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achine learning in 3D-QSAR
CoMSIA models for the identification of lipid
antioxidant peptides†

Thi Thanh Nha Tran, * Thi Dieu Thuan Tran and Thi Thu Thuy Bui

The comparative molecular similarity indices analysis (CoMSIA) method is a widely used 3D-quantitative

structure–activity relationship (QSAR) approach in the field of medicinal chemistry and drug design.

However, relying solely on the Partial Least Square algorithm to build models using numerous CoMSIA

indices has, in some cases, led to statistically underperforming models. This issue has also affected 3D-

CoMSIA models constructed for the ferric thiocyanate (FTC) dataset from linoleic antioxidant

measurements. In this study, a novel modeling routine has been developed incorporating various

machine learning (ML) techniques to explore different options for feature selection, model fitting, and

tuning algorithms with the ultimate goal of arriving at optimal 3D-CoMSIA models with high predictivity

for the FTC activity. Recursive Feature Selection and SelectFromModel techniques were applied for

feature selection, resulting in a significant improvement in model fitting and predictivity (R2, RCV
2, and

R2_test) of 24 estimators. However, these selection methods did not fully address the problem of

overfitting and, in some instances, even exacerbated it. On the other hand, hyperparameter tuning for

tree-based models resulted in dissimilar levels of model generalization for four tree-based models. GB-

RFE coupled with GBR (hyperparameters: learning_rate = 0.01, max_depth = 2, n_estimators = 500,

subsample = 0.5) was the only combination that effectively mitigated overfitting and demonstrated

superior performance (RCV
2 of 0.690, R2_test of 0.759, and R2 of 0.872) compared to the best linear

model, PLS (with RCV
2 of 0.653, R2_test of 0.575, and R2 of 0.755). Therefore, it was subsequently utilized

to screen potential antioxidants among a range of Tryptophyllin L tripeptide fragments, leading to the

synthesis and testing of three peptides: F-P-5Htp, F-P-W, and P-5Htp-L. These peptides exhibited

promising activity levels, with FTC values of 4.2 ± 0.12, 4.4 ± 0.11, and 1.72 ± 0.15, respectively.
Introduction

The delicate balance between the production and neutralization
of reactive species including reactive oxygen species (ROS),
reactive nitrogen species (RNS), and reactive sulfur species
(RSS) is essential to life.1,2 On the one hand, these reactive
species participate in a variety of physiological processes within
the mitochondria.3 On the other hand, the overproduction of
these species, also known as oxidative stress, has been found to
cause damage to many biomolecules including proteins, DNA
(deoxyribonucleic acid), RNA (ribonucleic acid), and lipids.4 The
supplement of external antioxidants has been suggested to
maintain this delicate balance,5,6 with antioxidants being
dened as “any substance that when present at low concentra-
tions compared to that of an oxidizable substrate would
signicantly delay or prevent oxidation of that substrate”.7,8
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Antioxidant peptides have been extensively investigated in
recent decades using both experimental and statistical
approaches. A variety of antioxidant assays have been employed
for peptide testing, with some commonly used including ABTS+

radical scavenging assay,9,10 ferric ion reducing antioxidant
power (FRAP),11,12 2,2-diphenyl-1-picrylhydrazyl radical-
scavenging capacity (DPPH),13,14 oxygen radical absorbance
capacity (ORAC),15 and the FTCmethod.16 Consequently, several
datasets of antioxidant peptides have been made available to
the public through databases.17 Three of these datasets have
been frequently utilized for constructing QSAR models due to
their favorable attributes in terms of peptide structure and
bioassay homogeneity, which are typically required for statis-
tical modeling. These datasets include the TEAC dataset con-
sisting of 108 synthesized tripeptides, the FTC dataset
containing 214 tripeptides,18 and the FRAP dataset comprising
172 tripeptides.19 Only a few studies have explored the appli-
cation of other datasets with varying peptide lengths and
bioassays for studying QSAR of antioxidant peptides, as these
datasets necessitate special treatment to extract molecular
features.20,21
RSC Adv., 2023, 13, 33707–33720 | 33707
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QSAR modeling has emerged as an alternative approach to
overcome the time and resource-intensive nature of biochem-
ical methods, thereby contributing to the exploration of the
chemical space of antioxidants.2,5,6 Among the various QSAR
techniques, CoMFA and CoMSIA, have been widely utilized in
studies exploring the QSAR of antioxidant peptides. In a notable
study conducted in 2019, Y. Wang and colleagues developed 3D-
QSAR CoMFA and 4-eld CoMSIA models utilizing the FTC
dataset comprising 198 peptides.22 Similarly, R. Zhang's group
constructed CoMSIA models using a TEAC dataset of only 54
tryptophan-containing peptides.23 Both studies utilized the
Sybyl soware with built-in Tripos force eld and Gasteiger-
Hückel charge for model derivation.

Our group has also employed CoMFA and CoMSIA tech-
niques with the OPLS_2005 (Optimized Potentials for Liquid
Simulations) force eld to build 3D-QSAR models for predicting
TEAC values. These models were subsequently employed to
screen various tripeptide fragments derived from
Tryptophyllin L peptides.24,25 This is a peptide family that
possesses a characteristic Pro–Trp sequence extracted from the
dorsal skin of the frog Litoria rubella, an Australian frog occu-
pying a large area of central and northern Australia. Details of
the extraction, structures and antioxidant activities of some
peptides from this peptide family can be found in the following
ref. 26 and 27 and also in our recent publications.24,25

In our previous study, a Gaussian-based 3D-QSAR model
constructed using the dataset of ABTS+ radical scavenging tri-
peptides was employed in a combined statistical and experi-
mental approach to identify a range of antioxidant
Tryptophyllin L peptides. These peptides exhibited excellent
ABTS+, DPPH radical scavenging and reducing power. However,
neither our research group nor any other has conducted an
investigation into the lipid antioxidant properties of these
peptides.

During exploration of the TEAC and FTC datasets, we
observed a phenomenon that certain peptides displayed
signicant ABTS+ scavenging activity but showed negligible
activity in the FTC assay, and vice versa (e.g. PWY, PWE,
LHG).18,28 This observation prompted us to consider the reli-
ability of relying solely on a single model built from just one
dataset to predict antioxidant peptides within the
Tryptophyllin L family. Consequently, we initiated our investi-
gation into FTC 3D-QSAR modeling and experimental study of
antioxidant Tryptophyllin L peptides. This study therefore aims
to uncover potential lipid antioxidant Tryptophyllin L peptides
that might have been overlooked by previous TEAC models and
experiments.

