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mapping of boron clusters via
convolutional neural networks to augment
structure prediction algorithms†

Pinaki Saha a and Minh Tho Nguyen *bc

Determination and prediction of atomic cluster structures is an important endeavor in the field of

nanoclusters and thereby in materials research. To a large extent the fundamental properties of

a nanocluster are mainly governed by its molecular structure. Traditionally, structure elucidation is

achieved using quantum mechanics (QM) based calculations that are usually tedious and time

consuming for large nanoclusters. Various structural prediction algorithms have been reported in the

literature (CALYPSO, USPEX). Although they tend to accelerate the structure exploration, they still require

the aid of QM based calculations for structure evaluation. This makes the structure prediction process

quite a computationally expensive affair. In this paper, we report on the creation of a convolutional

neural network model, which can give relatively accurate energies for the ground state of nanoclusters

from the promolecule density on the fly and could thereby be utilized for aiding structure prediction

algorithms. We tested our model on dataset consisting of pure boron nanoclusters of varying sizes.
1. Introduction

Nanoscience involves the study of structures and properties of
nanomaterials. An important class of nanomaterials is nano-
clusters. Nanoclusters are dened as atomic aggregates that
exist in the nanoscale. Transition metal clusters, with diameters
ranging from 1 to 10 nm, are of signicant theoretical and
practical interest due to their actual and potential use in
ultrahigh density magnetic recording materials, catalytic parti-
cles in the synthesis of chemical compounds, carbon nanotubes
and several applications in electronics and optics.1–10 The
geometrical structure plays an important role in the determi-
nation of several physico-chemical properties of nanoclusters.1,2

Theoretically, structure determination is conventionally done
via electronic structure calculations using a variety of quantum
mechanics (QM) based methods based on molecular orbital
theory (wavefunction) and density functional theory (DFT). This
is oen a tedious, slow and computationally expensive process
for medium and large size systems.

An alternate solution for speeding up calculations is the use
of parameterized molecular mechanics (MM) based force elds
that treat atoms and bond as classical objects and use
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Newtonian mechanics to estimate the energy and forces of the
system. MM based force eld calculations are much faster than
quantum chemical ones by a large order of magnitude. While
the MM force eld approaches have successfully been employed
for simulations and analysis of organic molecules,11 their
applicability is limited in nanoclusters due to the presence of
inherently non-classical bonds and extensive electron delocal-
ization in nanoclusters. In this context, the machine learning
based potentials instead have been propositioned as an alter-
native that could be applied to nanoclusters.

Machine learning (ML) is a powerful emerging technique for
the construction of molecular transferrable and non-
transferrable potentials. In the eld of computational chem-
istry, ML has currently and extensively been implemented to
solve problems in a variety of chemical subjects such as, among
others, the prediction of structures, reaction pathways, forma-
tion energies, nuclear magnetic resonance (NMR) shi,
prediction of HOMO–LUMO gap and glass transition tempera-
ture.12,13 Several ML algorithms have already been reported in
the recent literature that deal with molecular systems including
the neural networks, support vector machine (SVM) based
classication/regression, ridge regression, Gaussian progres-
sion regression (GPR), partial least square (PLS) based regres-
sion, random forest/XG boost etc.

In our case, we have utilized neural networks for our
machine learning analysis. Neural networks form a class of ML
algorithms which are gaining prominence due to their effi-
ciency, effectiveness and ability to handle a diverse range of
problems.14–16 Of the neural networks that have been designed
for molecular systems, the Behler–Parrinello neural network
RSC Adv., 2023, 13, 30743–30752 | 30743
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(BPNN)17 relies on division of a molecule into its atomic
constituent where a feed-forward neural network infers the
atomic contributions for the total molecular property. The
atomic contributions are then combined to get the total
molecular property. In the BPNN scheme, symmetry is
preserved by mapping the coordinates onto a large set of two-
and three-body symmetry functions. Fixing these symmetry
functions is a painstaking endeavour for molecules containing
many elements. BPNN is sensitive to the choice of input
features used to describe the molecular system, and selection of
the most relevant features is usually a time-consuming and
challenging task.

