RSC Advances

PAPER

Cite this: RSC Adv., 2023, 13, 35562

Hydrophilic amorphous $Cr₂O₃$ supported Co species toward efficient hydrogen production from ammonia borane under visible light irradiation†

Herein, we synthesized a hydrophilic support formed from amorphous Cr_2O_3 and KIT-6 containing P123

Fenglong W[u](http://orcid.org/0000-0001-7833-8616) \mathbb{D}^* and Jin Son[g](http://orcid.org/0000-0002-7363-507X) \mathbb{D}^*

Received 29th October 2023 Accepted 29th November 2023

DOI: 10.1039/d3ra07367j

rsc.li/rsc-advances

1. Introduction

Hydrogen $(H₂)$ as clean energy has attracted much attention owing to zero carbon emissions and high combustion value.¹⁻³ Ammonia borane ($NH₃BH₃$) as a promising hydrogen storage material with high hydrogen content (19.6 wt%) can present the solution for the challenges of safe transportation and storage of H_2 .^{4,5} The hydrolysis of NH₃BH₃ (NH₃BH₃ + 2H₂O \rightarrow NH₄BO₂ + $3H₂$) is considered a promising strategy to generate $H₂$ due to the mild reaction conditions.^{6,7} Supported heterogeneous catalysts play an important role in accelerating the reaction rate.⁸⁻¹⁰ Various metal based catalysts including precious and nonprecious metals have been employed for hydrolysis of NH₃BH₃.¹¹⁻¹⁸ However, the high cost of precious metals and low activity of non-precious metals hinder the large-scale application of NH₃BH₃. Many efforts have been made to decrease the dosage of precious metals and enhance the activity of nonprecious metal based catalysts. Regulating the electronic structure of active metals is a common strategy to improve the activity of catalysts. Recently, introducing light irradiation into reaction systems, especially non-precious metals working as catalysts, has been proven to be an effective method to boost the charge imbalance distribution and then catalytic performance.¹⁹–²² Nevertheless, the activity of non-precious metal catalyst is still far from satisfaction. As a result, it is urgent to rationally design the structure of non-noble metal catalysts to obtain high activity level.

Earth-abundant Co catalysts have been utilized in $NH₃BH₃$ hydrolysis.²³⁻²⁶ For example, Co-Co₃O₄ has been employed as

using a simple solvent-free thermal method for Co species. The obtained catalyst (denoted as Co/ Cr_2O_3-F-X) exhibits high activity for hydrogen production from ammonia borane (NH₃BH₃). The optimal $Co/Cr₂O₃-F-0.5$ exhibits the highest catalytic performance with the turnover frequency (TOF) value of 111.1 min−¹ . Advanced characterizations suggest the high catalytic performance is attributed to the synergistic effect of the strong interaction between amorphous Cr_2O_3 and KIT-6 containing P123 and improved wettability of the catalyst.

excellent catalyst for H_2 generation from NH_3BH_3 due to electronic structures at the interface and abundant adsorption site.²⁷ Our group have also prepared high performance Co/Cr_2O_3 composed of electron-deficient Co species and mesoporous Cr_2O_3 . Cr_2O_3 is selected as support due to several reasons. Firstly, Cr_2O_3 has been widely applied in photoinduced reaction.²⁸ Secondly, Cr_2O_3 with relatively high work function induces electron transfer from Co. Importantly, electrondeficient Co species can decrease H_2O activation and dissociation energy barriers (rate-determining step in $NH₃BH₃$ hydrolysis) and then accelerate the rate of reaction.²⁹ To date, the design of catalyst has mainly focused on tuning electronic structures of active metal, while neglects catalyst wettability. The appropriate wettability of a catalyst can significantly enhance the adsorption and transfer of reactants, resulting in enhancement activity.³⁰ For example, Zhao group reported the activity of NiFe/NiFe:Pi toward oxygen evolution is significantly enhanced by tuning the wettability of the catalyst.³¹ Xiao group reported the conversion of syngas to methane, dimethyl ether, and olefins can be regulated by controlling the catalyst hydrophobicity.³² Accordingly, regulating catalyst wettability is an effective strategy to further boost the rate of $NH₃BH₃$ hydrolysis. Introduction of hydrophilic $SiO₂$ into reaction system can alter $H₂O$ adsorption behaviour.³³ Therefore, introduction of material containing hydrophilic $SiO₂$ is effective strategy to enhance the catalyst activity. **PAPER**
 EXERCTS AND CRIME CONSTITUTE CONSTI

Herein, we prepared hydrophilic Co-based catalyst Co/Cr_2O_3 -F composed with amorphous Cr_2O_3 and functionalized with KIT-6 containing P123 and Co species based our group previous report. The optimal $Co/Cr₂O₃-F-0.5$ exhibits a high catalytic performance with TOF value of 111.1 min⁻¹. Advanced characterizations reveal the synergistic effect of strong interaction at interface and improved wettability is responsible for the high catalytic performance.