Despite the notable accomplishments thus far, both CoMFA
and CoMSIA methods suffer from inherent weaknesses. One
such weakness is the excessive number of descriptors typically
involved (oen several thousands). Among these numerous
descriptors, a signicant portion is uninformative and irrele-
vant to biological activities, essentially introducing noise into
the models. Without appropriate feature-selection techniques,
the models' efficacy is compromised. Furthermore, the linear
PLS estimator used as default in these methods, may not
adequately capture the nonlinear nature of certain datasets,
33708 | RSC Adv., 2023, 13, 33707–33720
leading to subpar statistical performance and predictive
power.29

Looking at the eld of ML based 3D-QSAR, it can be seen
that support vector machine (SVM) has been the most
frequently utilized non-linear algorithm for developing eld-
based models. Several notable studies can be mentioned,
such as the analysis of naphthyridone derivatives as ATAD2
bromodomain inhibitors, which employed least squares-
support vector machine (LS-SVM) models based on CoMFA-
eld descriptors.30 Additionally, investigations on reversible
acetyl cholinesterase inhibitors were conducted using CoMFA
and ligand protein interaction ngerprints.31 More recently, G.
Floresta and V. Abbate constructed 3D-QSAR models to
establish correlations between eld descriptors calculated
from the extended electron distribution (XED) force eld and
5-HT2AR activity. They employed four algorithms, namely k-
nearest neighbor (kNN), SVM, random forest (RF), and rele-
vance vector machine (RVC), provided by Forge soware.32 To
the best of our knowledge, there has been no previous
research utilizing non-linear machine learning (ML) algo-
rithms to construct 3D-QSAR CoMSIA models in the context of
antioxidant activity.

Due to the aforementioned reasons, in this study, we have
developed a more exible approach to constructing 3D-CoMSIA
regression models using the FTC dataset. The process of
building the models, from data cleaning to feature selection
and model construction, will be managed mainly through the
utilization of Python scripts. A comprehensive comparison
between traditional CoMSIA models and ML-based CoMSIA
models will also be conducted. The former will be derived from
two different force elds, namely OPLS_2005 and Tripos force
elds. The latter will employ ML techniques to select eld-
similarity-index features and build models using the FTC
dataset. The top-performing model will be employed to predict
and guide the synthesis and subsequent evaluation of potential
lipid antioxidant peptides from Tryptophyllin L family.27 This
investigation will also help determine the potential benets and
extent of applying different ML algorithms to 3D-CoMSIA QSAR
models.

Material and methods
Data collection, optimization and alignment

The FTC dataset consisting of 214 peptides was collected from
the published articles and presented in Table 1.18,28 The FTC
values were shown as relative activities by adjusting the control
to 1.0 (please see the Experimental section for more detail). The
duplicates and values of less than 0.1 were then removed
resulting in a dataset of 197 peptides.

The structures of 197 peptides were generated using Chem-
Draw Professional 15.1 soware. Subsequently, each structure
underwent optimization using the PM7 method from the
Molecular Orbital Package (MOPAC) quantum chemistry
program, as described in detail in the ref. 24.

In FTC dataset, three peptides YHY, YKY and YRY display the
same highest lipid antioxidant activities (9.886) and share
a common structure of two tyrosine at the rst and the third
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 1 The FTC dataset used for model building

No. Peptide Activity No. Peptide Activity No. Peptide Activity No. Peptide Activity

1 LHA 3.918 51 PHT 6.247 101 RWN 2.404 151 RYY 2.257
2 LHD 3.593 52 PHV 3.335 102 RWQ 0.606 152 AYY 3.071
3 LHE 6.136 53 PHW 6.535 103 RWR 2.384 153 IYY 3.071
4 LHF 3.628 54 PHY 4.227 104 RWS 0.808 154 LYY 3.071
5 LHG 6.697 55 PWA 1.396 105 RWT 3.818 155 FYY 1.911
6 LHH 4.836 56 PWD 1.096 106 RWV 0.606 156 WYY 1.911
7 LHI 6.531 57 PWE 1.096 107 RWW 2.707 157 GYY 5.071
8 LHK 4.225 58 PWF 0.919 108 RWY 0.808 158 NYY 5.071
9 LHL 5.920 59 PWG 2.687 109 DHH 0.905 159 QYY 5.071
10 LHM 4.504 60 PWH 1.184 110 EHH 0.905 160 MYY 1.991
11 LHN 5.148 61 PWI 1.396 111 AHH 2.020 161 SYY 3.070
12 LHQ 4.136 62 PWK 0.407 112 IHH 2.020 162 TYY 3.070
13 LHR 5.184 63 PWL 1.096 113 FHH 1.803 163 CYY 0.470
14 LHS 4.293 64 PWM 0.796 114 WHH 1.803 164 YDY 3.047
15 LHT 5.584 65 PWN 2.104 115 YHH 1.803 165 YEY 3.047
16 LHV 3.481 66 PWQ 1.202 116 GHH 1.089 166 YHY 9.886
17 LHW 6.791 67 PWR 2.705 117 NHH 1.089 167 YKY 9.886
18 LHY 4.203 68 PWS 1.096 118 QHH 1.089 168 YRY 9.886
19 LWA 1.192 69 PWT 2.598 119 MHH 2.015 169 YAY 3.607
20 LWD 1.717 70 PWV 1.008 120 SHH 1.320 170 YIY 3.607
21 LWE 1.717 71 PWW 2.899 121 THH 1.320 171 YLY 3.607
22 LWF 1.414 72 PWY 1.114 122 CHH 0.937 172 YFY 2.233
23 LWG 1.313 73 RHA 5.205 123 HDH 1.477 173 YWY 2.233
24 LWH 3.212 74 RHD 3.304 124 HEH 1.477 174 YGY 3.366
25 LWI 1.111 75 RHE 5.096 125 HAH 0.952 175 YNY 3.366
26 LWK 1.899 76 RHF 3.300 126 HIH 0.952 176 YQY 3.366
27 LWL 0.606 77 RHG 5.725 127 HLH 0.952 177 YMY 1.780
28 LWM 1.394 78 RHH 3.296 128 HFH 2.026 178 YSY 3.447
29 LWN 1.313 79 RHI 4.806 129 HWH 2.026 179 YTY 3.447
30 LWQ 2.505 80 RHK 2.694 130 HYH 2.026 180 YCY 3.087
31 LWR 2.909 81 RHL 3.501 131 HGH 0.832 181 YYD 4.116
32 LWS 2.020 82 RHM 3.218 132 HNH 0.832 182 YYE 4.116
33 LWT 2.020 83 RHN 5.713 133 HQH 0.832 183 YYH 5.303
34 LWV 1.616 84 RHQ 3.108 134 HMH 0.873 184 YYK 5.303
35 LWW 3.515 85 RHR 4.302 135 HSH 0.730 185 YYR 5.303
36 LWY 2.222 86 RHS 3.386 136 HTH 0.730 186 YYA 3.344
37 PHA 5.793 87 RHT 5.987 137 HCH 0.975 187 YYI 3.344
38 PHD 4.622 88 RHV 3.206 138 HHD 0.188 188 YYL 3.344
39 PHE 6.152 89 RHW 5.878 139 HHE 0.188 189 YYF 4.050
40 PHF 3.916 90 RHY 3.378 140 HHF 3.612 190 YYW 4.050
41 PHG 5.197 91 RWA 1.212 141 HHW 3.612 191 YYG 2.996
42 PHH 6.051 92 RWD 0.909 142 HHY 3.612 192 YYN 2.996
43 PHI 4.916 93 RWE 1.091 143 HHG 0.317 193 YYQ 2.996
44 PHK 3.426 94 RWF 0.909 144 HHN 0.317 194 YYM 2.103
45 PHL 5.311 95 RWG 1.717 145 HHQ 0.317 195 YYS 3.983
46 PHM 3.714 96 RWH 1.091 146 HHC 0.128 196 YYT 3.983
47 PHN 6.061 97 RWI 1.232 147 DYY 3.417 197 YYC 0.637
48 PHQ 3.718 98 RWK 0.606 148 EYY 3.417
49 PHR 4.751 99 RWL 3.212 149 HYY 2.257
50 PHS 4.042 100 RWM 0.727 150 KYY 2.257
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View Article Online
amino acid and one basic amino acid at the second amino acid.
As the structure alignment is of pivotal importance for 3D-QSAR
modeling, in this study, two sets of aligned structures were
prepared, employing either YRY or YHY as the reference
molecule.

