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re synthesis of CdSe/CdS
triangular nanoemitters and their stabilization in
colloidal state and sol–gel glass†

Anna Lesiak, *ab Benoit Wagnon,b Denis Chateau,b Benjamin Abécassis b

and Stephane Parola *b

Heterostructured cadmium-based core–shell nanoparticles (NPs) are the subject of research because of

not only fundamental scientific advances but also a range of technological applications. To increase the

range of applications of nanoparticles, it is possible to immobilise them in sol–gel glass that can be easily

manufactured and shaped, keeping the properties of the dispersed particles. This allows the creation of

new bulk optical materials with tailored properties, opening up opportunities for various technological

applications such as lighting or sensing. Herein we report the synthesis of core–shell CdSe/CdS

triangular-shaped nanoparticles under an atmosphere of oxygen and at room temperature. A detailed

characterisation of the obtained NPs was carried out. The interesting effect of the gelling agent (tetra-n-

butylammonium fluoride) on the triangular nanoparticles in solution and the stability of the emission

properties over time was investigated. Sol–gel glasses with entrapped triangular NPs were prepared, and

their photoluminescence properties were compared with those obtained in colloidal solutions.
1. Introduction

Cadmium-based nanoparticles (NPs) can be synthesised in
a wide variety of geometries, regular and irregular in shape.1–5

Anisotropic structures, such as rods and triangular shapes, have
higher chemical potentials than isotropic spherical nano-
particles (if they have the same volume) due to their higher
surface energy.6 Usually, the most common methods for the
synthesis of high-quality cadmium-based nanoparticles are
high-temperature thermal reactions in organic solvents, which
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is considered a key factor inuencing the shape control process
during the reaction.7,8 Despite this, the triangular structures
most commonly described in the literature are usually only core
structures, such as CdSe or CdS nanoparticles. For instance,
ChenW. et al.6 reported the solvothermal synthesis of triangular
wurtzite CdS NPs, reactions were conducted at high tempera-
tures (140 °C, 180 °C, and 207 °C). As a result, they obtained
nanoparticles shaped like triangles, but which had at struc-
tures. Jin B. et al.9 presented research on the initially self-limited
epitaxial growth of ultrathin non-layered CdS akes with
triangular shape prepared by the physical vapour deposition
method. The reaction carried out used an oxygen-free environ-
ment and samples were heated to 930 °C. Cheng Y. et al. also
performed synthesis under high temperature conditions (220 °
C for 10 h in an oven), and prepared a shape-controlled
synthesis of monodisperse CdS wurtzite with pyramidal
geometry.10

While less prevalent in occurrence, the literature also docu-
ments the synthesis of core–shell nanoparticles featuring a trian-
gular morphology. For instance, Pun A. B. et al.11 demonstrated
the fabrication of cadmium-based core–shell nanoparticles with
a triangular conguration, employing elevated reaction tempera-
tures (110–180 °C). In their method, the shell growth was achieved
on a pre-existing triangular core structure.

The immobilisation of nanoparticles in glass offers a versa-
tile approach to the creation of optical materials with tailored
properties, opening up opportunities for various innovation in
optics (e.g. optical devices, energy conversion and storage,
sensing and biosensing).12–16 Nanoparticles can be entrapped in
RSC Adv., 2023, 13, 28407–28415 | 28407
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a solid matrix through a doping process17 or as a simultaneous
matrix and NPs synthesis process. For example, Algradee et al.18

carried out a parallel synthesis of nanoparticles and matrix,
obtaining embedded CdS nanocrystals (rounded shape and
approximate diameters in the range of 2 to 4.5 nm) in a phos-
phate glass matrix. An important route to incorporate nano-
particles into hybrid silica-based matrices is the sol–gel process.
It operates at low temperature and allows the preservation of the
optical properties of the introduced nanoparticles.19

In this study, we have demonstrated an approach to the
synthesis of triangular CdSe/CdS core–shell nanoparticles at
room temperature. A comprehensive characterisation of the
obtained nanoparticles was carried out. We also investigated
the effect of the gelling agent (tetra-n-butylammonium uoride)
on the behaviour of the triangular nanoparticles in solution,
and investigated the stability of their emission properties over
time. By entrapping obtained triangular nanoparticles in sol–
gel glass, we prepared solid materials and evaluated their
photoluminescence properties, comparing them with those
observed in colloidal solutions.
2. Experimental section
2.1. Materials

