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The formation of C–N bond is a vital synthetic tool for establishing molecular diversity, which is highly

sought after in a wide range of biologically active natural products and drugs. Herein, we present a new

strategy for the synthesis of secondary amines via iridium-catalyzed one-pot reductive amination of

carbonyl compounds with nitro compounds. This method is demonstrated for a variety of carbonyl

compounds, including miscellaneous aldehydes and ketones, which are compatible with this catalytic

system, and deliver the desired products in good yields under mild conditions. In this protocol, the

reduction of nitro compounds occurs in situ first, followed by reductive amination to form amine

products, providing a new one-pot procedure for amine synthesis.
Amines, particularly secondary amines, are not only prevalent
in dyestuff, and chemosynthesis plants as important industrial
materials, but also exist in a wide range of biologically active
natural products and drugs.1 Thus, the establishment of strat-
egies to facilely form C–N bond is of longstanding signicance
in organic synthesis. A simple strategy to construct amines is
the alkylation of amines with alkyl halides2 or alcohols.3 The
successful preparation of C–N bond would also be realized by
Buchwald-Hartwig4 or Ullman-type cross-coupling reactions.5

Notably, strategies of reductive amination6 and addition reac-
tions to imines7 have been described as in the C–N bond
synthesis. Additionally, the reduction of amides8 also enables
the formation of amine products. Given the simple and easy
accessibility of raw materials, reductive amination undoubtedly
enables the practical and direct formation of the C–N bond,9

which is shown as a step and atomic economy.
Nitro compounds, as readily available feedstocks, have been

extensively employed for reductive amination with carbonyl
compounds, in which the nitro compounds are converted into
primary amines in advance, thereby avoiding the additional
purication steps.10 In this context, a pioneering report on the
reductive amination of carbonyl compounds with nitro
compounds was described by Major's group in early 1931 with
H2 as the hydrogenation reagent.11 Since this seminal work,
extensive outstanding progress has been achieved over the past
decades. In this regard, a heterogeneous catalytic system
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utilizing noble metals (such as platinum,12 palladium,13

rhodium,14 iridium,15 ruthenium,16 silver,17 and gold18) and non-
noble metals (such as nickel,19 cobalt,20 copper,21 and iron,22) as
catalysts have been established (Scheme 1a). Similarly, strate-
gies based on the catalytic system with the form of metals,
oxides, and other compounds as catalysts have been developed
as well for the reductive amination of carbonyl derivatives with
nitro compounds (Scheme 1a). However, synthetic methods for
this one-pot reductive amination of nitro compounds were
limited to H2 as the hydrogen donor, which is inevitably con-
strained in the use of high-pressure devices and possesses
potential safety issues.

As a consequence, approaches for replacing hydrogen gas
with other hydrogen donors, such as CO/H2O,23 HCO2H,24
Scheme 1 Reductive amination of carbonyl derivatives with nitro
compounds.
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NaBH4,25 B10H14,26 B2(OH)4,27 and Zn,28 for the reductive ami-
nation with nitro compounds have been established (Scheme
1a). However, great efforts to circumvent the harsh reaction
conditions, narrow the substrate scope, long reaction times,
complicated catalyst preparation processes, high catalyst
loading, and well as side-reactions have been made in the past
years.

As such, transfer hydrogenation, which uses polyatomic
molecules, including formic acid, alcohol, hydrazine hydrate,
and silane as hydrogen donors, to migrate hydrogen to the
unsaturated functional group directly with the assistance of
catalysts. In this context, formic acid obtained from biomass,
bearing the merits of high energy density, low cost, non-
poisonousness, and stability, has been widely applied as
a hydrogen source in transfer hydrogenation reactions.
Recently, we have been working on the transfer hydrogenation
of C]O, C]C, C]N bonds using Cp*Ir complexes as catalysts
and formic acid as the hydrogen donor.29 In these methods, we
have demonstrated that these Cp*Ir complexes could enable
indirect and direct reductive amination for the construction of
amine compounds.29a,d However, reductive amination for the
construction of C–N bond via transfer hydrogenation with nitro
compounds as the source of amine remains relatively limited.
Herein, we present an iridium-catalyzed one-pot reductive
amination of carbonyl compounds with nitro compounds
(Scheme 1b). In this protocol, the reduction of nitro compounds
occurs in situ rst, followed by reductive amination to form the
Table 1 Optimization of the conditions for Ir-catalysed reductive
amination of aldehydes with nitro compoundsa

