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entropy of polymer chains by
making a plane with terminal groups:
a thermoplastic PDMS with a long-range 1D
structural order†

Yugen Chen,ab Fumitaka Ishiwari, ‡*ab Tomoya Fukui, ab Takashi Kajitani,c

Haonan Liu, d Xiaobin Liang,d Ken Nakajima,d Masatoshi Tokitad

and Takanori Fukushima *abe

Due to its unique physical and chemical properties, polydimethylsiloxane (PDMS) is widely used in many

applications, in which covalent cross-linking is commonly used to cure the fluidic polymer. The

formation of a non-covalent network achieved through the incorporation of terminal groups that exhibit

strong intermolecular interactions has also been reported to improve the mechanical properties of

PDMS. Through the design of a terminal group capable of two-dimensional (2D) assembly, rather than

the generally used multiple hydrogen bonding motifs, we have recently demonstrated an approach for

inducing long-range structural ordering of PDMS, resulting in a dramatic change in the polymer from

a fluid to a viscous solid. Here we present an even more surprising terminal-group effect: simply

replacing a hydrogen with a methoxy group leads to extraordinary enhancement of the mechanical

properties, giving rise to a thermoplastic PDMS material without covalent cross-linking. This finding

would update the general notion that less polar and smaller terminal groups barely affect polymer

properties. Based on a detailed study of the thermal, structural, morphological and rheological properties

of the terminal-functionalized PDMS, we revealed that 2D assembly of the terminal groups results in

networks of PDMS chains, which are arranged as domains with long-range one-dimensional (1D)

periodic order, thereby increasing the storage modulus of the PDMS to exceed its loss modulus. Upon

heating, the 1D periodic order is lost at around 120 °C, while the 2D assembly is maintained up to ∼160 °

C. The 2D and 1D structures are recovered in sequence upon cooling. Due to the thermally reversible,

stepwise structural disruption/formation as well as the lack of covalent cross-linking, the terminal-

functionalized PDMS shows thermoplastic behavior and self-healing properties. The terminal group

presented herein, which can form a ‘plane’, might also drive other polymers to assemble into

a periodically ordered network structure, thereby allowing for significant modulation of their mechanical

properties.
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Introduction

Incorporation of functional groups capable of exhibiting strong
intermolecular interactions into the termini of polymers can
result in improvement in the mechanical and thermal proper-
ties of polymers.1–9 Since the pioneering work by Meijer and co-
workers, which demonstrated a striking effect of 2-ureido-4-
pyrimidone as polymer termini that can form multiple
hydrogen bonds10,11 to improve the mechanical properties of
polymers, various terminal groups that exhibit hydrogen
bonding, metal coordination, ion pairing, or host–guest inter-
action have been developed.1–9 Originally, the approach of using
such terminal functional groups was aimed at linking polymer
chains linearly through noncovalent interactions, to increase
the apparent molecular weights. Multiple noncovalent
Chem. Sci., 2023, 14, 2431–2440 | 2431
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interactions between polymer termini or side chains have
recently been used to achieve the cross-linking of polymer
chains to create a network structure, thereby increasing the
mechanical properties of polymers more than in the case of
conventional linearly linked polymers.1–9,12,13

Another interesting prospect in the design of terminal groups
is the possibility of inducing the controlled assembly of polymers
into a higher-order hierarchical structure.1–9 Such ordered poly-
mer assemblies could lead to applications in nanopatterning and
directional materials transport.14–17 Nonetheless, as the weight
fraction of terminal groups relative to the polymer main chain is
considerably low, the formation of a higher-order structure of
polymers by terminal functionalization is generally difficult to
achieve, and successful examples have been limited to relatively
low molecular weight polymers (Mn < ca. 8 kDa) with a narrow
molecular weight distribution (Đ).18–23 In some cases, a stepwise
synthesis of discrete oligomers with Đ = 1 is required to create
a higher-order polymer assembly.24–28

We previously reported that polydimethylsiloxanes (PDMSs)
with a molecular weight (Mn) of 18–24 kDa, bearing a triptycene
unit (1,8-Trip-PDMS, Fig. 1a) at both termini, show remarkable
improvements in mechanical and thermal properties, compared
with the corresponding hydride-terminated PDMSs.29 The design
of the triptycene-terminated PDMSs relied on the nding that
1,8,13-substituted and 1,8-substituted triptycenes can self-
assemble into a well-dened “2D + 1D” structure with excep-
tionally long-range order,30–33 where 2D arrays, formed by nested
hexagonal packing of the triptycene, stack into a 1D layer struc-
ture. The structuring ability of 1,8,13- and 1,8-substituted tripty-
cenes was also found to work well for polymeric materials.34,35