Cadmium chloride (CdCl2, 99.999%), octylamine (99%), thio-
acetamide (TAA, 99.0%), ethanol (99.8%), chloroform (99.8%),
tetrahydrofuran (THF, 99.0%), tetra-n-butylammonium uoride
(TBAF, 1.0 M in THF), sodium oleate (82.0%), methanol
(99.0%), selenium powder (99.5%), cadmium acetate dihydrate
(98.0%) and oleic acid (90.0%) were purchased from Sigma-
Aldrich. 1-Octadecene (ODE, 90.0%) and hexane (90.0%) were
supplied by Fisher-Agros. Acetone (99.8%) was purchased from
Fisher Chemical. Ethyl acetate (99%) and cadmium nitrate tet-
rahydrate (98.5%) were supplied by Fisher-Alfa Aesar. Methyl-
triethoxysilane (MTEOS, 98.0%) and tetraethyl orthosilicate
(TEOS, 98.0%) were purchased from ABCR.
2.2. Preparation of Cd-based nanoparticles

2.2.1. Synthesis of CdSe nanoplatelets. The synthesis of
CdSe nanoplatelets (NPLs) was performed according to the
procedure presented by Ithurria et al. (including preparation of
cadmium oleate).20,21 Briey, 808 mg of cadmium oleate, 27 mg
of selenium powder and 25 ml of ODE were inserted into 50 ml
three-neck round bottom ask. This mixture was degassed
under vacuum for 1 h. The temperature was then raised to 240 °
C under argon ow. At 205 °C, when the colour was yellow-
orange, 280 mg of cadmium acetate dihydrate were quickly
injected. The colour of the mixture changed from yellow-orange
to deep red. Annealing at 240 °C was carried out for 10 min
before injecting 1 ml of oleic acid and cooling down the ask to
room temperature using a water bath.

The nanoplatelets were separated from the remaining reac-
tants and quantum dots by centrifuging the crude for 10 min at
6000 rpm in the presence of 2.5 ml of acetone. The solid was
removed and the supernatant was centrifuged at 6000 rpm for
10 min. The last step was reproduced once. 5 ml of acetone was
28408 | RSC Adv., 2023, 13, 28407–28415
added to the remaining of NPLs solution before centrifuging at
6000 rpm for 10 min. Finally, the solid obtained was resuspended
in 10 ml of hexane.

2.2.2. Synthesis of CdS shell and change of shape
2.2.2.1. Preparation of CdCl2/Cd(OL)2. The mixture of CdCl2/

Cd(OL)2 were synthesised following a procedure of Christo-
doulou et al.22 Briey, 20 mg of CdCl2 and 420 mg of Cd(OL)2
(powder) dispersed in 10 ml of oleic acid were heated for 15 min
at 200 °C under argon ow and then sonicated for 30 min at
room temperature to obtain a white suspension.

2.2.2.2. Triangular shell growth. Synthesis of CdS shell was
adapted from the procedure presented byWoznica et al.23 0.5 ml
of CdSe nanoplatelets solution (in hexane) was mixed with 2 ml
of chloroform, 20 mg of TAA, and 200 ml of octylamine in a 4 ml
ask. The solution was placed in the ultrasonic cleaner until the
TAA was dissolved. Aer 2 h, 60 ml of CdCl2/Cd(OL)2 was added
and the mixture was le to mix for 72 h at room temperature.
The reaction was conducted in an ambient atmosphere without
inert gas or vacuum connection. To precipitate NPs, the solu-
tion was transferred to centrifuge tubes and 2 ml of ethanol was
added. Aer 10 min of centrifuging at 6000 rpm, the NPs were
precipitated. The supernatant was discarded and the precipitate
was dissolved in THF. The precipitation/dissolution procedure
was repeated three times before further application. The
resulting colloidal solution of CdSe/CdS triangles had
a concentration of 5.55 mg ml−1.

2.3. Nanoparticles characterisation

Energy-dispersive X-ray spectroscopy (EDS) and transmission
electron microscopy (TEM) images were obtained with a JEOL
2100F equipped with a Gatan ultrascan 1000 camera operating
at 200 kV microscope. Samples were prepared by evaporation of
diluted solutions of puried nanoparticles on carbon-coated
copper grids. Absorbance spectra (ABS) were measured on
a JASCO V-770 spectrophotometer. The emission was collected
by a spectrouorimeter FLUOROLOG-3 (by Horiba) using exci-
tation wavelength 400 nm. X-ray diffraction analysis (XRD) was
performed with an Empyrean X-ray diffractometer (Malvern
Panalytical) using CuKa1,2 radiation in the Bragg–Brentano.
Small-angle X-ray scattering (SAXS) measurements were carried
out on a XENOCS Xeuss 3.0 instrument. Dynamic light scat-
tering (DLS) measurements were prepared by MALVERN
ZETASIZER NANO-ZS device.