Another important machine learning based potential is the
gradient domain machine learning (GDML).18 In the GDML
scheme, the symmetry is preserved by mapping the coordinates
onto the eigenvalues of the Coulombmatrix whose elements are
the inverse distances between all distinct pairs of atoms.
However, GDML has up to now only been used for relatively
small organic molecules.19

In lieu of the aforementioned shortcomings, we set out to
look at other approaches in devising a new methodology
involving neural networks. It has been shown that the neural
network consisting of single hidden layer can approximate any
continuous function and hence neural networks are also termed
universal function approximators.20 This makes neural
networks particularly suitable for regression problems. It is well
known that the deep convolutional networks can approximate
any continuous function.21 Featureless learning is the unique
ability of convolutional neural network (CNN) to utilize training
data, especially images, directly for modelling without feature
extraction.22 Featureless learning is also expected to be useful
for the creation of a regression model which not only predicts
energy but also multiple properties of molecular systems.

Currently, featureless learning is not restricted to convolu-
tional neural networks, graph neural networks are also utilized
for featureless learning in molecular systems. Graph neural
network, as the name suggests, works on graph-structured data.
Their architecture allows them to directly work on the natural
representations of molecules hence displaying featureless
learning for molecules.23 A molecule can be treated as a undi-
rected graph where the nodes and the vertices of the graph
correspond to the atoms and bond of a molecule. The graph
network utilized for molecular systems are message passing
graph neural networks (MPNN). In the MPNN framework,
a node level embedding of a molecule is generated using
message passing where information of node is relayed in form
of messages through graph edges to neighbouring nodes. Upon
completion of this step for the whole molecular graph we get an
embedding which is then propagated to classic deep neural
architecture for either classication or regression tasks. Graph
neural networks are also system agnostic and can be utilized for
organic, inorganic, crystalline and nanostructure.23 In case of
boron clusters, especially larger boron clusters where a large
amount of delocalized multi center bonding exists it is not
straightforward to encode such structures accurately as molec-
ular graphs and hence would not be suitable for graph neural
30744 | RSC Adv., 2023, 13, 30743–30752
networks. Electron density based machine learning paradigm
on the other hand can deal with such delocalized nanoclusters.

It is well known that in density functional theory (DFT), the
Hohenberg & Kohn theorem24 states that the electron density of
a molecule r(r) uniquely determines the ground state electronic
energy. A unique energy functional E[r(r)] is required for
mapping the electron density to the ground state electronic
energy eqn (1):

E = E[r(r)] (1)

In the case of DFT based calculations for molecules, a trial
electron density is assigned to a molecular system, and the use
of a suitable functional along with an atomic basis set leads to
the total energy of the molecule being calculated. Instead of
utilization of a density functional, we can now map the electron
density to the ground state electronic energy using convolu-
tional neural network eqn (2):

r �!CNN
E (2)

Recently Zhao et al.25 reported a study regarding 3D-CNN
which utilizes the electron localization function (ELF) for
prediction of various properties for materials. The ELF does
capture both the localization and delocalization of the electron
density. Generation of an ELF map requires quantum chemical
calculations. A fast ML algorithm would require rapid calcula-
tion of electron density which is not possible by using tradi-
tional QM based calculations. The solution to this problem is
the construction of promolecule densities for the clusters/
molecules examined. For a better understanding of the pro-
molecule density, we need to know about the Hirshfeld parti-
tioning scheme. The Hirshfeld partitioning scheme is basically
a partitioning method where the molecular electron density is
divided into its constituent atomic density. In this scheme,
a promolecule density is assigned to a molecule by superposi-
tion of precalculated electron densities of the atomic constitu-
ents of the molecule considered. Then this electron density is
partitioned by giving weightage to the atomic constituents
proportionated to their contribution to the electron density.26,27

The promolecule density (r°(r)) can be written as a weighed
summation of atomic densities eqn (3):

r�ðrÞ ¼ SAwAðrÞr�
AðrÞ (3)

where the weight is given by the following expression (4):

wAðrÞ ¼ r
�
AðrÞ

�
r�ðrÞ (4)