Thus, 1,8-Trip-PDMS self-assembles to form a highly-ordered “2D
+ 1D” structure with a layer spacing of 18–20 nm despite its large
Fig. 1 Chemical structures and 3Dmodels (240mer,Mn= ca. 19 kDa) of
25 °C of (c) 1,8-Trip-PDMS (a viscous solid) and (d) 1,8,13-Trip-PDMS (a

2432 | Chem. Sci., 2023, 14, 2431–2440
molecular weight distribution (Đ z 2).29 Consequently, although
the precursor hydride-terminated PDMS is a uid, the PDMSs
with the triptycene termini (1,8-Trip-PDMS, Fig. 1a) turns into
a viscous solid (Fig. 1c) with a dramatic increase in complex
viscosity by four orders of magnitude.

The above nding encouraged us to further investigate the
terminal-group effect on themechanical and thermal properties
of PDMS using a 1,8,13-substituted triptycene unit with
a methoxy group at the 13-position (1,8,13-Trip-PDMS, Fig. 1b).
The rationale for changing from 1,8-substituted to 1,8,13-
substituted triptycene is based on the fact that 1,8-
bis(dodecyloxy)-13-methoxytriptycene exhibits a much higher
melting point (231 °C)30 than 1,8-bis(dodecyloxy)triptycene
(134 °C, Fig. S1†).33 This may reect a difference in structural
integrity between the di- and trisubstituted systems. Surpris-
ingly, the presence of a tiny methoxy group on the terminal
triptycene, which is indeed very subtle relative to the molecular
weight of the entire polymer (ca. 0.3 wt%), was found to have
a signicant impact on the mechanical and thermal properties,
resulting in solidication of the inherently liquid PDMS, to
allow the formation of a free-standing lm without any covalent
cross-linking (Fig. 1d). Here we report the terminal group-
induced structuring behavior of 1,8,13-Trip-PDMS, as well as
its thermal, mechanical and rheological properties. We also
describe the self-healing behavior of 1,8,13-Trip-PDMS as a non-
covalently crosslinked PDMS material.
Results and discussion
Synthesis and characterization of 1,8,13-Trip

Using procedures similar to those reported previously,29,30

1,8,13-Trip (Scheme S1†) to be attached to the termini of PDMS
(a) 1,8-Trip-PDMS and (b) 1,8,13-Trip-PDMS. Photographs of samples at
free-standing film). Scale bars = 1 cm.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 (a) Powder XRD pattern of 1,8,13-Trip at 25 °C measured after
cooling from its isotropic liquid in a glass capillary with a diameter of
1.5 mm. (b) Schematic illustrations of a 2D hexagonal array and a 1D
lamellar structure formed in the assembly of 1,8,13-Trip. (c) Small- and
wide-angle XRD patterns of 1,8,13-Trip-PDMS at 30 °C measured after
cooling from its isotropic liquid in a glass capillary with a diameter of
1.5 mm.
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was synthesized by a sequential Williamson etherication of
1,8,13-trihydroxytriptycene 1 with iodomethane,30 11-bromo-1-
undecene and 1-bromoundecane. The chemical composition
of 1,8,13-Trip was unambiguously characterized by 1H NMR and
IR spectroscopy and APCI-TOF mass spectrometry (Fig. S2–13†).
Differential scanning calorimetry (DSC) showed that the
melting (Tm) and crystallization (Tc) temperatures of 1,8,13-Trip
(Tm = 232 °C and Tc = 230 °C, Fig. 2a) were notably higher than
those of 1,8-Trip (Tm = 134 °C and Tc = 127 °C).29 The powder X-
ray diffraction (XRD) pattern of 1,8,13-Trip (Fig. 3a), measured
aer being heated once to melting temperature and then cooled
to 25 °C, is typical of triptycene derivatives that form a “2D + 1D”
structure. Thus, the diffractions observed were fully indexed by
assuming a hexagonal unit cell with lattice parameters of a =

0.80 nm and c = 1.79 nm for 1,8,13-Trip (Fig. 3b, Table S1†).