To align the optimized structures, the Flexible Ligand
Alignment Panel in Maestro 11.5 soware was utilized.
Common scaffolds among the ligands were superimposed
using the maximum common substructure and SMARTS, taking
into account conformational variations in the side chains. A
© 2023 The Author(s). Published by the Royal Society of Chemistry
round of manual alignment was then performed to ensure
proper alignment of side chains not covered by the template
molecule. The alignments of all 197 peptides with respect to
YRY and YHY are illustrated in Fig. 1A and B.

For model development, the dataset was divided into
a training set comprising 158 peptides (80%) and a test set
comprising 39 peptides (20%). Different random seeds were
employed to assess the reproducibility of the results (refer to ESI
1† for the train-set splits corresponding to different random
seeds).
RSC Adv., 2023, 13, 33707–33720 | 33709
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Fig. 1 The FTC aligned structures with (A) YRY and (B) YHY as
molecular template.
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Construction of 3D-CoMSIA models with OPLS_2005 and
Tripos force elds

To assess the impact of two different force elds on the statis-
tical performance of the models, we employed the OPLS_2005
and Tripos force elds on each set of aligned structures to
generate CoMSIAmodels, referred to as OPLS-based and Tripos-
based CoMSIA models, respectively. The construction of the
OPLS-based models followed the procedure outlined in,24,25

while the construction of the Tripos-based models was guided
by the Release Notes integrated into Sybyl X 2.1.

In brief, all aligned peptides were positioned within a 3D
cubic lattice. Molecular similarity indices were calculated by
comparing the similarity of each molecule to a common probe
atom, placed at lattice points of the cubic lattice, which had
a radius of 1 Å, a charge of +1, and a hydrophobicity of +1. The
calculation involved ve elds: steric, electrostatic, hydro-
phobic, hydrogen-bond donor, and hydrogen-bond acceptor.
Energy values were truncated at a cutoff of 30 kcal mol−1.

For the OPLS-based models, variables with a standard devi-
ation less than 0.01, an absolute t-value smaller than 2, or
within a distance of 2.0 Å from any training set atom were
eliminated. For the Tripos-based models, the common dataset,
exported from Maestro soware as sdf les, was imported into
Sybyl soware. The CoMSIA descriptors were calculated using
the calculate properties dialog, with the following parameters:
charge calculation using Gasteiger-Hückel, attenuation set to
0.3, and automatic region creation. The models were con-
structed using the Partial Least Square Analysis module in the
QSAR section in the MDE toolbar.

The optimal number of factors for constructing OPLS or
Tripos models was determined following specic instructions
33710 | RSC Adv., 2023, 13, 33707–33720
in the respective soware. Using Maestro, a series of 20
models was created, gradually varying the number of PLS
factors from 1 to 20 for each train-test split (random seed).
The statistical metrics obtained from each model were
compared to identify the most statistically reliable and robust
model. These metrics encompassed the coefficient of deter-
mination (R2), the cross-validation coefficient achieved
through a leave-one-out approach (RLOO

2), the external vali-
dation correlation coefficient (Q2), the F value, the root-mean-
square error in test set predictions (RMSE), and Rscramble

2,
which is the coefficient of determination derived from
a randomization test. While higher R2, RCV

2 (RLOO
2), Q2, and F

values correspond to the higher reliability and predictability
of the models, larger values of the remaining metrics suggest
the opposite. Consequently, the optimal number of factors
was selected to achieve a harmonious balance between these
two sets of metrics.

In the case of the Tripos-based models, the optimal number
of PLS factors was determined automatically by the soware
based on the best cross-validation result from 20 models. This
optimal PLS number was then employed for all subsequent PLS
analyses.

The formulas for the determination of all the aforemen-
tioned statistical parameters were presented in ESI 2.† To
ensure the consistency of any comparisons, these formulas were
employed uniformly for all models developed in this work,
unless otherwise stated.

ML based CoMSIA models

The process of constructing ML-based CoMSIA models is
depicted in Fig. 2. The model building was performed using
Python 3.10.11 on a computer (HP 340S G7 Notebook PC)
equipped with an Intel Core i7 1.30 GHz CPU. All subsequent
steps, from data pre-processing to model building, were carried
out in Jupyter Notebook using various Pythonmodules from the
Sklearn library.

Feature extraction

The peptide YRY was chosen in further ML based modeling as it
has the longest side-chain at the second amino acid making the
alignment more consistent at this position compared to YKY
and YHY (two other peptides having the same FTC values).

The CoMSIA descriptors were extracted using the Manage
CoMFA module of the QSAR Menubar in Sybyl X 2.1. A total of
6480 CoMSIA variables were collected (see ESI 3†) and served as
the independent variables for building the ML models. These
variables were organized into feature columns, with columns 1–
1296 corresponding to the steric eld, columns 1297–2592 to
the electrostatic eld, columns 2593–3888 to the hydrophobic
eld, columns 3889–5184 to the hydrogen-bond acceptor eld,
and columns 5185–6480 to the hydrogen-bond donor eld. Each
column was marked to track the contribution of its respective
eld to the nal models. All the required features and estima-
tors were imported from the scikit-learn (https://scikit-
learn.org/) and XGBoost package (https://
xgboost.readthedocs.io/en/stable/) for implementation.33,34
© 2023 The Author(s). Published by the Royal Society of Chemistry

https://scikit-learn.org/
https://scikit-learn.org/
https://xgboost.readthedocs.io/en/stable/
https://xgboost.readthedocs.io/en/stable/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3ra06690h


Fig. 2 The process of constructing ML-based CoMSIA models.
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Data pre-processing

Several pre-processing steps were applied to the CoMSIA-
variable dataset. Firstly, any column with missing values was
dropped from the dataset. Additionally, columns containing
fewer than 5 values were also removed. Next, a correlation
analysis was conducted to identify features (variables) with
a correlation greater than 0.95. Among these highly correlated
features, the ones that had the least correlation with the target
variable were eliminated from the dataset.