This promolecule density is akin to the initial trial density
utilized in DFT calculations. However, unlike trial density in
DFT calculations, there is no occurrence of iterative process just
the straightforward mapping of promolecule density to energy.
One caveat of this approach is since we are not using the actual
ground state energy for mapping but promolecule density, thus
the energy obtained from the model is not expected to be highly
accurate. The purpose of the present machine learning model is
to predict energy trends amongst themolecular systems, not the
© 2023 The Author(s). Published by the Royal Society of Chemistry
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actual energy itself. Ultimately, we want to augment the
machine learning algorithm with structure prediction codes,
thus the neural network should be able to correctly predict the
ordering of structural isomers for a particular molecular
system. The model can thus successfully predict the energy
ordering of isomers but it will not predict the exact ground state
energy of the isomers. The density can be mapped to the ground
state energy of a system by using convolutional neural network
(CNN) model. The promolecule approach is also limited to
neutral systems this is because, the reference atomic density
used for construction of promolecule density are of neutral
atoms.28 The Hirshfeld method has been proved not to be very
accurate for charged systems. Due to the aforementioned
reasons, our method exclusively applies only to neutral nano-
cluster systems.

The promolecule density is a three-dimensional (3D) quan-
tity and thus cannot be utilized in a traditional CNN. CNNs are
typically used for two dimensional (2D) images; in that regard
we have to rst convert the three dimensional promolecule
density to a 2D quantity. We can achieve this by projecting the
3D density to 2D planes, namely the xy, yz and xz planes. Via this
2D projection we obtain three projected datapoints from
a single 3D datapoint. This 2D projection thus leads to a data
augmentation (articial increase of the dataset size) and mini-
mizes loss of information. The dataset required for our model is
mainly sourced from the current literature (including reviews
on nanoclusters).29 Majorly the neutral boron structures
ranging from size 4 to 40 (Bn: n = 4–40) were taken from the
review authored by Barroso et al.29a Boron clusters from size 31
to 50 (Bn: n = 31–50) were taken from the research paper
authored by Wu et al.29b There were certain neutral boron
clusters (Bn: n = 26–30) which were not reported in the afore-
mentioned papers we sourced the structures from two papers
earlier published by our research group (Tai et al.29d & H. T.
Pham et al.29e). We further carried out calculations on the PBE0/
6-311+G level of theory to ascertain as to whether the reported
structures were truly global minimum. Our calculations indeed
ascertain the structures reported in the literature are global
minima.

Hirshfeld surfaces have already been utilized for machine
learning purposes especially via convolutional neural networks.
Logan et al.30a have utilized deep learning to predict formation
energy and lattice structure parameters30b using Hirshfeld
ngerprints as inputs for the CNNs. Hirshfeld surface can be
availed for crystal structure but not for discrete molecules.
Promolecule densities are thus required for deep learning
predictions of nanoclusters. As the CNN approaches tend to
require a large dataset for accurate prediction, we are using
a data augmentation technique to increase the data size. Data
augmentation is a way of creating new training data from
existing training data. In our case, we can use molecular
dynamics (MD) simulations to achieve data augmentation, in
which the numerous conformational isomers/poses generated
by MD simulations are used for augmenting our dataset. MD
simulations are accordingly performed using ab initio molec-
ular dynamics simulation (ADMP MD simulation). The ADMP
simulation turns out to be a robust and computationally
© 2023 The Author(s). Published by the Royal Society of Chemistry
efficient method of data augmentation as compared to the
random generation of particles and computing the energies of
the generated particles.31 As far as we are aware, prediction of
total energies of molecular systems via ML algorithm using the
promolecule density has not yet been reported in the current
literature.

As for the dataset, we build up our neural network models on
boron nanoclusters. Boron clusters show a wide complexity in
their structures that it can adopt a variety of geometrical motifs
including the planar, quasi-planar, bowl, ribbon, cage, core–
shell, fullerene and tubular structures etc. The bonding
phenomenon of these clusters is not straightforward as it
contains extensive delocalized bonding in both 2D and 3D
structures.32–36 Boron clusters thus form a challenging dataset
for ML problem. Following a successful implementation of deep
learning model on boron clusters we would plan to expand the
model on other nanoclusters.