Department of Chemical and Environmental Engineering, Hetao College, Bayan Nur 015000, China. E-mail: wufenglong1983@126.com; jinsonght@sina.com

[†] Electronic supplementary information (ESI) available. See DOI: <https://doi.org/10.1039/d3ra07367j>

2.1 Materials

Cobalt chloride hexahydrate $(CoCl₂·6H₂O)$, ammonia borane (NH₃BH₃), deuterium oxide (D₂O), potassium iodide (KI), tetraethyl orthosilicate $(C_8H_{20}O_4Si)$ and sodium borohydride (NaBH₄) were obtained from Aladdin. Chromium (m) nitrate nonahydrate $(Cr(NO₃)₃·6H₂O)$ was obtained from Macklin. Isopropyl alcohol (C_3H_8O) was purchased from Tianjin Yongda ChemicalReagent Co. Ltd, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) was obtained from Sigma-Aldrich. Potassium dichromate $(K_2Cr_2O_7)$ were obtained from Sinopharm Chemical Reagent Co., Ltd.

2.2 Synthesis and photocatalytic H_2 production

Preparation of Cr_2O_3 -F-0.5: KIT-6-F was firstly synthesized according to reported literature with minor modification.³⁴ We didn't calcine the sample to maintain the p123 in pore and on the surface of KIT-6. Next, a 0.5 g KIT-6-F and 0.2 g $Cr(NO₃)₃$ were ground and transferred into a Teflon-lined stainless steel and maintained at 240 $\mathrm{^{\circ}C}$ for 3.5 h. Meanwhile, we prepared five other samples denoted as Cr_2O_3 -F-X (X represents the quality of KIT-6-F). The KIT-6-E was prepared by calcination KIT-6-F at 550 °C for 3 h. The Cr₂O₃-E-0.5 was synthesized by KIT-6-E with same procedure as Cr_2O_3 -F-0.5 for comparison.

Preparation of Co/Cr_2O_3 -F-0.5 and catalytic H₂ production: 16.0 mg Cr_2O_3 -F-0.5 was dispersed in containing 0.034 mmol $CoCl₂·6H₂O$ aqueous solution (0.9 mL) for in reactor 1 h. Next, 0.068 mmol NaBH₄ acted as reduction and 1.71 mmol NH₃BH₃ were dissolved in 1.5 mL $H₂O$ and was injected into the reactor. Meanwhile, the H_2 generated under visible light irradiation and in the dark. Five other samples including $Co/Cr_2O_3-F-0.1$, $Co/$ Cr_2O_3 -F-0.3, Co/Cr_2O_3 -E-0.5, Co/KIT -6-F and Co/KIT -6-E were prepared by same method.

2.3 Catalyst characterization

Powder X-ray diffraction (PXRD) on D8 Advance with Cu-Ka radiation was employed to obtain crystalline structures and component of samples. Transmission electron microscopy (TEM, JEM-2100F) were used to observe the morphologies of samples. X-ray photoelectron spectroscopy (XPS) was conducted on a Thermo Scientific K-Alpha with pass energies $= 50$ eV and the calibrated using the C 1s peak at 284.8 eV was reference. PerkinElmer Lambda 750 was employed to collect UV-vis spectra of sample. Contact angle measurements were carried out on Dataphysics OCA40. TriStar II Plus 3.03 was used to measure the surface area of samples. The transient photocurrent and electrochemical impedance spectroscopy (EIS) were conducted on an electrochemical station (CHI600E) in 0.5 M $Na₂SO₄$ electrolyte. Fourier transform infrared (FTIR) was performed on FTIR-7600 spectrometer.