Synthesis and characterization of 1,8,13-Trip-PDMS

For the synthesis of 1,8,13-Trip-PDMS (Fig. 1b), 1,8,13-Trip was
reacted with commercially available hydride-terminated PDMS
(H-PDMS, number-averaged molecular weight Mn = 18 kDa) in
toluene in the presence of Karstedt's catalyst (Scheme S1†).29

Comparison of the 1H NMR and IR spectra of H-PDMS and
1,8,13-Trip-PDMS conrmed that the termini of H-PDMS are
completely functionalized with the 1,8,13-Trip group aer the
hydrosilylation reaction (Fig. S14–S17†). Based on NMR and
SEC analysis, the Mn and Đ of 1,8,13-Trip-PDMS were deter-
mined to be Mn = 19.4 kDa and Đ = 2.0 (Fig. S16 and S18†).
Surprisingly, 1,8,13-Trip-PDMS was obtained as a solid, hard
enough to form a free-standing lm at 25 °C (Fig. 1d). This is in
sharp contrast to previously reported 1,8-Trip-PDMS, which is
a viscous solid.29

The DSC prole of 1,8,13-Trip-PDMS (Fig. 2b) showed two
sets of melting/crystallizing features at lower (Tm1/Tc1) and
higher (Tm2/Tc2) temperature regions. Notably, despite a slight
difference in the structure of triptycene termini, the Tm1/Tc1 and
Tm2/Tc2 temperatures of 1,8,13-Trip-PDMS (around 120 °C and
170 °C, respectively) were much higher than those previously
reported for 1,8-Trip-PDMS (around 40 °C and 90 °C,
Fig. 2 DSC profiles of (a) 1,8,13-Trip and (b) 1,8,13-Trip-PDMS in
a second heating/cooling cycle, measured at a scan rate of 10 °Cmin−1

under N2 flow (50mLmin−1). In (b), the temperature ranges of Stages 1,
2, 3 and 4 for the polymer are pastel-color coded blue, green, yellow
and pink, respectively (see also Fig. 5a).

© 2023 The Author(s). Published by the Royal Society of Chemistry
respectively).29 The structural properties of 1,8,13-Trip-PDMS
are roughly classied into four stages: pastel-color coded blue,
green, yellow and pink, respectively. Thermogravimetric anal-
ysis showed that the temperature of 1% weight loss was 357 °C,
indicating that 1,8,13-Trip-PDMS has high thermal stability
(Fig. S19†). Fig. 3c shows the small- and wide-angle XRD
patterns of 1,8,13-Trip-PDMS at 30 °C, which are almost iden-
tical to those observed for 1,8-Trip-PDMS.29 In the wide-angle
region, two peaks observed at q = 15.7 and 18.5 nm−1 are
assigned to diffraction from the (110) and (200) planes of a 2D
hexagonal array with a lattice parameter (a) of 0.8 nm (Fig. 3b),
which is formed by nested packing of the triptycene termini. In
the small-angle region, 1,8,13-Trip-PDMS exhibited multiple
diffraction peaks up to fourth-order from a 1D lamellar struc-
ture with layer spacings of 19.0 nm. It is considered that the so
PDMS chains are folded and exist between the layers.

By means of atomic force microscopy (AFM), the ordered
assembly structure of 1,8,13-Trip-PDMS was successfully visu-
alized (Fig. 4). To prepare a thin-lm sample for AFM observa-
tion, a THF solution of 1,8,13-Trip-PDMS (10 mg mL−1) was
spin-coated (1000 rpm) on a Si wafer at 25 °C, heated to 200 °C
under vacuum, and then cooled to 25 °C at a rate of 1 °C min−1.
The height and phase images of the thin lm clearly shows
a regular stripe pattern with an average pitch of approximately
25 nm (Fig. 4), which is reminiscent of microphase-separated
structures of block copolymers. We presume that the
Chem. Sci., 2023, 14, 2431–2440 | 2433
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Fig. 4 AFM (a) height and (b) phase images of a thin film of 1,8,13-Trip-
PDMS on a Si wafer. (c) Phase profile along the red line in (b).
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deviation in the pitch from the layer spacing observed by small-
angle XRD (ca. 19 nm) for a bulk sample might be caused by the
inuence of the substrate such as a attening effect.36–38