In the present study, we utilize pure boron clusters Bn

ranging from the size B4 to B40 to establish the dataset for our
machine learning based study. This is due to the fact the
structures for the Bn clusters in the size range of n = 4–40 have
been relatively well established. Some larger clusters (Bn, with n
> 40) still do not have well-established global minimum struc-
tures. For example, the B70 boron cluster was postulated to be
quasi-planar by Rahane et al.37 but subsequent studies pointed
out that both tubular and bilayer structures have lower energy
and are positioned as the global minimum for the B70

cluster.38,39 Large clusters can take up a myriad number of
congurations and thus it is quite difficult to ascertain the
global minimum structures. Our present training dataset for
the Bn boron clusters is thus limited up to the size of B40.

2. Computational details

Calculations on boron clusters are carried out using the PBE0
functional and the Gaussian 09 program40 in conjunction with
the 6-311+G basis set. Calculations to verify global minimum
structure of the boron clusters are also done using PBE0/6-
311+G level of theory. These structures are then used as initial
structures for MD simulations. Promolecule densities of the
clusters are generated using the Crystal Explorer soware.27

Automation of the Crystal Explorer processes is done via
Microso's Power automate tool. The convolutional neural
network (CNN) models are created using the MATLAB R2021b
suite. In house bash/python scripts are also utilized for small
data processing tasks. Details are given in the ESI.†We also put
the relevant codes in Github: https://github.com/314111953/
Featureless-learning-using-Promolecular-Density/tree/main.

3. Results and discussion

We utilize a CNN based regression model that takes a regular
convolutional neural network which is succeeded by regression
layer at the end of the network. The feature extraction layers
contain convolution, RELU and pooling layers.

Convolution neural networks (CNN) are well known in the
eld of image recognition. The underlying assumption is that
RSC Adv., 2023, 13, 30743–30752 | 30745

https://github.com/314111953/Featureless-learning-using-Promolecular-Density/tree/main
https://github.com/314111953/Featureless-learning-using-Promolecular-Density/tree/main
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3ra05851d


Fig. 2 In (a) we can see the generation of conformers via MD simu-
lation from boron clusters. From each of these conformers promo-
lecule density is generated (b) and projected to two dimensional
images in the XY, YZ and XZ plane, respectively.
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the complex geometrical features of an image are an ensemble
of smaller and simpler patterns. CNN uses small lters that
extract local features and progressively reduce the size of the
input variable with each layer. The number of layers in CNN
increases with an increase in the size of the input image.
Consider the input image X of size N × M (Fig. 1). Each
convolution + RELU and pooling layer produce the feature maps
of reduced dimension as compared to its input. Additionally,
the pooling layers produce an output map that is invariant to
small changes within pooling window. The model is trained
using a regression loss function which is given by the following
eqn (5):

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih
ð1=NÞ �

X
ðy� ymeanÞ2

ir
(5)

We utilize regression loss function as our model will be
trained to capture the trend of energy distribution amongst
various diverse boron nanocluster. As explained earlier our
model based on promolecule density can only approximate the
energy, thus we are utilizing our model to gauge the energy
distribution which will be helpful in case of a potential energy
landscape exploration. The model utilizes the Adam optimizer
for the purpose of back-propagation. The model is trained on
AMD Ryzen-7 PRO 4750U CPU, 16 GB RAM with RADEON
graphics card using the MATLAB R2021B.

As stated above, the dataset used for training the model is
generated from boron clusters ranging from the size of B4 to
B40. Ab initio basedmolecular dynamics simulations (ADMP) are
performed on all these clusters considered. Each ADMP trajec-
tory gives a set of molecular clusters along with their corre-
sponding energies. There are thus 37 clusters in the dataset and
each cluster generates 1020 structures along with their corre-
sponding energies, thus we obtain 37 740 structures. For each of
these 37 740 structures, we generate the corresponding pro-
molecule density for each structure using the Crystal Explorer
(Fig. 2a). The promolecule density is a 3D quantity and cannot
Fig. 1 The promolecule density obtained from boron clusters is
converted to images representing projection along the three axes.
These images of N × M size are fed to image input layer which
normalizes the image and feeds the normalized image to feature
extraction layer (F). The feature extraction layer consists of convolu-
tional, RELU and pooling layers to produce low dimensional feature
representation of the original image. The features obtained are then
again normalized using batch normalization layers and finally fed to the
classical neural network, i.e. the fully connected layer.