Feature selection

Following the data pre-processing step, two feature selection
approaches were employed: SelectFromModel-LassoCV and
GradientBoosting-Recursive Feature Elimination (GB-RFE).
These two methods were deliberately chosen to assess the
impact of LassoCV, known for its linear supportiveness, and
RFE, which relies on feature importance or coefficient attri-
butes, on the statistical performance of the models.

The SelectFromModel-LassoCV method is a feature selection
technique in scikit-learn that selects important features from
a dataset based on the coefficients derived from the LassoCV
(Lasso Cross-Validation) algorithm. LassoCV is a variant of
Lasso regression that incorporates cross-validation to auto-
matically select the regularization parameter. On the other
hand, GradientBoosting Recursive Feature Elimination (GB-
RFE) is a feature selection technique that combines the
Gradient Boosting algorithm with a recursive feature elimina-
tion process. It aims to identify and select the most important
features by iteratively training a Gradient Boosting model and
eliminating the least signicant features (using feature impor-
tance attributes).

Construction of ML based CoMSIA models

Aer the data splitting into X_train and X_test, the training set
(X_train) was utilized to construct models. During each itera-
tion of the cross-validation loop, a pipeline consisting of
a StandardScaler and an estimator was employed to build the
models. The cross_val_score function was used to split the
© 2023 The Author(s). Published by the Royal Society of Chemistry
X_train dataset into internal training and testing subsets for the
current fold. The StandardScaler within the pipeline performed
two operations on the internal training and testing subsets.
Firstly, it t the scaler on the internal training data (X_train_-
internal) and then transformed it to obtain the scaled version.
Next, it applied the same scaling transformation on the internal
testing data (X_test_internal) using the parameters learned
from the internal training data. The scaled X_train_internal and
X_test_internal were used for training and evaluating the
model, respectively, within the current fold of cross-validation.
This ensured that the scaling was performed independently for
each fold and prevented any data leakage from the testing set to
the training set, which is crucial for proper evaluation during
cross-validation.

In this study, three groups of models were constructed
sequentially, each serving different analytical purposes that will
be discussed in the Result and discussion section. The rst
group of models was built aer the data pre-processing step
using 24 estimators with default hyperparameters and without
any feature selection (Script S1†). The second group of models
was constructed using one of the aforementioned feature
selection methods (Script S2.1–2.2†). In the rst two groups,
several parameters, including RCV

2, Root Mean Squared Error
(RMSE), Std_RMSE, and R2 (coefficient of determination for the
training set), were computed to compare the performance and
generalization of the models. R2_test (coefficient of determi-
nation for the test set) was used to assess their predictability.

Finally, several models with the best cross-validation (CV)
statistics from the second group were selected for hyper-
parameter tuning, leading to the creation of the third group of
models (Script S3.1–3.4†). Grid search and random search
techniques were employed, along with ve-fold cross-validation,
to identify the optimal hyperparameters for the models. These
models were trained and evaluated on the inner folds of the
training set using different hyperparameter combinations, and
the best hyperparameters were chosen based on their CV
performance. GridSearch_CV has also been used to derive the
optimum number of PLS components using each phase of
feature selection (Script S4.1–4.4†).
RSC Adv., 2023, 13, 33707–33720 | 33711
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RFE selection methods utilizing different estimators
including RandomForest, XGBoost, and AdaBoost (Embedded-
RFE of RF, XGB, Ada), were executed to assess the impact of
these selection methods on the overall model performance
(Script S5.1–5.3†). Bootstrapping (Rbstr

2) and scrambling (p
value) evaluation were also performed to assess the robustness
and reliability of the ML-based models (Script S6.1–6.2†).
Fig. 3 The distribution of activities for 197 peptides in the FTC dataset.
Experimental
Materials

All peptides were prepared using L-isomers of each amino acid
by solid-phase synthesis with the uorenylmethoxycarbonyl
(Fmoc) strategy. The synthesis was conducted by GL Biochem
Co., Ltd. The purities were approximately 95% as evidenced by
high-performance liquid chromatography (HPLC) and mass
spectrometry (MS) data. Linoleic acid (∼95%) was purchased
from Sigma Chemical (St. Louis, MO). Ammonium thiocyanate,
ferrous chloride and other reagents were obtained with the
analytical grade. Thermo Scientic Genesys 20 served as the
equipment in all UV-Vis measurements.
Ferric thiocyanate assay

The ferric thiocyanate assay was conducted following the
procedure described in the ref. 18. Test samples dissolved in
0.5 mL of deionized water were combined with linoleic acid
emulsion (1.0 mL, 50 mM) and phosphate buffer (1.0 mL, 0.1 M)
in 5 mL glass test tubes. The nal concentration of test sample
is 40 mM. The test tubes were tightly sealed with silicon rubber
caps and placed in a dark environment at 60 °C. Throughout the
incubation period, small aliquots (50 mL) of the reaction
mixtures were extracted at various intervals.

To assess the extent of oxidation, sequential additions of
ethanol (2.35 mL, 75%), ammonium thiocyanate (50 mL, 30%),
and ferrous chloride (50 mL, 20 mM in 3.5% HCl) were made to
the extracted reaction mixtures. Aer allowing the mixture to
stand for 3 minutes, the absorbance of the solution was
measured at 500 nm. A control sample, excluding the peptides
but containing the same components as the test sample, was
prepared. The induction period, denoting the time required to
reach an absorbance of 0.3, was calculated. The relative activi-
ties of the test samples were determined by dividing their
respective induction periods by that of the control sample. All
experiments were conducted in triplicate, and the average
values were recorded.
Result and discussion
Data distribution

The distribution of activities for 197 peptides in the FTC dataset
was shown in Fig. 3, revealing a right-skewed pattern with
a skewness of 0.943, where the number of peptides with lower
activities is signicantly higher than those with larger activities.

However, it is important to note that linear regression
remains robust to deviations from normality in the target vari-
able itself, as long as the residuals or prediction errors meet the
33712 | RSC Adv., 2023, 13, 33707–33720
assumption of a normal distribution. This robustness is sup-
ported by the Central Limit Theorem, making it less necessary
for the target variable to follow a normal distribution.35 There-
fore, in the case of skewness less than 1, we have chosen not to
transform the target variable as it will complicate the explana-
tion of the predicted results, and we will discuss the distribu-
tion of prediction errors in the next section.