3. Results and discussion

3.1 Chemical structure analysis

As described in Fig. 1a, the catalyst Co/Cr_2O_3 -F-0.5 was prepared by two-step method. Firstly, Cr_2O_3 -F-0.5 was obtained by

Fig. 1 (a) The illustration preparation process of $Co/Cr_2O_5-F-0.5$, (b and c) TEM images of Cr_2O_3 -F-0.5 with different magnifications, (d–k) TEM images of $Co/Cr₂O₃-F-0.5$ with different magnifications, and the corresponding dark field elemental mappings.

solvent-free thermal method. TEM image in Fig. 1b, S1a and S1b† shows the compound inherits the morphology of KIT-6. However, no long range ordered structure can be observed from HRTEM image, further confirming the amorphous nature of Cr_2O_3 -F-0.5 (Fig. 1c). Moreover, the SAED of Cr_2O_3 -F-0.5 (inset in Fig. 1c) demonstrates rings composed of diffraction spots, further verifying the amorphous feature of Cr_2O_3 -F-0.5. XRD pattern displays abroad peak indexed to KIT-6,³⁵ and no characteristic peak assigned to Cr_2O_3 was clearly observed suggesting the sample is composed with KIT-6-F and amorphous Cr_2O_3 (Fig. 2). Additionally, samples including KIT-6-F, Cr_2O_3 -F-0.1, Cr_2O_3 -F-0.3, and Cr_2O_3 -F-0.6 were also tested to further confirm the amorphous nature of support (Fig. 2). The result

shows the compound sample remains amorphous after adjusting the quality of KIT-6-F. Moreover, a closer look at the abroad peaks in the compound shifts to big larger 2θ angle with increasing KIT-6-F, suggesting the strong electronic interaction between KIT-6-F and Cr_2O_3 . Similar phenomenon has been observed in metal alloys due to changed electronic structure.³⁶ Additionally, the image and structure of Cr_2O_3 -E-0.5 also be tested for comparison. As shown in Fig. $S2, \dot{\uparrow}$ Cr₂O₃-E-0.5 displays the same morphology as KIT-6 and Cr_2O_3 -F-0.5. XRD pattern shows an amorphous nature of Cr_2O_3 -E-0.5 which is similar to the Cr_2O_3 -F-0.5 (Fig. S3†). Therefore, the introduction of P123 cannot signicantly affect the crystallinity of support. After loading Co species, TEM images from Fig. 1d and S4[†] show Co species are formed on the surface of Cr_2O_3 -F-0.5. The long-range order also can't be observed in HRTEM image of Co/ $Cr₂O₃$ -F-0.5 in Fig. 1e, indicating the catalyst is composed of amorphous component. The SAED of $Co/Cr₂O₃$ -F-0.5 (inset in Fig. 1e) further confirms the amorphous feature of catalyst. Additionally, the element mapping (Fig. 1f–k) and EDX further the Co species has supported on the surface of Cr_2O_3 -F-0.5 (Fig. S5†). No obvious sharp peak assigned to Co is observed in XRD pattern of $Co/Cr₂O₃-F-0.5$ (Fig. S6†), suggesting the formation of amorphous Co species which is consistent with previous reports.³⁷ Additionally, the broad peak around 45° assigned to Co can further confirm the existence of amorphous Co.³⁸ BET surface area of Cr_2O_3 -F-0.5 was calculated to be 246.2512 m² g⁻¹ which is smaller than Co/Cr₂O₃-F-0.5 (296.8048) m² g^{−1}) (Fig. S7 and S8†). The result suggests Co species mainly disperse on the surface of Cr_2O_3 -F-0.5 rather than channel of KIT-6 maybe due to the interaction between $Co²⁺$ and amorphous Cr_2O_3 . **PSC** Advances Articles. Published on $-\cos\beta$ and $-\cos\beta$ PM. This are $-\cos\beta$ PM. T

XPS was employed to confirm the component Cr_2O_3 -F-0.5 and complete XPS spectra for KIT-6-F for comparison. The full spectra display Si and O signal suggesting the coexisting of two elements in KIT-6-F. In addition to the aforementioned elemental signals, a faint Cr signal is also present in Cr_2O_3 -F-0.5 (Fig. S9†), suggesting the compound is composed of Si, O and Cr elements. As shown in Fig. 3, in the high resolution XPS spectrum of Si 2p, a peak located at 103.5 eV assigns to the Si–O–Si band for KIT-6-F and Cr_2O_3 -F-0.5.³⁹ Notably, high resolution XPS

Fig. 2 XPS spectra of Si 2p in Cr₂O₃-F-0.5 and KIT-6-F.
Fig. 2 XRD patterns of samples.

spectrum of Si 2p in Cr_2O_3 -F-0.5 shifts to high binding energy compared with KIT-6-F. Similar phenomenon is observed in O 1s, suggesting the strong interaction between Cr_2O_3 and KIT-6-F (Fig. S10†). Additionally, high resolution XPS spectrum of Si in KIT-6-E and Cr_2O_3 -E-0.5 also is collected to the effect of P123 on interaction between Cr_2O_3 and KIT-6. Compared to KIT-6-E, the Si 2p spectra in Cr_2O_3 -E-0.5 undergo a shift to lower binding energy (Fig. S11†). This phenomenon is different from Cr_2O_3 -F-0.5 due to the absence of P123.