Entry Catalyst Solvent
HCO2H
(eq.) Time (h) Yieldb (%)

1 TC-1 DMF + H2O 15 4 98
2 TC-2 DMF + H2O 15 4 66
3 TC-3 DMF + H2O 15 4 48
4 TC-4 DMF + H2O 15 4 92
5 TC-5 DMF + H2O 15 4 89
6 TC-6 DMF + H2O 15 4 76
7 TC-1 DMF + H2O 15 12 99
8c TC-1 DMF + H2O 15 12 54
9 TC-1 DMSO + H2O 15 12 10
10 TC-1 H2O 15 12 <5
11 TC-1 DMSO 15 12 <5
12 TC-1 DMF 15 12 <5

a Reaction conditions: 1a (0.5 mmol), 2a (1.0 mmol), solvent (2.0 mL),
catalyst (0.005 mmol), HCO2H (15.0 equiv.), B2(OH)4 (6.0 equiv.), 4,4-
bipyridine (0.05 mmol) at room temperature under air for 12 h.
b Determined using GC-MS. c With 0.0025 mmol of the catalyst.

29608 | RSC Adv., 2023, 13, 29607–29612
amine products, providing a new one-pot procedure for amine
synthesis.

To explore the possibility of the reaction, the reductive
amination was started by using 1-isopropoxy-4-nitrobenzene
(2a) and benzaldehyde (1a) as templates, and TC as the cata-
lyst. As shown in Table 1, 98% conversion of the desired product
3aa was observed using TC-1 as a catalyst, 15.0 equiv. HCO2H as
the hydrogen donor, as well as DMF and H2O as the mixed
solvent (v/v= 1 : 1) aer 4 h (Table 1, entry 1). Catalyst screening
demonstrated the corresponding product 3aa could be formed
as well, though a lower conversion of the product was obtained
(Table 1, entries 2–6). For instance, only moderate yields of the
desired product were afforded when catalysts bearing methyl or
chlorine substituents were employed (Table 1, entries 2 and 3).
In contrast, good to excellent yields of the corresponding
product were observed using uorine or methoxyl-substituted
catalysts (Table 1, entries 4–6). Of note, the increase in the
reaction time had no inuence on the yield of the product
(Table 1, entry 7). However, a sharp decrease in the yield was
observed when the catalyst loading of TC-1 was decreased to
0.5 mol% (Table 1, entry 8). A similar negative inuence on the
yield of the product was also observed when different reaction
media were loaded (Table 1, entries 9–12).

With the optimized conditions in hand, the substrate scope
was investigated to explore its versatility (Scheme 2). Firstly, the
1-isopropoxy-4-nitrobenzene (2a) was loaded as an amination
agent to react with various aldehydes. Gratifyingly, the desired
reductive amination products of 3ba–3ga, 3ia, 3ja, as well as 3sa
were afforded good yields with mono-substituted benzalde-
hydes as substrates. Of note, only a moderate yield of the cor-
responding product was achieved when 4-nitrobenzaldehyde
Scheme 2 Substrate scope of the aldehydes and nitro compounds.
Reaction conditions: 1 (0.5 mmol), 2 (1.0 mmol), solvent (2.0 mL),
catalyst (0.005 mmol), HCO2H (10.0 equiv.), B2(OH)4 (6.0 equiv.), 4,4-
bipyridine (0.05 mmol) at room temperature in air for 12 h. Yield of the
isolated product.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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was loaded as the substrate (3ha). Interestingly, the employ-
ment of multi-substituted benzaldehydes, including electron-
donating or electron-withdrawing substituents on the phenyl
group, could also enable the delivery of the corresponding
products (3ka–3pa) in similar excellent yields. Obviously, the
substrate 2w bearing the potential oxidized hydroxyl group
reacted smoothly as well under this system. Satisfactorily,
employing aliphatic aldehydes, naphthaldehyde, as well as
unsaturated aldehyde as substrates also furnished the corre-
sponding products 3ra, 3ta–3xa in moderate to good yields. It is
worth noting that the amino acid product of 3ab was produced
when 2-nitrobenzoic acid was loaded as the substrate.