OPLS-based CoMSIA models

Fig. 4 illustrates the correlation between key statistical param-
eters obtained from OPLS-3D-CoMISA models as the number of
factors varied from 1 to 20. A compromise is achieved between
the highest R2, RCV

2 (RLOO
2), Q2 values, and the lowest RScramble

2

and RMSE_test values at 3 factors for both YHY (Fig. 4A) and
YRY (Fig. 4B) aligned datasets, using the same random seed.

The R2, RCV
2, Q2 values for the rst superimposed set of

structures are 0.63, 0.55, and 0.63, while RScramble
2 and

RMSE_test are 0.12 and 1.22, respectively. Similarly, for the YRY
aligned dataset, the R2, RCV

2, and Q2 values are 0.64, 0.54, and
0.46, with RScramble

2 and RMSE_test at 0.13 and 1.47, respec-
tively. These results indicate the performances of the OPLS-
based models are moderate for both superimposed datasets
in terms of model tting and predictivity.

The correlation pattern remains generally consistent across
ve different data splits for each aligned set, resulting in all
OPLS-based CoMSIAmodels having a common number of 3 PLS
factors for optimal statistics. Observation of cross-validation
(RCV

2) and prediction coefficients (Q2) for 5 random seeds in
both YHY and YRY alignments reveals that the change in the
molecular template does not affect the statistical results of
OPLS-based models substantially, and these values do not
mutually exceed 0.6. This reaffirms the moderate performance
of all OPLS-based models. For detailed statistical information
related to factor selection and PLS analysis in OPLS-based
models, please refer to ESI 4.†

To assess the reliability of the 3-factor-CoMSIA models,
distribution plots and skewness calculations for prediction
errors were conducted using various random seeds. Fig. 5
depicts a distribution plot of prediction errors for random seed
1 (YHY-reference). This distribution illustrates a general normal
distribution centered around 0 but still exhibits a long le tail,
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Statistics obtained fromOPLS-3D-CoMISAmodels with YHY (A)
and YRY (B) as templates.

Table 2 Statistics of the selected Tripos CoMSIA-based modelsa

Tripos-CoMSIA
model Optimal factor R2 RLOO

2 Rbstr
2 SEP Q2

YHY_ref 11 0.756 0.446 0.781 1.432 0.547
YRY_ref 18 0.828 0.531 0.684 1.350 0.339

a SEP: standard error of prediction.
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highlighting two primary characteristics of this model type: the
reliability of statistical inference, and the model's limitation in
adequately predicting structures with extreme activities. Similar
distribution patterns were also observed for ve other train-test
splits, as presented in ESI 1.†
Fig. 5 Distribution of prediction errors derived from the 3-factor-
CoMSIA model with YRY as the reference.

© 2023 The Author(s). Published by the Royal Society of Chemistry
Tripos-based CoMSIA models

It is important to note that the cross-validation coefficient is
denoted in this study as RLOO

2 instead of QLOO
2, as provided by

the Sybyl X soware's output. This choice was made to prevent
any potential confusion with the variance explained in external
prediction, which is also referred to as Q2. Additionally, the
evaluation of a model based only on R2 and QLOO

2 as reported by
a number of studies22,23 is insufficient as it could not represent
the performance of the model on the unseen data.36–38 For that
reason, in this study, parameters for both internal and external
assessment were evaluated to arrive at conclusions regarding
each model's performance.

To facilitate direct comparison between the OPLS and
Tripos-based CoMSIA models, all the Tripos models were con-
structed using the same random seed used for OPLS models
ranging from 1 to 5, thereby maintaining consistent train-test
compositions (ESI 1†). The statistical results for two of the
Tripos-based CoMSIA models built with random seed 1 are
presented in Table 2.

As the optimal number of factors (PLS number) was deter-
mined solely based on RCV

2, the PLS number in Tripos-based
CoMSIA models is signicantly higher than that in OPLS models
when using the same random seed and molecular template. This
method of PLS factor optimization also leads to variation in the
PLS number across different random seeds, as it responds
promptly to changes in the composition of the training set.

Furthermore, the Tripos-based CoMSIA models tend to
exhibit overtting, as indicated by substantial discrepancy
between R2 (0.756 and 0.828) and RCV

2 (0.446 and 0.531) for YHY
and YRY aligned sets, respectively. For comprehensive statis-
tical details regarding Tripos-based models generated with ve
different random seeds during factor selection and PLS anal-
ysis, please refer to ESI 5.†
Predictability plots for the OPLS and Tripos based models

The predictability plots for the OPLS models are illustrated in
Fig. 6, while those for the Tripos force eld are displayed in
Fig. 7. These plots indicate that both models have inadequate
predictive performance, severely underestimating the FTC
values of peptides in the high activity range. The root-mean-
square error in the test-set predictions from the OPLS model
reaches as high as 1.460, which is similar to the standard error
of prediction from the Tripos model (1.432). These errors are
considered signicant considering the range of FTC activity in
the dataset only up to nearly 10. All prediction performances of
OPLS and Tripos-based models can be found in ESI 4 and 5.† To
the best of our knowledge, the only study constructing 3D-
RSC Adv., 2023, 13, 33707–33720 | 33713
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Fig. 6 Predictability plots of the OPLS models for the training set (A) and for test set (B), random seed 1, YRY reference.

Fig. 7 Predictability plots of the Tripos models for the training set (A) and for test set (B), random seed 1, YRY reference.
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CoMSIA models using the FTC dataset was implemented with
YRY being the alignment template using the Sybyl X soware.
The models were evaluated based on only two statistical
parameters (R2 of 0.914 and Q2 of 0.733) and no evaluation of
external prediction was concluded.22 Thus, in our opinion, there
are no reliable 3D-CoMSIA models for this data set have been
reported before this study.

ML based CoMSIA models without variable selection

The primary reason for using Python scripts, instead of xed
functions within commercial soware, to construct 3D-CoMSIA
models for the FTC dataset was to allow for more exibility in
experimenting with various feature selection methods and
regression algorithms. This approach aimed to mitigate the
impact of the abundant number of CoMSIA variables and the
imbalanced distribution of the FTC activities that could not be
handled successfully by the traditional PLS modeling routine.