30746 | RSC Adv., 2023, 13, 30743–30752
be utilized by 2D CNN; of course there do exist 3D CNNs which
can directly work with the promolecule density but we do not
use 3D CNNs as they possess an inherent disadvantage, that is,
they have high computational complexity and excessive memory
usage.41 We thus limit our study to 2D CNN to utilize the pro-
molecule density for our model we project this 3D quantity to
three axes X, Y & Z to get 2D images in the YZ, XZ and XY plane
respectively (cf. Fig. 2b).

Projection of the surface on the three orthogonal planes
ensure that we are capturing maximum data from the 3D
surface. Projection of the promolecule density to images is done
via a pointcloud2image Matlab script.42 Thus, from 33 740
structures generated, we get 113 220 projected images, hence we
obtain a dataset of a size of 113 220.

The dataset obtained consists of projected images from
planar, quasi planar, bowl, tubular, cage and fullerene structure
(cf. Table 1). A quite complicated growth pattern is seen as we
move from B4 to B40. Planar, quasiplanar and bowl structures
are predominant (67.6%) followed by tubular (18.9%), cage
(8.1%) and fullerene (5.4%) structures. The dataset is divided
into the training, validation and test set in the following
proportions of 60, 20 and 20%, respectively.

We construct the test set to include the planar, quasi-planar,
bowl, tubular fullerene and cage structures. Table 2 shows the
distribution of training, validation and test dataset.

Accordingly, the training dataset consists of 22 boron clus-
ters which generate 67 320 data points. Validation dataset
consists of 8 boron clusters which corresponds to 24 480 data
points. The test dataset consists of 7 boron clusters which
corresponds to 21 420 data points. Distribution of the datasets
is presented in Table 3.

The model is trained using Matlab, and the data is trained
for 50 epochs. The initial learning rate is kept at 0.002 and the
learning rate is lowered aer 20 epochs, with a learn-rate drop
factor of 0.1. Early stopping is utilized to avoid an overtting. In
early stopping, the variation between the evolving trend of the
loss on training and validation is seen, then the training is
stopped when the variation increases between training and
validation increases by a large margin. The time required to
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Distribution of structures of various boron clusters Bn ranging from size n = 4 to 40

Planar, quasiplanar, bowl Tubular Fullerene Cage

B4, B5, B6, B7, B8, B10, B11, B12, B13,
B15, B16, B17, B18, B19, B21, B23, B25,
B28, B29, B30, B33, B35, B36, B37, B38

B20, B22, B24, B26, B27, B32, B39 B14, B40 B9, B31, B34

Table 3 Distribution of the classes of structures for training, validation
and test dataset

Planar, quasiplanar,
bowl Tubular Fullerene Cage

Training 68.2% 18.2% 4.5% 9.1%
Validation 62.5% 25.0% 12.5%
Test 71.4% 14.3% 14.3%
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train the model amounts to 1100 minutes (∼18.3 hours). The
architecture of the CNN model constructed is given in the ESI.†

To further assess our model, we use two well-known quan-
tities in machine learning realm: correlation coefficient R and
regression coefficient R2. The Pearson correlation coefficient
captures how similar is the data distribution of predicted
response to the actual response, whereas the R2 coefficient is
a scale independent quantity used for assessing a regression
model. Since our model is trained on regression loss, R2 is
pertinent for gauging the model performance. The R2 and
Pearson correlation coefficient value of 1 are for a perfect model
which accurately predicts all data points correctly. We also
utilize these two quantities as they are ideal for capturing the
distribution or trend of energy distribution amongst different
molecular systems, thus it will allow us to gauge how well the
model can capture the ordering of the clusters with respect to
their energies. The R2 regression coefficients amount to 0.86
and 0.89, respectively, and the correlation coefficients are 0.93
and 0.94 for the validation and test data set, respectively (cf.
Table 4). The CNN model is thus able to learn from the pro-
jected images of the electronic densities and able to map the
density features obtained from the images to evaluate the total
energies quite accurately.