FTIR spectra of KIT-6-F and Cr_2O_3 -F-0.5 were collected to investigate the structure of samples and interaction. As shown in Fig. 4, the bands in two samples at around 1635, 1081, 960, 799 and 464 cm−¹ correspond to absorbed water, symmetric stretching vibrations of Si–O–Si,–Si–OH vibration, asymmetric stretching vibrations of Si–O–Si, and bending vibrations of Si– O–Si, respectively.40,41 Notably, compared with pristine KIT-6-F, the band at 1 635 960 and 464 cm^{-1} in compound are redshifted, indicating the strong interaction between pristine KIT-6-F and Cr_2O_3 , which is facilitated to regulate electron density of catalyst and obtain high performance.⁴² Combined with the above characterization result, Cr_2O_3 -F-0.5 strong interaction between amorphous Cr_2O_3 and KIT-6-F had been successfully synthesized. Additionally, The IR spectra of KIT-6-F were collected after five months (Fig. $S12\dagger$). The result shows no

Fig. 4 IR spectra of Cr_2O_3 -F-0.5 and KIT-6-F.

Fig. 5 UV-vis spectra of samples.

Fig. 7 Water contact angle measurements for (a) Cr_2O_3 -F-0.5, (b) Cr_2O_3 -E-0.5, (c) Co/Cr_2O_3 -F-0.5 and (d) Co/Cr_2O_3 -E-0.5.

obvious change in characteristic peak is observed, suggesting reserved P123 on the surface of KIT-6 does not leach out.

UV-vis spectra were conducted to investigate the optical characterization of samples. As shown in Fig. 5, KIT-6-F is not capable of absorbing visible light while after coupling with $Cr₂O₃$, visible light absorption capacity is significantly improved and exhibits two absorbing peaks which is similar that of Cr_2O_3 . Absorption strength is increasing with decreasing content of KIT-6-F because large quantities of KIT-6-F can form the lightshield effect and Cr_2O_3 -F-0.3 has the strongest visible light reaction absorption. Notably, Cr_2O_3 -F-0.1 doesn't show the best visible light response. This result may be due to too few KIT-6-F not beneficial to the formation of $Cr₂O₃$. Additionally, compared with Cr_2O_3 -F-0.5, the Cr_2O_3 -E-0.5 prepared by calcined KIT-6-F displays weak absorption of visible light, indicating the reserved p123 can strengthen the interaction between KIT-6-F and $Cr₂O₃$.

Separation efficiency of photogenerated electrons and holes has important influence in catalytic performance of catalyst. Transient photocurrent density was conducted to test the effect of reserved P123 on photogenerated carrier separation efficiency of compound. Cr_2O_3 -E-0.5 also was test for comparison. As shown in Fig. 6a, the photogenerative carrier of the Cr_2O_3 -E-0.5 can be effectively separated under visible light irradiation. In contrast, Cr_2O_3 -F-0.5 exhibits stronger signal, revealing that $Cr₂O₃$ -F-0.5 is benefit to carrier separation and transfer due to the strong interaction between KIT-6 and Cr_2O_3 with assistance of P123. EIS was performed to confirm the effect of different structure of samples on electron transition. As shown in Fig. 6b,

Fig. 6 (a) Profiles of time versus transient photocurrent density of two supports, (b) EIS Nyquist plots of samples.

 $Cr₂O₃ - F-0.5$ shows a slightly smaller arcradius, suggesting relatively small resistance to electron transport.

To investigate the effect of reserved P123 on wettability of support, contact angle measurements were conducted for $Cr_2O_3-F-0.5$, $Cr_2O_3-E-0.5$, $Co/Cr_2O_3-F-0.5$ and $Co/Cr_2O_3-E-0.5$. Generally speaking, the lower the contact angle is liable to better H_2O adsorption. As illustrated in Fig. 7, the Cr_2O_3 -E-0.5 shows the water-droplet contact angle of 17.9° while contact angles of water droplet on the surface of the Cr_2O_3 -F-0.5 decrease values with 11.2° , confirming reserved P123 can enhance the wettability of support and favour the charge transfer and accelerate the rate of $NH₃BH₃$ hydrolysis. The contact angles of water droplet on surface of $Co/Cr₂O₃$ -E-0.5 (28.1°) is larger than Cr_2O_3 -E-0.5. Conversely, the contact angles of water droplet on surface of Co/Cr_2O_3 -F-0.5 (6.1°) is smaller than Cr_2O_3 -F-0.5. The result suggests water can easily spread on the surface of Co/Cr_2O_3 -F-0.5, leading to an increased H₂ evolution rate. Paper **Access Articles.** Published on $\frac{1}{2}$ Published on 06 December 2023. Downloaded on 10 December 2023. Downloaded on 4/22/2023. Downloaded on 10 December 2023. Downloaded to the state of the state of the state of