The training dataset containing 6840 CoMSIA variables
underwent preprocessing, resulting in 1282 variables that were
used as inputs for the rst group of models. The statistics of
these models are presented in Table 3. Without employing any
feature selection method, all the models performed below
statistical expectations. The primary factor contributing to this
poor performance is the high dimensionality of the features and
the small sample size.
33714 | RSC Adv., 2023, 13, 33707–33720
Among 24 regression estimators, the GradientBoosting-
Regressor (GBR) exhibited the best performance, with an RCV

2

value of 0.500 and a Root Mean Square Error for cross-validation
(RMSECV) of 1.326. Generally, the tree-based, Lasso and
Bayesian Ridge outperformed other regressors, which can be
attributed to the inherent feature-selection nature of these
algorithms. This feature has helped to mitigate the impact of
the high number of CoMSIA indices derived from the FTC
dataset. The PLS model with 3 components demonstrated less
effective cross-validation estimation compared to the
OPLS_2005 and Tripos models, achieving an RCV

2 of 0.301 and
an RMSECV of 1.515.

Interestingly, the coefficients of determination for the test
set (R2_test) and training set (R2) were remarkably higher than
the RCV

2 for most models, particularly for the tree models. This
suggests the presence of overtting in these models. For
example, the GBRmodel exhibited an RCV

2 of 0.500 and an R2 of
0.995, indicating the need for feature selection to achieve more
reliable models.

ML based CoMSIA models with feature selection

The GB-RFE method was applied to the 1282 variables obtained
from the data preprocessing step for feature selection from the
YRY-aligned structure set. The elimination of variables was
performed iteratively, with 20 features being removed at each
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Performance parameters of 24 ML-based 3D-CoMSIA models without feature selection

Regression algorithm RCV
2 RMSE_CV R2_test RMSE_test R2 RMSE

GradientBoostingRegressor() 0.500 1.290 0.812 0.872 0.995 0.125
RandomForestRegressor() 0.465 1.332 0.812 0.870 0.930 0.489
Lasso(alpha = 0.1) 0.415 1.391 0.534 1.371 0.719 0.979
BayesianRidge() 0.413 1.377 0.688 1.123 0.760 0.904
HistGradientBoostingRegressor() 0.400 1.400 0.754 0.996 0.970 0.319
TweedieRegressor() 0.371 1.420 0.666 1.161 0.807 0.811
AdaBoostRegressor() 0.344 1.442 0.824 0.844 0.866 0.675
SVR(epsilon = 0.2) 0.306 1.520 0.309 1.670 0.589 1.183
PLSRegression(n_components = 3) 0.301 1.500 0.646 1.195 0.702 1.008
BaggingRegressor(base_estimator = SVR()) 0.297 1.531 0.292 1.691 0.568 1.213
XGBRegressor(booster = None) 0.230 1.569 0.832 0.824 1.000 0.000
ElasticNet() 0.221 1.603 0.190 1.808 0.272 1.575
DecisionTreeRegressor() 0.122 1.669 0.504 1.415 1.000 0.000
KNeighborsRegressor(n_neighbors = 2) 0.032 1.749 0.497 1.426 0.657 1.081
NuSVR(nu = 0.1) 0.018 1.789 0.103 1.903 0.186 1.666
QuantileRegressor() −0.042 1.850 0.000 2.010 −0.002 1.848
MLPRegressor() −0.372 1.964 0.628 1.226 0.999 0.052
HuberRegressor() −0.835 2.246 0.219 1.776 0.845 0.727
GaussianProcessRegressor() −2.700 3.430 −2.175 3.580 1.000 0.000
XGBRegressor(booster = ‘gblinear’) −3.393 3.328 −0.270 2.265 0.885 0.625
Ridge() −6.160 3.901 −0.918 2.782 0.897 0.593
KernelRidge() −8.350 4.958 −2.352 3.679 −1.580 2.965
LinearSVR(random_state = 1, tol = 1 × 10−5) −8.630 4.607 −0.903 2.772 0.852 0.710
LinearRegression() −702.889 40.070 −116.058 21.739 1.000 0.000
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iteration. No signicant difference was observed in the resulting
models when varying the number of variables eliminated at
a time (20, 10, or 5). To optimize computational efficiency, the
removal of 20 features per iteration was chosen. This recursive
process continued until the desired number of features was
reached. Among the pruned dataset, twelve variables (feature
columns) were selected for the training dataset, specically
columns [2240, 2946, 3077, 3251, 3257, 4857, 5566, 5657, 5688,
Table 4 Performance of 20 ML based CoMSIA models with two differen

GB-RFE RCV
2 RM

GradientBoostingRegressor(random_state = 1) 0.644 1.0
RandomForestRegressor() 0.638 1.0
XGBRegressor(booster = None) 0.624 1.0
AdaBoostRegressor() 0.607 1.1
HistGradientBoostingRegressor() 0.529 1.2
BaggingRegressor(base_estimator = SVR()) 0.449 1.3
SVR(epsilon = 0.2) 0.447 1.3
Lasso(alpha = 0.1) 0.377 1.4
BayesianRidge() 0.355 1.4
KNeighborsRegressor(n_neighbors = 2) 0.328 1.4

SelectFromModel_LassoCV
PLSRegression(n_components = 3) 0.653 1.0
TweedieRegressor() 0.649 1.0
BayesianRidge() 0.621 1.1
GradientBoostingRegressor() 0.514 1.2
RandomForestRegressor() 0.514 1.2
Lasso(alpha = 0.1) 0.506 1.2
KNeighborsRegressor(n_neighbors = 2) 0.503 1.2
MLPRegressor() 0.495 1.2
XGBRegressor(booster = None) 0.485 1.3
AdaBoostRegressor() 0.476 1.3

© 2023 The Author(s). Published by the Royal Society of Chemistry
5831, 5961, and 5987]. These variables corresponded to the
lowest Root Mean Square Error (RMSE) for the associated GBR
model, indicating the importance of hydrophobicity and
hydrogen-bond donor in relation to FTC activity.

Furthermore, the SelectFromModel-LassoCV method with
a threshold of 0.01 identied 37 variables that contributed
signicantly to the Lasso models. Among these variables, the
variable corresponding to the hydro-bond donor eld still
t feature selection strategies

SECV R2_test RMSE_ test R2 RMSE

72 0.756 0.993 0.977 0.280
94 0.760 0.985 0.950 0.413
95 0.721 1.061 1.000 0.001
31 0.629 1.224 0.853 0.708
45 0.668 1.158 0.916 0.535
58 0.331 1.643 0.565 1.218
60 0.337 1.636 0.578 1.200
16 0.472 1.461 0.509 1.293
20 0.476 1.454 0.542 1.249
84 0.510 1.406 0.783 0.860

58 0.575 1.310 0.744 0.934
68 0.596 1.277 0.598 1.170
12 0.646 1.196 0.662 1.074
52 0.700 1.101 0.974 0.300
66 0.727 1.049 0.934 0.473
78 0.617 1.244 0.606 1.158
63 0.434 1.511 0.800 0.825
45 0.666 1.162 0.655 1.084
00 0.667 1.159 1.000 0.001
16 0.597 1.276 0.803 0.819

RSC Adv., 2023, 13, 33707–33720 | 33715

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3ra06690h


RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

7 
N

ov
em

be
r 

20
23

. D
ow

nl
oa

de
d 

on
 1

1/
30

/2
02

4 
12

:3
0:

11
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
showed essential importance. Additionally, less impacts on FTC
activity were observed for 3 other elds including electrostatic,
hydrophobic and hydro-bond acceptor, as indicated by the
ratios of selected variables representing these elds. The
selected variables were as follows: [209, 664, 693, 913, 1414,
1458, 1582, 1833, 1906, 1928, 2216, 2345, 3060, 3191, 3251,
3299, 3442, 3535, 3620, 4262, 4463, 4664, 4723, 4747, 4866,
5277, 5421, 5545, 5566, 5670, 5831, 5843, 5855, 5891, 6004,
6125, and 6403].