Fig. 3 displays the results demonstrating that the CNNmodel
predicts quite well for each of the clusters, though a large
variance is observed for B14 and B17 clusters. This gure may not
be very intuitive to the readers as it includes up to 1020
conformational isomers for certain large clusters considered,
and thus for each corresponding cluster a spread of predicted
energy values is seen. While the predicted energies vary over
a range for the congurations of a particular cluster, with
exception of one cluster B17, most of the values of the congu-
ration of a particular cluster are clustered towards the mean; the
presence of outliers at both ends of distribution is akin to a bell
distribution, where most of the values congregate around the
mean and outlier are present at both ends of the Gaussian
distribution. The mean of the values gives us the approximate
value of the cluster, similar to a Gaussian distribution. A better
way of visualization is plotting the average conformational
isomer energies of nanocluster with respect to the average
predicted energy for each cluster as presented in Fig. 4.
Table 2 Distribution of boron nanoclusters in the training, validation an

Training dataset clusters Validati

B7, B8, B10, B12, B13, B16, B18, B19, B23, B26, B27,
B28, B30, B31, B32, B33, B34,B35, B36, B38, B39, B40

B4, B6, B

© 2023 The Author(s). Published by the Royal Society of Chemistry
We can see in Fig. 4 that all the three values of R2 and R are
improved, with an exception for the B17 cluster; all the average
predicted energies lie close to regression line. The average
energy of conformational isomer (Eavg_conformers) of a partic-
ular nanocluster is roughly equivalent to the ground state
energy of nanocluster Egs (Eavg_conformers z Egs).

The energy of a conformational isomer A (EconfA) with respect
to the ground state system's energy (Egs) can be written as eqn
(6):

EconfA = Egs + DEA (6)

The average of all the conformational isomer for a particular
nanocluster can thus be written as eqn (7)–(9):

Eavg_conf = (
PnEgs +

PnDEn)/n (7)

Eavg_conf = Egs + DEavg (8)

Hence:

Eavg_conf z Egs (9)

Overall, by taking the average of the energies predicted by the
CNN model, we can evaluate the ground state total energy of
a particular boron cluster in the test dataset with a certain
accuracy. This approach is not foolproof though, as we are
utilizing projections, it is not sensitive to rotational invariance.
Since we are utilizing the promolecule density and not the
actual ground state electron density, the energy which is got
from the CNN, will not be the exact ground state energy I but
a higher energy E′. Thus, the machine learning paradigm
considered here will thus not give accurate energy but is useful
d test dataset

on dataset clusters Test dataset clusters

9, B15, B20, B21, B22, B29 B5, B11, B14, B17, B24, B25, B37
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Table 4 R2 and R values for the validation and test dataset

R2 R

Regression coefficient
Correlation
coefficient

Validation 0.86 0.93
Test 0.89 0.94

Fig. 3 Performance on test dataset is illustrated by the graph, good R2

and R values of 0.89 and 0.94, respectively for this complex dataset are
obtained.

Fig. 4 The performance on test dataset is illustrated by the graph, we
get a good R2 and R value of 0.96 and 0.98 respectively.
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for a quick potential energy landscape exploration of nano-
clusters. Our model is thus well suited for capturing the energy
trend, hence we believe our model is better suited for
classication-based tasks. Regression model can be converted
to classication model by utilizing thresholds i.e. class can be
assigned to particular molecule depending whether their pre-
dicted energy is above the certain threshold or not. For the
classication task, we use a test dataset containing boron
clusters ranging from B41 to B50. We also include the B70

structure in our test dataset. The global minimum of B70 was
purported to be quasiplanar and later it was purported to be
30748 | RSC Adv., 2023, 13, 30743–30752
tubular structure but recently it was shown to be a bilayer
structure. Ascertaining the global minimum structure for such
large clusters is a difficult task even aer using QM based
calculations. B70 structure would be thus a challenging case for
our model. The global minimum structures and few of their
higher energy constitutional isomeric structures are used in this
task. We again perform the MD simulation, generating 50
conformational isomers each for the global minimum and their
higher energy isomeric counterparts (Table 5). We reduce the
number of conformational isomers for the classication test
dataset as we only require the conformational isomers for
getting the average energy of particular nanoclusters for the
purpose of classication, also it is less computationally expen-
sive process.

The promolecule densities are subsequently calculated, and
their two-dimensional projection are utilized by CNN to obtain
predicted energies. Consequently, we take the average of the
energy over the 50 conformational isomers for each constitu-
tional isomer to reach the predicted ground state energy.
Hence, we obtain ground state energy for each of the constitu-
tional isomers of each nanocluster. The ground state energies of
the isomers are then normalized using max–min normalization
(eqn (10)).