2.4. Preparation of colloidal suspensions for spectroscopy

226 ml of previously prepared nanoparticles were used to
prepare the CdSe/CdS NPs solutions and lled with THF to
a volume of 2 ml. To study the effect of the tetra-n-buty-
lammonium uoride (TBAF) on the optical properties of CdSe/
CdS nanoparticles, 226 ml of NPs solution, 40 ml of TBAF were
used, and the volume was supplemented to 2 ml by THF.

2.5. Preparation of sol–gel glasses

In order to obtain a solid glass matrix, it is necessary to use
a gelling agent to promote the solidication process. Many
gelling systems that can form monolithic glasses are applied to
© 2023 The Author(s). Published by the Royal Society of Chemistry
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the formation of these materials.24,25 As gelling agents can be
used amine derivatives of silanes (e.g. amino-
propyltriethoxysilane (APTES),26,27 N,N-dimethylaminopropyl-
trimethoxysilane17) or tetra-n-butylammonium uoride
(TBAF).28 In our case, TBAF was selected for the control of the
gelation step. A suspension of CdSe/CdS NPs (30 ml) in THF was
introduced into a MTEOS/TEOS sol (0.67 g), prepared using an
adapted procedure from previously reported method,19,29 and
lled to a volume of approximately 1 ml of THF. Next, 40 ml of
gelling agent (TBAF) in THF was added to the mixture in the
mould. The mould was closed with a cap with a small hole
allowing controlled evaporation of the solvent, and gently stir-
red by hand for 30 seconds before keeping at room temperature
until gelation occurred (usually about 20–30 min). The gelled
material was placed in an oven at 45 °C for 3 days to obtain the
nal solid material.
3. Results and discussion
3.1. Nanoparticles

The absorbance and photoluminescence (PL) spectra of CdSe
nanoplatelets are shown in Fig. 1A. The sample showed the
formation of NPLs with thicknesses of 5.5 monolayers and
maximum emission at 550 nm as previously reported.22 The
structure of the NPLs obtained was conrmed by TEM
measurements (Fig. 1B). The morphological presentation of the
NPLs showed that they are at sheets with average sizes of
22 nm in length and 8.4 nm in width.

In order to perform surface modication of NPLs, thio-
acetamide was introduced into the system as a source of
sulphur. Based on the fact that the shape and crystalline
structure of Cd-based nanoplatelets are dened by surface
ligand applied during synthesis, any post-synthesis modica-
tion of the nanoplates surface should be carried out very care-
fully.30 The surface energy change implied by the exchange of
the ligand or the formation of the shell may cause the degra-
dation and/or transformation of the nanoplates into quantum
dots.31

During the reaction, nanoplatelets rearranged into CdSe
quantum dots and has begun the growth of the CdS shell
Fig. 1 (A) Absorbance and emission spectra and (B) TEM image of NPLs

© 2023 The Author(s). Published by the Royal Society of Chemistry
(Fig. S1†). The absorbance properties of the nanoparticles show
a dependence on the reaction time with TAA. As the reaction
time increases, a shi in absorbance toward longer wavelengths
is apparent. This may indicate growth and accumulation of
nanoparticles, leading to higher light absorption capacities.
However, with longer reaction time the absorbance may sta-
bilise or even decrease, indicating potential aggregation or
saturation effects.32,33 Examination of the photoluminescence
properties as a function of reaction time reveals interesting
trends. Initially, shorter reaction times result in less efficient
photoluminescence signals, because the NPs may not have
reached their optimal emission state. As the reaction time
increases, the photoluminescence intensity increases, indi-
cating improved NPs quality and increased emission efficiency.
However, an excessively prolonged reaction time may result in
quenching effects that reduce photoluminescence. On the basis
of, it can be assumed that the reaction time with TAA inuences
the growth of the CdS shell (observed red shi in the absor-
bance and emission spectra), but allows only spherical struc-
tures to be obtained. Therefore, a small amount of CdCl2/
Cd(OL)2 was introduced into the reaction mixture to initiate
growth in a different shape.22,34