3.2 Photocatalytic performance

The photocatalytic activity of Co/Cr_2O_3 -F-0.5 was tested in a reactor under visible light irradiation. Additionally, control experiments including Co/KIT-6-F, Co/Cr₂O₃-F-0.1, Co/Cr₂O₃-F-0.3, $Co/Cr_2O_3-F-0.5$, $Co/Cr_2O_3-F-0.6$, $Co/Cr_2O_3-E-0.5$ and $Co/$ KIT-6-E were also conducted to reveal the origin of activity of catalyst. As shown in Fig. 8, both Co/KIT-6-F and Co/KIT-6-E exhibits similar activity in dark at same condition (Fig. 8a and b). Importantly, the activity of two catalysts is further boosted under visible irradiation (Fig. 8c and d). The enhanced catalytic performance is mainly attributed to the electronic structure changed induced by interband electron transfer of Co. In sharp contrast, the activity of $Co/Cr₂O₃-F-0.5$ exhibits greatly enhanced under visible irradiation than that of Co/KIT-6-F, while slightly boosted in dark. The TOF value of Co/Cr_2O_3 -F-0.5 is 111.1 min⁻¹ which is much higher than that of some tested non-precious metal based catalysts (Table 1). The enhanced performance is primarily attributed to the following aspects: firstly, introduction of Cr_2O_3 with high visible light utilization ratio induces the generation of photogenerative

Fig. 8 Plots of time versus volume of H_2 evolution from NH_3BH_3 over Co-based catalysts (a) in dark, (b) corresponding TOF value (c) under visible light irradiation, (d) corresponding TOF value.

carriers to provide a greater drive for reaction progression. Secondly, the electron-deficiency degree of Co nanosheets is improved under visible irradiation, resulting in greatly decreased H_2O activation and dissociation energy barrier.²⁹ Thirdly, the increased $NH₃BH₃$ hydrolysis rate over Co/Cr₂O₃-E-0.5 under visible irradiation further conform the effect of Cr_2O_3 on activity of catalyst. Notably, the activity of $Co/Cr₂O₃$ -E-0.5 with TOF 95.7 min⁻¹ is lower than Co/Cr₂O₃-F-0.5. Combined with the UV-vis, EIS, transient photocurrent density and water contact angle measurements experimental result, the reserved P123 on surface of KIT-6 not only construct strong interaction among multiple interfaces but also improve catalyst wettability, which is benefit to adsorption of reactant molecules and carrier transfer and accelerate the $NH₃BH₃$ hydrolysis rate. Additionally, we added a control experiment over Co supported on Cr_2O_3 -F-0.5-M (physically mixed KIT-6-F and Cr_2O_3) to provide evidence for the effect of strong interaction between KIT-6-F and $Cr₂O₃$ on Co-based catalytic activity. As expected, the performance of Co/Cr₂O₃-F-0.5-M with TOF of 76.9 min⁻¹ is greatly reduced in comparison to Co/Cr_2O_3 -F-0.5 (Fig. S13†). Therefore, the synergistic effect of high visible light utilization, strong

interaction between KIT-6-F and Cr_2O_3 and improved wettability leads to a significant enhanced catalyst performance under visible irradiation.

In order to reveal the influence of interface effect on catalyst performance, the control experiments were performed based on $Co/Cr_2O_3-F-0.1$, $Co/Cr_2O_3-F-0.3$, $Co/Cr_2O_3-F-0.5$, $Co/Cr_2O_3-F-0.6$. It can be clearly observed that the introduction of amorphous $Cr₂O₃$ in support can slightly boost the activity of Co-based catalyst in dark (Fig. 8c). However, the activity of catalyst containing KIT-6-F can significantly improve under visible irradiation. Moreover, the activity enhances with increased KIT-6-F mass and the catalyst Co/Cr_2O_3 -F-0.5 exhibits highest performance. The activity decreases when the mass of KIT-6-F in support is continued to increase due to light-shield effect.