The top ten models selected based on their cross-validation
RCV

2 and RMSECV for each feature selection method are pre-
sented in Table 4. Several noteworthy points can be highlighted.
Firstly, the implementation of feature selection has improved
the cross-validation estimation of all models. Secondly, the GB-
RFE feature selection method has yielded advantages for tree-
based models (GradientBoosting, RandomForest, XGBoost,
and AdaBoost), while the SelectFromModel-LassoCV has shown
benets for linear models (PLS, Lasso, and BayesianRidge). The
GBR model stood out as the best performer in the rst group,
achieving an RCV

2 of 0.644, RMSECV of 1.072, R2_test of 0.756,
and R2 of 0.977. In the second group, the PLS model showcased
the highest RCV

2 of 0.653, RMSECV of 1.058, R
2_test of 0.575, and

R2 of 0.755. However, there was a signicant overlap of esti-
mators between the two top-ten model groups, indicating that
these estimators are suitable for developing 3D CoMSIA models
of FTC dataset.

Among the 24 distinct regression techniques examined, non-
linear regression methods consistently demonstrated superior
tting performance when assessed across the two feature
selection methods. This underscores the presence of non-
linearity in predicting antioxidant activity and, in turn,
provides an explanation for the subpar model performance
observed in the previous section and prior studies that relied on
linear regression methods.22

For a small dataset like FTC, the superior performance of GB-
RFE tree-based models compared to Lasso-PLS can be attrib-
uted to their intrinsic algorithms. PLS is particularly sensitive to
outliers because the linear regression line is directly inuenced
by the mean of the target variable during tting. In contrast,
extreme target values only affect local trees and the local split-
ting decisions in tree-based models, resulting in an improved
overall perform for GBR, RandomForest, XGBoost, and
AdaBoost.
Fig. 8 Comparison of PLS with GBR-RFE tree-based models after hype

33716 | RSC Adv., 2023, 13, 33707–33720
ML based CoMSIA models with hyperparameter tuning

The disparity of RCV
2, R2_test, and R2 in Table 4 suggests that the

feature selection only improved the cross-validation perfor-
mance but still could not x the problem of overtting
completely for tree-based models. Hyperparameter tuning
using GridsearchCV was carried out on hundreds of hyper-
parameter combinations to explore the improvement of gener-
alization ability for the four tree-based models.

Fig. 8 visually illustrates the superior performance of tree-
based models when compared to the LassoCV-PLS model (with
n= 3 components). Specically, while the cross-validation RCV

2 of
the PLS model is comparable to that of the four tree-based
models, the tree-based models with tuned hyperparameters
clearly outperform the LassoCV-PLS model in predictivity.

Aer hyperparameter tuning, the GBR model with specic
settings (learning_rate = 0.01, max_depth = 2, n_estimators =
500, subsample = 0.5) showed the most signicant improve-
ment in model generalization, with notable reductions in the
differences between RCV

2, R2 and R2_test (0.690, 0.872, and
0.759, respectively). Likewise, the RMSECV, RMSE and
RMSE_test values for the GBR model decreased to 1.042, 0.66,
and 0.987, respectively.

On the other hand, the other tree-based models, including
RandomForest, XGB, and AdaBoost, unexpectedly did not ach-
ieve the same level of improvement, as indicated by larger
disparities between their coefficients. There are various reasons
contributing to the dissimilar response between GBR and the
other three models to hyperparameter tuning, with common
factors being feature selection, data size, and incomplete
hyperparameter tuning. Since testing all possible measures is
not feasible, we conducted an additional experiment involving
Embedded RFE (ERFE) feature selection coupled with hyper-
parameter tuning with GridSearchCV.

The ERFE feature selection was applied with three different
estimators (RF, XGB, and Ada). However, the results indicated
that the ERFE method did not improve the overtting issue; in
fact, it exacerbated it, as shown in Fig. 9. The application of the
Embedded XGB model revealed a notable escalation in over-
tting, evidenced by a rise in R2 to 1.000. This increase further
widened the gap between this parameter and RCV

2 (0.645) as
well as R2_test (0.764). Similar trends were observed in the RF
and Ada models, where the discrepancy of these coefficients
also intensied.
rparameter tuning.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 Comparison of PLS with ERFE tree-based models after hyperparameter tuning.

Fig. 11 Contour maps of field contribution to lipid antioxidant activity
(A) hydrophobicity (yellow: positive, white: negative) and (B) hydrogen-
bond donor (purple: positive, cyan: negative).
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Bootstrapping and Y-scrambling evaluation for the GB-RFE
GBR model

The bootstrapping evaluation has generated Rbstr
2 of 0.703

(standard deviation (SD): 0.056), average MSE: 1.200 (SD: 0.227).
These results are similar to R2_test of the GBRmodel, indicating
that the model's performance is consistent, robust, and not
dependent on the specic sample of data used for training.

The result of Y-scrambling activity for the GBR model has
shown a p value <0.001 aer 100 iterations, suggesting that the
model's performance is not due to random chance and
strengthening its reliability and applicability.

Predictability of the GB-RFE GBR model for the FTC dataset

Fig. 10 shows the correlation between predicted and experi-
mental FTC values for the training and test sets obtained from
the GBRmodel. The plot demonstrates the excellent tting of the
GBR model compared to the Tripos and OPLS-based CoMSIA
models for the training set, even at the highest activity levels.
However, its performance was comparatively less efficient for the
test set, particularly in the activity range higher than 6 (please
refer to ESI 6† for all the predictions on the FTC dataset using the
RFE-GBR model with the optimized hyperparameters).

Predictions of FTC activity of Tryptophyllin L tripeptides

The GBR model, employing the GB-RFE selection method and
specic hyperparameters (learning_rate= 0.01, max_depth= 2,
Fig. 10 Experimental versus predicted FTC values derived from the GBR

© 2023 The Author(s). Published by the Royal Society of Chemistry
n_estimators = 500, subsample = 0.5), was identied as the
most optimal 3D-CoMSIA model constructed using FTC data,
and therefore was used to predict the lipid antioxidant activity
of 13 Tryptophyllin L peptide fragments.