Encouraged by the results of the Ir-catalysed reductive ami-
nation of aldehydes with nitro compounds, the feasibility of
using ketones as substrates was also investigated (Table 2).
Firstly, 4-phenyl-2-butanone (5a) and 1-isopropoxy-4-
nitrobenzene (2a) were chosen for the model reaction to opti-
mize the reaction parameters. Catalyst screening (Table 2,
entries 1–6) demonstrated that, unlike aldehydes, TC-4 was
found to be the optimal catalyst for the reductive amination of
ketones, delivering 90% conversion of the desired product 4aa
at room temperature (Table 2, entry 4). Gratifyingly, the yield of
Table 2 Optimization of conditions for the Ir-catalysed reductive
amination of ketone with nitro compoundsa

Entry Cat.
T
(°C) Solvent

HCO2H
(eq.) Time (h) Yieldb (%)

1 TC-1 rt DMF + H2O 15 12 59
2 TC-2 rt DMF + H2O 15 12 66
3 TC-3 rt DMF + H2O 15 12 38
4 TC-4 rt DMF + H2O 15 12 90
5 TC-5 rt DMF + H2O 15 12 34
6 TC-6 rt DMF + H2O 15 12 34
7 TC-4 80 DMF + H2O 15 12 97
8 TC-4 80 DMF 15 12 34
9 TC-4 80 DMSO 15 12 <5
10 TC-4 80 H2O 15 12 n.d.
11 TC-4 80 DMSO + H2O 15 12 n.d.
12 TC-4 80 DMF + H2O 10 12 95
13 TC-4 80 DMF + H2O 12 12 97
14 TC-4 80 DMF + H2O 15 2 97
15c TC-4 80 DMF + H2O 15 12 94
16d TC-4 80 DMF + H2O 15 12 30
17 — 80 DMF + H2O 15 12 n.d.

a Reaction conditions: 5a (0.5 mmol), 2a (0.75 mmol), solvent (2.0 mL),
catalyst (1.0% mol), HCO2H (15.0 equiv.), B2(OH)4(2.25 mmol), 4,4-
bipyridine (0.0375 mmol) at 80 °C in air for 12 h. b Determined using
GC-MS. c The reaction was carried out using 0.0005 mmol of the
catalyst. d Without B2(OH)4.

© 2023 The Author(s). Published by the Royal Society of Chemistry
the product was slightly increased when the reaction tempera-
ture was increased to 80 °C (Table 2, entry 7). Similar to alde-
hydes, solvents have a signicant inuence on the reaction,
producing completely different yields of the product in different
reaction media (Table 2, entries 8–11). Of note, a similar high
yield of the product was obtained even when the loading of the
catalyst was decreased to 0.1 mol%, or the reaction time was
shortened to 2 h (Table 2, entries 12–15). Control experiments
evidenced that, indeed, a 30% yield of the corresponding
reductive amination product of 4aa could be afforded in the
absence of B2OH4 under standard conditions (Table 2, entry 16).
However, the iridium catalyst was essential for the formation of
the desired product (Table 2, entry 17) (see ESI† for further
details, F).

Based on the above optimizations, the substrate scope of
ketones and nitro compounds was investigated (Scheme 3).