Photogenerated carriers can not only tune the electronic structure of catalyst but also induce the generation of radical intermediates such as hydroxyl radicals ('OH), which have significantly effect on the performance of catalyst in light induced reaction. Therefore, we investigated the influence of 'OH to the performance of Co/Cr_2O_3 -F-0.5 using trapping experiment and EPR characterization. In capture experiment, electrons, holes and 'OH was captured by $K_2Cr_2O_7$ (100 μ M), KI(100 μ M) and 2propanol (IPA) (100 μ L), respectively.⁴⁷ The result was shown in Fig. 9a and b, the adding of sacrificial agents in reaction system can decrease the hydrolysis rate of $NH₃BH₃$, suggesting the photogenerated carriers and radical intermediates can boost the activity of Co/Cr_2O_3 -F-0.5. It is worth noting that the effect of photogenerated carriers and radical intermediates on enhanced activity is different based on different catalyst. ESR measurements was conducted to confirm the existing of 'OH and superoxide anions (O_2 ⁻) originated from the reaction of dissolved O_2 and photogenerated electron was also measured which can improve the rate of $NH₃BH₃$ hydrolysis.⁴⁶ As shown in Fig. 9c, no characteristic signal of 'OH is observed in the dark based on Cr_2O_3 -F-0.5, but the signal with $1:2:2:1$ strength appears under irradiation. The same phenomenon is observed in ' O_2 ⁻ detection (Fig. 9d). These results further conform the existing of 'OH and O_2 ⁻ under light irradiation. **EXAMPRESS Articles.** Published on $\frac{1}{2}$ Pape 1998. The consistent article is likely the distribution-the commons chementation are also the simulation of the commons are properties are the simulation-the commons are p

Fig. 9 (a) and (b) Role of hydroxyl radicals and superoxide anions in NH3BH3 hydrolysis underlight irradiation. (c) and (d) DMPO ESR spinlabeling for $^{\circ}O_{2}^{-}$ and $^{\circ}OH$.

Fig. 10 Plots of time versus volume of hydrogen evolution from NH_3BH_3 in H₂O or D₂O over Co/Cr₂O₃-F-0.5 under visible light irradiation and in dark.

The cleavage of O–H bond in H_2O molecules is the ratedetermining step in $NH₃BH₃$ hydrolysis.^{48,49} To further confirm the conclusion, the kinetic isotope effect (KIE: KH/KD) is conducted. As shown in Fig. 10 the H_2 evolution rates greatly decreases using D_2O to replace H_2O both light irradiation and in dark. The value of KIE is 2.89 in darkness and is 2.13 under light irradiation. This result indicates the cleavage of O–H bond is the rate-determining step over Co/Cr_2O_3 -F-0.5 toward the hydrolysis of $NH₃BH₃$.

According to characterization, experimental results and previous report, we propose a possible mechanism for NH3BH3 hydrolysis induced by visible light. Firstly, Co species and Cr_2O_3 -F-0.5 absorbs visible light. Secondly, photoinduced electrons and holes are generated and transfer to the surface of Co species and Cr_2O_3 -F-0.5. Meanwhile, photoinduced electrons transfer from active species to support then 'OH and C_2 ⁻ are formed in this process. Thirdly, the B-H bond in $NH₃BH₃$ and O–H bond in H₂O are broken and H₂ is generated. 'OH and 'O $_2^-$ can accelerate the breaking of two kinds of bonds. Notably, the strong interaction among multicomponent and enhanced wettability can favor the transition of photoinduced carriers, `OH and `O₂ $^-$ and then improve the production rate of H_2 .

4. Conclusions

We synthesized a hydrophilic support by simple solvent-free thermal method. The compound works as amazing support for Co species. The optimal $Co/Cr_2O_3-F-0.5$ exhibits a highest catalytic performance for hydrogen production from $NH₃BH₃$ with TOF value of 111.1 min^{-1} . XRD, IR and XPS results indicate strong interaction between KIT-6-F and Cr_2O_3 -F. Contact angle measurement verifies Cr_2O_3 -F-0.5 has improved wettability. The synergistic effect of strong interaction and improved wettability induces high catalytic performance of $Co/Cr₂O₃$ -F-0.5.

Conflicts of interest

There are no conflicts to declare.

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (52161038), Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region (NJYT23033), Natural Science Foundation of Inner Mongolia Autonomous Region (2022MS05012), and the Talent Development Fund Project of Inner Mongolia Autonomous Region ([2022]-110).