�Y = (Y − Ymin)/Ymax (10)

The purpose of a max–min normalization is to ensure that
the constitutional isomer with lowest energy gets the value zero
while the isomer with the highest energy gets the value 1. Using
our neural network model we obtain the following normalized
score for the classication test dataset (Table 6).

Consequently, we go on to perform binary classication with
this data by taking the threshold t as greater than zero as
inactive for the normalized score. Thus, for t > 0 the class non
global minimum is assigned as is for the rest class global
minimum. Using this threshold, we obtain the following
confusion matrix for our classication problem (Table 7).

The Matthew's correlation coefficient (MCC) is written in the
expression (11):

MCC = {(TP × TN − FP × FN)/sqrt[(TP + FP) × (TP + FN) ×

(TN + FP) × (TN + FN)]} × 100 (11)

The MCC in this case results in 84.2%, which is a respectable
score. In this sense, the CNN classication paradigm is
successful in separating out the global minimum out of the
different congurational isomers except for one misclassica-
tion. This CNN classication paradigm can be then further
implemented to augment the efficiency of structure prediction
algorithms.
4. Concluding remarks

Conversion of electron density of a molecular system to its
ground state energy has traditionally been carried out by using
quantum chemical programs utilizing DFT functionals. In the
present study, we attempted a different approach for such
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 5 Boron clusters used for the purpose of classification

Global minimum Higher energy congurational isomer 1 Higher energy congurational isomer 2

B41

B42

B43

B44

B45

B46

B47

B48

B49

B50

B70
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a purpose: We utilize neural networks for mapping the electron
density of a molecule to its ground state energy using its pro-
molecule density. Our approach consists of a utilization of 2D
convolutional neural network (CNN) with projected images of
promolecule density to predict ground state energy. In case of
2D convolutional neural network, we have the aspect of
featureless learning: the images are directly utilized by the CNN
model to predict the energies of the boron clusters. Boron
nanoclusters ranging from B4 to B40 are used for the training
set. The dataset of projected images is divided into training, test
© 2023 The Author(s). Published by the Royal Society of Chemistry
and validation sets (with a split percentage: 60 : 20 : 20%). The
2D-CNN model obtained shows a good R2 value of 0.89 on the
test set.

The model thus meets our goal for the utilization in explo-
ration of a potential energy landscape. The model cannot
predict the ground state energy with prediction of the geometric
shapes of the stable clusters with, which high accuracy as we are
mapping the promolecule density to energy instead of the
actual electron density. What is important is the ability of the
neural network to get the distribution correctly which our
RSC Adv., 2023, 13, 30743–30752 | 30749
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Table 6 Test dataset results. First our CNNmodel calculates the energy for all the conformers for each cluster. We average the energy over the
conformers and get the energy for the clusters. The energy obtained for a particular cluster and its isomer are normalized usingminmax function.
Ideally the global minimum should get the score zero and rest of the isomers should have values higher than zero

Minmax normalized score for global
minimum

Minmax normalized score
for constitutional isomer 1

Minmax normalized score
for constitutional isomer 2

B41 0 0.46 1
B42 0 1 —
B43 0 1 —
B44 0 1 0.1
B45 1 0 —
B46 0 1 —
B47 0 1 —
B48 0 1 —
B49 0 0.81 1
B50 0 1 —
B70 0 0.73 1

Table 7 This is the confusion matrix for the classification problem. TP,
TN, FP and FN are true positive, true negatives, false positive and false
negatives, respectively

Predicted global
minimum

Predicted non
global minimum

True global minimum 10 (TP) 1 (FP)
True non global minimum 1 (FN) 14(TN)
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model successfully does. This will be important for potential
energy landscape (PES) exploration studies of nanocluster, we
can quickly nd the initial local minimum structures using our
neural network. These structures will be subsequently subjected
to quantum chemical calculations to ascertain, or to search
further, the global minimum. Overall, our approach shows that
the mapping of electron density of a molecule to its ground
state energy is possible with the use of neural networks, and
such neural network models can be augmented with the avail-
able structure prediction codes. A following step of this study
which is more interesting but also more challenging, effectively
entails both generation of nanoclusters using a generative
model and using discriminative model to assess the structures.
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