Aer 72 h of adding CdCl2/Cd(OL)2, reaction was stopped
and the characterisation of the obtained nanoparticles was
carried out. NPs with maximum emission at 680 nm and
triangular shape were obtained (Fig. 2A and B). Since the
quantum yield of the obtained CdSe/CdS nanoparticles was
52%, it can be deduced that the state defects remained localised
in the CdSe core, which were formed during the decomposition
of the nanoplatelets.35

To demonstrate the chemical composition of the NPs ob-
tained, energy-dispersive X-ray spectroscopy (EDX) was used.
Elemental analysis of the material showed that NPs had CdSe
core and CdS shell, with a gradient in thicknesses. In fact, the
coating is thicker on the edges than on the faces of the
nanoparticle (Fig. S2†). The low % Se in EDX can be explained
by the heterogeneity of the CdS coating.36 It can be assumed
that the formation of an additional atomic layer has covered
the core, which consists of Se and is difficult to detect
accurately.
before surface modification.

RSC Adv., 2023, 13, 28407–28415 | 28409
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Fig. 2 (A) Absorbance and emission spectra and (B) TEM image of triangular nanoparticles.
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The X-ray diffraction (XRD) pattern for the synthesised
triangular nanoparticles and, based on the EDS results, the
corresponding bulk WZ- and ZB-CdS diffraction references are
shown in Fig. 3. The interplanar spacings calculated from the 2-
theta positions of the peaks in the XRD pattern (JCPDS card no.
89-0440) correspond to the (111), (220), and (331) planes, which
are characteristic of the cubic phase of CdS.37,38 However, small
shis of the peaks from the reference values were observed.
This may be a consequence of the small scale of the crystal
relative to the bulk crystal, or may be due to the strain imposed
on the crystal lattice by the core–shell lattice mismatch.36 In
addition, a SAXS analysis was also performed (Fig. S3†). Based
on the bell shaped curve, it can be said that the NPs studied are
close to spherical and therefore three-dimensional
structures.39,40
Fig. 3 X-ray diffraction patterns for triangular CdSe/CdS NPs grown in
the crystal structure of cubic zinc-blende. The corresponding
diffraction references of bulk WZ- and ZB-CdS are given below.

28410 | RSC Adv., 2023, 13, 28407–28415
To conrm the three-dimensional structures of the resulting
triangular nanoparticles, HRTEM and STEM measurements
were carried out (Fig. 4). The contrast of NPs obtained suggests
that the triangular nanoparticles have a three-dimensional
structure and therefore are tetrahedral with rounded
vertices.38,41 It can suggested a larger surface energy and
a higher reactivity of the obtained NPs.3 The average size of the
regular tetrahedrons was determined by lengths the edge and is
27 nm ± 4 nm. NPs were found to be highly crystalline and
clearly exhibit a cubic morphology, as well as cubic symmetry at
the atomic scale.36 Based on the results obtained, a proposed 3D
visualisation of the nanoparticle has been prepared (Fig. 4C).
The extended spherical CdSe core is assumed to be covered by
a triangular CdS shell. The triangular CdSe/CdS nanoparticles
prepared can exist stably and retain emission properties for
several months in nonpolar solvents such as THF, hexane and
toluene.
3.2. Effect of tetra-n-butylammonium uoride on
nanoemitters in colloidal suspension

The effect of TBAF on the photoluminescence of CdSe/CdS
nanoparticles in solution was investigated. Fig. 5 presents
a linear increase in photoluminescence over time (0–120
minutes) for only CdSe/CdS NPs and CdSe/CdS NPs aer the
addition of TBAF. A signicantly stronger growth in NPs emis-
sion was observed when TBAF was added as compared to the
initial nanoparticles. These results are explained by the pres-
ence of F− anions in TBAF. Negative uorine ions interact with
the surface of cadmium NPs, more precisely with the broken
bonds of surface atoms (atoms with lower coordination
number).42 As a result of these interactions, surface passivation
(displacement of carrier trapping levels from the energy gap)
could occur by F− ions, thus reducing the possibility of non-
radiative relaxation. To conrm this theory, an experiment was
carried out with low-emission nanoparticles and TBAF over time
(Fig. S4†), and an increase in emissions was observed.
Enhancement of photoluminescence may suggest the forma-
tion of an additional shell of F− ions around a single nano-
particle.19,43 Due to the increase in emission, we assume that
there is an additional TBAF layer on the surface of the NPs,
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 CdSe/CdS nanoparticles illustrated by (A) STEM and (B) HRTEM pictures and the corresponding fast Fourier transform (FFT) patterns; (C)
visualisation of the obtained nanoparticles on the basis of the results obtained.
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rather than ligand exchange (which usually causes defects in
the states and a decrease in photoluminescence).44–46 However,
based on other observations (Fig. S5†), it is also possible to
suggest an increase in emission due to the aggregation of NPs,
with the anchored TBAF between them interacting not only with
the surface of one NP, but also with others. SAXS was measured
aer adding TBAF in two volumes: the same as during the entire
experiment (40 ml) and in double volume (80 ml) (Fig. S6†). The
slope and slenderness of the obtained curve, aer the addition
of TBAF, indicates an increase in the size of the nanoparticle.47