References

- 1 N. Dubouis, A. Serva, R. Berthin, G. Jeanmairet, B. Porcheron, E. Salager, M. Salanne and A. Grimaud, Nat. Catal., 2020, 3, 656–663.
- 2 J. He, Z. Huang, W. Che, X. Xiao, Z. Yao, Z. Liang, L. Zhan, L. Lv, J. Qi, X. Fan and L. Chen, Chem. Eng. J., 2022, 431, 133697.
- 3 M. K. Sarmah, T. P. Singh, P. Kalita and A. Dewan, RSC Adv., 2023, 13, 25253–25275.
- 4 Y. Lin, L. Yang, H. Jiang, Y. Zhang, D. Cao, C. Wu, G. Zhang, J. Jiang and L. Song, J. Phys. Chem. Lett., 2019, 10, 1048–1054.
- 5 Y. Meng, Q. Sun, T. Zhang, J. Zhang, Z. Dong, Y. Ma, Z. Wu, H. Wang, X. Bao, Q. Sun and J. Yu, J. Am. Chem. Soc., 2023, 145, 5486–5495.
- 6 L. Wei, Y. Lu, R. Lua and Y. Cui, RSC Adv., 2023, 13, 7614– 7620.
- 7 C. Wang, J. Tuninetti, Z. Wang, C. Zhang, R. Ciganda, L. Salmon, S. Moya, J. Ruiz and D. Astruc, J. Am. Chem. Soc., 2017, 139, 11610–11615.
- 8 C. D. Mboyi, D. Poinsot, J. Roger, K. Fajerwerg, M. L. Kahn and J.-C. Hierso, Small, 2021, 17, 2102759.
- 9 H. Wu, Y. Chen, Y. Fan, X. Lu, L. Li, B. Liu, B. Li and S. Lu, Int. J. Hydrogen Energy, 2020, 45, 30325–30340.
- 10 S. Guan, Y. Liu, H. Zhang, R. Shen, H. Wen, N. Kang, J. Zhou, B. Liu, Y. Fan, J. Jiang and B. Li, Adv. Sci., 2023, 10, 2300726.
- 11 Y. Ren, J. Duan, X. Liu, L. Bian, Y. Fan and B. Liu, Energy Fuels, 2021, 35, 16222–16231.
- 12 S. Akbayrak and S. Özkar, J. Colloid Interface Sci., 2021, 596, 100–107.
- 13 L.-T. Guo, Y.-Y. Cai, J.-M. Ge, Y.-N. Zhang, L.-H. Gong, X.-H. Li, K.-X. Wang, Q.-Z. Ren, J. Su and J.-S. Chen, ACS Catal., 2015, 5, 388–392.
- 14 W. Chen, G. Lv, J. Fu, H. Ren, J. Shen, J. Cao and X. Liu, ACS Appl. Mater. Interfaces, 2021, 13, 50017–50026.
- 15 B. Wang, L. Xiong, H. Hao, H. Cai, P. Gao, F. Liu, X. Yu, C. Wu and S. Yang, J. Alloys Compd., 2020, 844, 156253.
- 16 J. Liao, Y. Wu, Y. Shao, Y. Feng, X. Zhang, W. Zhang, J. Li, M. Wu, H. Dong, Q. Liu and H. Li, Chem. Eng. J., 2022, 449, 137755.
- 17 F. Qiu, X. Hao, W. Huang, Y. Wu, R. Chu, J. Yang, W. Fu, G. Ren, C. Xu and W. Bao, RSC Adv., 2023, 13, 632–637.
- 18 L. Zhang, J. Ye, Y. Tu, Q. Wang, H. Pan, L. Wu, X. Zheng and J. Zhu, Nano Res., 2022, 15, 3034–3041.
- 19 H. Yin, Y. Kuwahara, K. Mori and H. Yamashita, J. Mater. Chem. A, 2018, 6, 10932–10938.
- 20 N. Kang, Q. Wang, R. Djeda, W. Wang, F. Fu, M. M. Moro, M. de los A. Ramirez, S. Moya, E. Coy, L. Salmon, J.-L. Pozzo and D. Astruc, ACS Appl. Mater. Interfaces, 2020, 12, 53816–53826. PSC Advances WebMercos Articles. Weblished on 06 December 2023. Downloaded on 2023. Downloaded on 2023. Downloaded on 2023. Downloaded on 2023. Downloaded the simulation-Non-Commons Articles. The Same Access Articles are a
	- 21 N. Kang, X. Wei, R. Shen, B. Li, E. G. Cal, S. Moya, L. Salmon, C. Wang, E. Coy, M. Berlande, J.-L. Pozzo and D. Astruc, Appl. Catal., B, 2023, 320, 121957.