Notably, the uniform and well-ordered structure can be con-
structed from PDMS with a large molecular-weight distribution
(Đ = 2.0) only by terminal functionalization with triptycene
units, for which strong intermolecular interactions such as
multiple hydrogen bonds are not expected.
Fig. 5 (a) Variable-temperature small- and wide-angle XRD patterns
of 1,8,13-Trip-PDMS measured upon heating in a glass capillary with
a diameter of 1.5 mm. For magnified profiles, please see Fig. S20.†
Right panels represent the temperature ranges of Stages 1–4 in Fig. 2b.
Temperature-dependence of (b) 2D hexagonal lattice parameter and
(c) 1D layer spacing.
Temperature-dependence of the structure-rheological
property relationship of 1,8,13-Trip-PDMS

Variable-temperature small- and wide-angle XRD experiments
gave insight into the origin of the two melting/crystallizing
features of 1,8,13-Trip-PDMS, as well as the structural aspects
in the four temperature regions (Stages 1–4) in Fig. 2b. As ex-
pected, the powder XRD patterns of 1,8,13-Trip-PDMS were
almost unchanged upon heating from 30 to 90 °C (Fig. 3c and
5a). When heated above 90 °C, the 00n diffractions due to the 1D
lamellar shied to a smaller q region, broadened, and dis-
appeared at 130 °C. In contrast, the 110 and 200 diffractions due
2434 | Chem. Sci., 2023, 14, 2431–2440
to the 2D hexagonal triptycene array were maintained up to
130 °C. Although further heating resulted in a gradual decrease
in intensity of these peaks, the 110 diffraction was still detect-
able even at 160 °C, and it eventually disappeared at 170 °C. The
changes in 2D hexagonal lattice parameter a and 1D layer
spacing c with increasing temperature (Fig. 5b and c) represent
well the difference in thermal stability between the 2D and 1D
structural orders of the 1,8,13-Trip-PDMS assembly. Since the
VT-XRD proles observed upon heating (Fig. 5) and cooling
(Fig. S21†) are almost identical, the structuring of 1,8,13-Trip-
PDMS is thermally reversible.

Rheological measurements revealed the relationship
between the structure and mechanical properties of 1,8,13-Trip-
PDMS. The frequency-dependence of storage (G′) and loss (G′′)
moduli of 1,8,13-Trip-PDMS at 30 °C (Fig. 6a)39 displayed that
the G′ values are at a plateau and at a much higher level than the
G′′ values over the entire range of frequency examined,
© 2023 The Author(s). Published by the Royal Society of Chemistry
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conrming the solid nature of 1,8,13-Trip-PDMS. Fig. 6b shows
the temperature-dependence of G′ and G′′ of 1,8,13-Trip-PDMS
at a frequency of 1.0 Hz.40 In a temperature range of 30–90 °C,
the G′ values are signicantly higher than the G′′ values,
meaning that 1,8,13-Trip-PDMS can maintain its mechanical
properties as a shape-persistent solid material. At a temperature
range of 100–120 °C, the G′ values drop to a level similar to the
G′′ values, and both decrease rapidly with increasing tempera-
ture. Above 130 °C, the G′′ values become higher than the G′

values, and above 170 °C, both G′ and G′′ values dramatically
decrease to ∼100 Pa as the polymer turns to an isotropic liquid.

Based on the results from the XRD and rheological
measurements, we here provide the most plausible scenario
that can correlate the structures and rheological properties of
1,8,13-Trip-PDMS in Stages 1–4 (Fig. 7). In the temperature
region of Stage 1 (pastel blue), the 2D + 1D structure remains
intact. Upon transition to Stage 2 (pastel green), the 1D layer
spacing is increased by thermal expansion of the PDMS
domain, whereas the structural integrity of the 2D hexagonal
array is still maintained, indicating that anisotropic thermal
expansion occurs at a nanoscopic scale. Considering that the
thermal expansion coefficient of PDMS is approximately
300 ppm K−1,41 the change in the layer spacing of the 1D
lamellar in Stage 2 with increasing temperature appears to be
too large (Fig. 5c). Most likely, the 2D triptycene array partially
collapses, resulting in the large expansion of the 1D lamellar
Fig. 6 Rheological properties of 1,8,13-Trip-PDMS. (a) Frequency-
dependance of G′ and G′′ at 30 °C. (b) Temperature-dependance of G′

andG′′ at 1.0 Hz. The temperature ranges of the four Stages are pastel-
color coded blue, green, yellow and red, respectively.