Additionally, a DLS study was also conducted, which showed
reduced colloidal stability in solution 2 hours aer the addition
© 2023 The Author(s). Published by the Royal Society of Chemistry
of TBAF (Fig. S7†). The results obtained may suggest that NPs
aggregates have lower surface defects and thus higher emission
over time.

3.3. Glass containing CdSe/CdS NPs: comparison of the
optical properties of glass and colloidal suspensions

Sol–gel luminescent glasses were prepared by a mixture of
hydrolysed in acidic medium methyltriethoxysilane and tet-
raethyl orthosilicate sol in tetrahydrofuran (MTEOS:TEOS, 49%,
THF) and addition of CdSe/CdS nanoparticles in THF. To
introduce a fast condensation of the sol, TBAF was added as
a gelling agent. During the gelation process, an increase in the
RSC Adv., 2023, 13, 28407–28415 | 28411
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Fig. 5 Emission spectra for (A) CdSe/CdS NPs and (B) CdSe/CdS + TBAF in time 0–120 min; (C) maximum intensity of photoluminescence for
CdSe/CdS NPs in time before (black) and after addition of TBAF (red).
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emission of NPs has been noticed similar to that observed in
solution. The enhancement in the emission of CdSe/CdS NPs
was observed aer drying (Fig. 6).

In colloidal suspensions, it was possible to observe changes
in emission over time. In the case of glasses, measurements
could only be taken aer they had solidied (the sol was a dense
mixture, strongly scattering light, and the solidication process
was quite rapid). Fig. 7 shows the results of measurements
taken over time for CdSe/CdS NPs aer the addition of TBAF to
colloidal suspension and glass containing the same composi-
tion. The results show that the emission in the glass was
Fig. 6 Dried glass with CdSe/CdS nanoparticles prepared using TBAF as

28412 | RSC Adv., 2023, 13, 28407–28415
stopped (during the solidication process) at a value close to
that obtained aer 105 min of measurement for the colloidal
suspension. The solidication process started about 15 min
aer the addition of TBAF to the sol, but it took an additional 3
days at 40 °C to obtain the nal material, when the solid matrix
was completely dried. The nanoparticles entrapped in the glass
matrix nally showed good photoluminescence properties.

As mentioned above, in colloidal solution NPs are exposed to
interactions that can cause them to aggregate over time.
Incorporating NPs in a solid matrix allows to protect their
optical properties at a stable level (Fig. S8†).17 Due to the rapid
gelling agents.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Changes in emission over time for CdSe/CdS nanoparticles
after the addition of TBAF in colloidal suspension (continuous lines)
and glass containing the same composition (dashed line).

Fig. 8 Fluorescence microscope image of sol–gel glass with CdSe/
CdS nanoparticles.
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solidication process, the entrapment of NPs in the solid matrix
results in a rather uniform distribution of NPs in the material
(Fig. 8). Moreover, the hybrid matrix obtained exhibits high
transparency in the visible range, which is due to the good
dispersion of NPs.48

4. Conclusions

This paper presents a method for the synthesis of CdSe/CdS
core–shell nanoparticles with a triangular shape. Aer careful
morphological analysis, it was determined that the three-
dimensional triangles had a zinc blend structure. Tetra-n-buty-
lammonium uoride has been shown to increase nanoparticle
emission in both colloidal solution and sol–gel glass where it acts
both as a surface modier and as a gelation catalyst. The
encapsulation of CdSe/CdS nanoparticles in sol–gel glass allows
the nanoparticle emission to remain stable over time.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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