tance contribution ratio of the two reaction mechanisms could
be calculated by the following formula:14,33 i(v) = k1n + k2n

1/2,
where i(v), k1v, k2v

1/2 and v are the current, capacitive current,
diffusion control current and scanning rate at a given voltage,
respectively. According to the CV curve, when the scanning rate is
0.8 mV s−1, the pseudo-capacitance contribution of Ti3C2Tx/GO
electrode is 52.16%. With the increase in scanning rate, the
corresponding pseudo-capacitance contribution also increased
(Fig. 8c and d). This showed that in the process of charge and
discharge, the mechanical ball milling led to a sharp decrease in
the particle size of the material, shortening the ion and charge
diffusion path, coupled with the good electrical conductivity of
graphene oxide and Ti3C2Tx nanosheets, which made the charge
transfer process in the surface of Ti3C2Tx/GO composites in
a dominant position.34
4. Conclusion

Ti3C2Tx nanosheets and GO were ball milled in vacuum by high
energy ball mill self-assembly method. Ti3C2Tx/GO composites
with strong interfacial interaction could be constructed by
forming chemical bonds between the abundant functional
groups on the surface of GO and Ti3C2Tx, which could effectively
promote the transport of ions and electrons at the heteroge-
neous interface and improve its electrochemical behavior. The
specic capacity of Ti3C2Tx/GO composite electrode could reach
506.1 mA h g−1 at the current density of 0.1 A g−1, and the
reversible capacity of Ti3C2Tx/GO composite electrode aer 2000
cycles is 116.5 mA h g−1 at the high current density of 2.5 A g−1.
The capacity retention rate is as high as 116.6%.
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