Firstly, the use of 4-phenylbutan-2-one (5a) as the substrate
to react with 4-isopropylnitrobenzene or heterocyclic nitroben-
zene was explored to examine the versatility of this reductive
amination. Gratifyingly, various cyclic aliphatic ketones loaded
as substrates enabled the delivery of the target products (4ba–
4ga) in moderate to good yields. Similar results were also
Scheme 3 Substrate scope of ketones and nitro compounds for
reductive amination. Reaction conditions: 5 (0.5 mmol), 2 (0.75 mmol),
solvent (2.0 mL), catalyst (1.0 mol%), HCO2H (15.0 equiv.), B2(OH)4
(2.25mmol), 4,4-bipyridine (0.0375mmol) at room temperature under
air for 12 h. Yield of the isolated product.

RSC Adv., 2023, 13, 29607–29612 | 29609
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observed (4ha and 4ia) when unsaturated ketones or heterocy-
clic ketones were employed in this catalytic system. Obviously,
the use of aliphatic ketones with long carbon chains 5j and 5k
as the substrates did not have an inuence on the yields of the
desired products (4ja and 4ka). It should be noted that aromatic
ketones were also well tolerated in this system to produce the
corresponding products (4la–4pa). Nevertheless, only 27% of
the target product (4qa) was provided using a more steric
hindrance of 1-(naphthalen-2-yl)ethan-1-one (5q) as the
substrate. Disappointingly, benzophenone (5r) or 2,2,2-
triuoro-1-phenylethan-1-one (5s) substrates could not be
tolerated in this catalytic system. On the other hand, different
substituted nitro compounds were also investigated in this
system. Satisfyingly, heterocyclic substrates such as 5-nitro-2,3-
dihydrobenzofuran (2c) were well tolerated to afford the desired
product 4ac in good yield. Interestingly, di-functional conver-
sion products of 4ad and 4ah were observed when 1-ethynyl-4-
nitrobenzene (2d) and 7-nitro-3,4-dihydronaphthalen-1(2H)-
one (2h) were loaded, in which, both the alkyne and carbonyl
groups were reduced simultaneously. It is notable that the
chlorine (2e), methyl (2i), ester (2f), and even the readily
oxidized phenol hydroxyl (2g) substituted nitro compounds
were compatible with this system, delivering the corresponding
products in excellent yields.

The model reaction was scaled up to investigate the practi-
cability of this protocol (Scheme 4). Gratifyingly, 2.32 g target
product of 4aa was produced in 82% yield aer 12 h by loading
10.0 mmol of 5a as substrate under standard conditions, indi-
cating that this protocol could be followed for scalable perfor-
mance. Of note, this model reaction was also investigated with
chiral TC-7 as the catalyst, and only the racemic product 4aawas
afforded (see ESI† E).

According to the experiment and previous work,29d a possible
mechanism was proposed, as shown in Scheme 5. This catalytic
Scheme 4 Scheme for the gram-scale experiment.

Scheme 5 Proposed mechanism.

29610 | RSC Adv., 2023, 13, 29607–29612
cycle involved two processes, in which amine 6 was produced in
situ with B2(OH)4 as the catalyst, followed by condensation with
carbonyl compounds to form the imine intermediate A. With
the intermediate in hand, the second process occurred succes-
sively, in which the Int-I was formed rstly, then followed by
transfer hydrogenation to afford the desired product 4 and the
catalytic cycle.

Conclusions

In summary, we established a new strategy for the synthesis of
secondary amines via the iridium-catalysed reductive amination
of carbonyl compounds with nitro compounds. A wide range of
carbonyl compounds, including aliphatic or aromatic aldehydes
and ketones, were well tolerated in this catalytic system, deliv-
ering the desired products in moderated to excellent yields
under mild conditions. In this transformation, rst, the
reduction of nitro compounds was realized in situ with B2(OH)4
as the reductant, followed by reductive amination of carbonyl
compounds to afford amine products, providing a new one-pot
procedure for amine synthesis.
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