The two most important eld effects on lipid antioxidant
capability, including hydrophobicity and hydrogen bond donor,
were illustrated in Fig. 11. A notable observation is the positive
impact of hydrophobicity in the rst amino acid position on
overall activity, but interestingly, this effect reverses when the
model for (A) FTC training and (B) test set.

RSC Adv., 2023, 13, 33707–33720 | 33717
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Fig. 12 Structures of 13 Tryptophyllin L tripeptides superimposed on
the YRY reference.

RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

7 
N

ov
em

be
r 

20
23

. D
ow

nl
oa

de
d 

on
 1

1/
30

/2
02

4 
12

:3
0:

11
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
hydrophobic amino acid is in the second position. Additionally,
hydrogen-bond donor groups are found to be benecial to FTC
activity when located on the second and third amino acid
positions, while they have a mixed effect on the rst amino acid.

Structures of 13 Tryptophyllin L tripeptides superimposed
on the YRY reference are displayed in Fig. 12. The CoMSIA
indices from these peptides were subjected to the RFE-GBR
model to predict the FTC activities of these peptide fragments
(ESI 7†). Table 5 presents 13 Tryptophyllin L tripeptides along
with their corresponding predicted FTC values. Based on the
predictions from the GBR models, the peptides F-P-W and F-P-
5Htp were identied as the highest FTC activities.

The most interesting observation from the predictions on
Tryptophyllin L tripeptides was the combined effect of phenyl-
alanine at the rst amino acid and tryptophan at the third
amino acid on the FTC activity. This combination provides
hydrophobicity for the rst position and hydrogen-bond donor
for the C-terminal leading to the highest FTC activity in the list.
The FTC value does not change signicantly when tryptophan is
replaced by 5-hydroxytryptophan (5Htp) explained by the subtle
difference in hydrogen-bond donor ability of 5Htp compared
with that of tryptophan.

Three tripeptides were synthesized and tested using the FTC
assay, including FPW, F-P-5Htp, and P-5Htp-L. The latter two
Table 5 FTC predictions by GBR modea

No. Title
FTC predictions
by GBR model

1 FPW 3.882
2 pEFP 3.476
3 FPF 2.556
4 IPW 3.225
5 FLP 1.996
6 PWF 1.287
7 PWF(NH2) 1.304
8 FHR(NH2) 2.119
9 PWP 1.772
10 PFP 1.755
11 WFH 2.443
12 P-5Htp-L 1.818
13 F-P-5Htp 3.694

a 5Htp: 5 hydroxytryptophan, pE: pyroglutamic acid.

33718 | RSC Adv., 2023, 13, 33707–33720
tripeptides are derived from the Tryptophyllin L F-P-5Htp-L, is
of special interest as containing 5-Htp one of the tryptophan
metabolites. Experimental results yielded FTC values of 4.2 ±

0.12, 4.4 ± 0.11, and 1.72 ± 0.15 for F-P-5Htp, F-P-W, and P-
5Htp-L, respectively. These experimental results generally
align with the predictions of the RFE-GBR model, suggesting
the potential lipid antioxidant properties of these three
peptides.

Conclusion

In conclusion, this study conducted a comprehensive compar-
ison of two modeling approaches to determine the most
statistically reliable and robust model for predicting the lipid
antioxidant activities of tripeptides. The rst approach utilized
the traditional PLS algorithm within Maestro 11.5 and Sybyl X
2.1, while the second approach employed various machine
learning algorithms for model selection.

The analysis of the FTC CoMSIA dataset using traditional
methods revealed several key ndings. Firstly, changing the
molecular template for alignment had no signicant impact on
the CoMSIA models' statistics. However, switching between force
elds resulted in notable differences. OPLS-based models
exhibited more stable PLS numbers and statistical parameters
compared to Tripos force eld models, which displayed varia-
tions in PLS numbers across different data splits and tended to
overt. Secondly, the CoMSIA models from both force elds
showed low predictive capability (Q2) with a strong inclination to
underestimate FTC activity, particularly in the high activity range.

The ML-based modelling routine was intentionally designed
to process the data into three stages. The ML-based 3D-CoMSIA
models without feature selection have revealed better perfor-
mances for four tree-based regressors (RandomForest, XGB,
AdaBoost and GBR), Lasso and Bayesian Ridge Regressor as
a result of the feature self-selected nature of these estimators.
This feature is benecial greatly in alleviating the detrimental
impact of the abundance of CoMSIA indices on the models.

Out of the 24 distinct regression techniques investigated,
non-linear regression methods consistently exhibited better
model tting than the linear methods when evaluated using the
two feature selection methods GBR-RFE and Select-
FromModel_LassoCV. This highlights the presence of non-
linearity in predicting antioxidant activity, thus offering an
explanation for the less favorable performance of linear models
previously.

The competition of four tree-based models at the nal stage
of hyperparameter tuning has revealed different levels of
generalization for these tree-based models, although improve-
ment in terms of cross-validation and predictivity were observed
for all of these models. Among those, the GBR model with the
GBR-RFE selection method and specic hyperparameters
(learning_rate = 0.01, max_depth = 2, n_estimators = 500,
subsample = 0.5) was selected as the best model for predicting
the FTC activity of tripeptides when displaying smallest
disparity in internal and external statistics. It is therefore
statistically reliable to be used for screening of lipid-antioxidant
tripeptides.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Overall, the ML-based modeling approach has demonstrated
greater efficiency compared to the traditional CoMSIA method
when modeling 3D-eld similarity models for the FTC dataset.
This conclusion is based not only on the comparison of models
constructed in this study but also on a review of results from
previous research.

The predicted FTC values of 13 Tryptophyllin L peptide
fragments by the RFE-GBR model have guided the experimental
testing of three tripeptides, yielding FTC values of 4.2± 0.12, 4.4
± 0.11, and 1.72 ± 0.15 for F-P-5Htp, F-P-W, and P-5Htp-L,
respectively. The experimental results generally aligned with
the model predictions, suggesting that these peptides have
great potential as lipid antioxidants and should be further
tested on food-based samples.

Finally, this study offers a collection of adaptable Python
scripts (please refer to the attached Script S1–S6† for relevant
code) that can be used to model various bioactivities or prop-
erties, requiring only an input CoMSIA dataset as a minimum
requirement. These scripts enable model construction using 24
estimators, both with and without feature selection. Notably,
the scripts incorporate features such as variable selection (GBR-
RFE, ERFE, and SelectFromModel) and hyperparameter tuning
through GridSearch_CV and RandomSearch_CV, scrambling
and bootstrapping evaluation, allowing the estimation of model
consistency and reliability.
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