	- 22 S. Zhang, M. Li, L. Li, F. Dushimimana, J. Zhao, S. Wang, J. Han, X. Zhu, X. Liu, Q. Ge and H. Wang, ACS Catal., 2020, 10, 14903–14915.
	- 23 H. Wang, Y. Zhao, F. Cheng, Z. Tao and J. Chen, Catal. Sci. Technol., 2016, 6, 3443–3448.
	- 24 H. Zheng, K. Feng, Y. Shang, Z. Kang, X. Sun and J. Zhong, Inorg. Chem. Front., 2018, 5, 1180–1187.
	- 25 H. Zhang, X. Gu, P. Liu, J. Song, J. Cheng and H. Su, J. Mater. Chem. A, 2017, 5, 2288–2296.
	- 26 J. Song, X. Gu, Y. Cao and H. Zhang, J. Mater. Chem. A, 2019, 7, 10543–10551.
	- 27 H. Wu, M. Wu, B. Wang, X. Yong, Y. Liu, B. Li, B. Liu and S. Lu, J. Energy Chem., 2020, 48, 43–53.
	- 28 Y. Chen, G. Mao, Y. Tang, H. Wu, G. Wang, L. Zhang and Q. Liu, Chin. J. Catal., 2021, 42, 225–234.
	- 29 J. Song and F. Wu, Nanoscale, 2023, 15, 16741–16751.
	- 30 L. Wang and F.-S. Xiao, ChemCatChem, 2014, 6, 3048–3052.
	- 31 Y. Li and C. Zhao, ACS Catal., 2017, 7, 2535–2541.
	- 32 C. Wang, L. Liu, H. Li, L. Wang and F.-S. Xiao, Matter, 2023, 6, 2697–2710.
	- 33 X. Zhang, Y. Zhao, X. Jia, Y. Zhao, L. Shang, Q. Wang, G. I. N. Waterhouse, L.-Z. Wu, C.-H. Tung and T. Zhang, Adv. Energy Mater., 2018, 8, 1702780.
	- 34 K. Soni, B. S. Rana, A. K. Sinha, A. Bhaumik, M. Nandi, M. Kumar and G. M. Dhar, Appl. Catal., B, 2009, 90, 55–63.
- 35 H. Al-shaikh, J. Lasri, J. G. Knight and S. T. Al-Goul, Fuel, 2022, 325, 124962.
- 36 P. Liu, X. Gu, H. Zhang, J. Cheng, J. Song and H. Su, Appl. Catal., B, 2017, 204, 497–504.
- 37 J. Song, F. Wu, H. Ma, Y. Liu, N. Song, J. Yu and Y. Wang, ACS Appl. Energy Mater., 2021, 4, 8377–8385.
- 38 J. Pang, S. Jin, J. Hou, G. Wang, K. Sun, Y. Zheng, H. Li, Y. Shen, X. Yang and L. Chen, Sens. Actuators, B, 2023, 374, 132725.
- 39 Y. Ding, J. Wang, M. Liao, J. Li, L. Zhang, J. Guo and H. Wu, Chem. Eng. J., 2021, 418, 129470.
- 40 P. Han, T. Liu, X. Ji and S. Tang, Chin. Chem. Lett., 2018, 29, 1305–1309.
- 41 X. Zhou, H. Zhao, S. Liu, D. Ye, R. Qu, C. Zheng and X. Gao, Appl. Surf. Sci., 2020, 525, 146382.
- 42 P. Zhou, S.-X. Guo, L. Li, T. Ueda, Y. Nishiwaki, L. Huang, Z. Zhang and J. Zhang, Angew. Chem., Int. Ed., 2023, 62, e202214881.
- 43 L. Zhao, Q. Wei, L. Zhang, Y. Zhao and B. Zhang, Renewable Energy, 2021, 173, 273–282.
- 44 H.-Z. Wang, Y.-X. Shao, Y.-F. Feng, Y.-J. Tan, Q.-Y. Liao, X.-D. Chen, X.-F. Zhang, Z.-H. Guo and H. Li, Rare Met., 2023, 42, 3013–3023.
- 45 K. Guo, Y. Ding, J. Luo, M. Gu and Z. Yu, ACS Appl. Energy Mater., 2019, 2, 5851–5861.
- 46 M. Wen, Y. Cui, Y. Kuwahara, K. Mori and H. Yamashita, ACS Appl. Mater. Interfaces, 2016, 8, 21278–21284.
- 47 S. Jo, P. Verma, Y. Kuwahara, K. Mori, W. Choi and H. Yamashita, J. Mater. Chem. A, 2017, 5, 21883–21892.
- 48 S. Zhou, Y. Yang, P. Yin, Z. Ren, L. Wang and M. Wei, ACS Appl. Mater. Interfaces, 2022, 14, 5275–5286.
- 49 Z. Li, T. He, L. Liu, W. Chen, M. Zhang, G. Wu and P. Chen, Chem. Sci., 2017, 8, 781–788.