Fig. 7 (a–d) Schematic illustration of the assembly structures and
viscoelastic properties of 1,8,13-Trip-PDMS associated with the
sequential structural change.

© 2023 The Author(s). Published by the Royal Society of Chemistry
spacing. In fact, the temperature-dependence of the XRD
diffraction intensity from the (110) plane of 1,8,13-Trip-PDMS
showed a gradual decrease with increasing temperature
(Fig. S20†), indicating that the crystallite coherent length of the
2D triptycene array decreased. When the 2D triptycene array,
which serves as a “wall” to accommodate the amorphous PDMS
domain, partially collapses upon heating, the motility of the
PDMS chain increases further, expanding the interlayer
Chem. Sci., 2023, 14, 2431–2440 | 2435
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spacing. In Stage 3 (pastel yellow), the 1D lamellar structure
completely disappears. Even in this stage, the 2D hexagonal
structure of the triptycene units persists. However, above 160 °
C, it collapses into an isotropic liquid. While the assembly
structure and thermal behavior of 1,8,13-Trip-PDMS are virtu-
ally identical to those of previously reported 1,8-Trip-PDMS, the
temperature at which each structural change occurs is largely
shied to a much higher region. The observation that a slight
chemical modication of only two terminal triptycene units can
result in such large structural robustness and thermal stability,
along with a change in the material state from a viscous solid
(Fig. 1c) to a hard solid (Fig. 1d), was far beyond our expectation.

It is also interesting to note the correlation between the
temperature region where G′ drops to the level of G′′ and even-
tually reverses, and the structural changes characterized by
XRD. We had thought that the elastic properties of 1,8,13-Trip-
PDMS were mainly due to the 2D triptycene array. However,
considering the fact that such rheological behavior is observed
in the temperature range where the 2D array remains but long-
range 1D order disappears, the 1D lamellar structure plays
a vital role in the elastic properties of the polymer. Importantly,
the thermal and rheological properties of 1,8,13-Trip-PDMS
were completely reversible in a heating/cooling cycle,
providing 1,8,13-Trip-PDMS with a thermoplastic nature.
Fig. 8 Molecular dipole moments (blue arrows) of (a) 1,8,13-trime-
thoxy and (b) 1,8-dimethoxy triptycenes obtained by DFT calculations.
Models of the assembly structures of (c) 1,8,13-trimethoxy and (d) 1,8-
dimethoxy triptycenes, where the dipole moment of each molecule is
denoted with a blue arrow.
Comparison of previously reported thermoplastic PDMSs and
1,8,13-Trip-PDMS

Thermoplastic PDMSs have previously been developed using an
ABA-type triblock copolymer system consisting of hard isotactic
polystyrene segments (A) with a large volume fraction (>37 wt%)
to the PDMS segment (B),42 a telechelic polymer or random
copolymer system having multiple functional groups capable of
strong non-covalent interactions such as hydrogen bonding12 or
ionic interactions.43,44 Very recently, Yao et al. reported inter-
esting results,12 which demonstrate that PDMS, bearing ure-
idocytosine (UCy) units with strong multiple-hydrogen bonding
and p-stacking ability at both termini, can form an extensive
non-covalent network to achieve excellent thermo-mechanical
properties. The key design concept is that the enthalpic gains
from the aggregation of the UCy units can compensate for the
entropic loss from redistribution of the PDMS chains and
stabilize the non-covalent networks over a wide temperature
range.

Polymers with molecular units that undergo non-covalent 1 :
1 association at both termini can form linear supramolecular
polymers.1–9 In contrast, terminal functionalization using
molecular units that enable non-covalent 1 : n (n > 2) association
would, in principle, give rise to supramolecular polymers with
a highly branched polymer chain, resulting in the formation of
a non-covalent network structure. As demonstrated by Yao
et al.,12 the formation of such a polymer network would be
critical for achieving a dramatic improvement in the mechan-
ical and thermal properties of polymer assemblies. In light of
this notion, the 1,8,13-Trip motif is a new class of terminal
group, which features the ability to assemble into an innite
and ordered 2D assembly, in which numerous triptycene
2436 | Chem. Sci., 2023, 14, 2431–2440
molecules are engaged, thereby allowing for the formation of
polymer chain networks. Furthermore, the polymer chains in
the network can align into a higher hierarchical structure with
long-range 1D periodic order. Although the triptycene motif
does not appear to exhibit strong intermolecular interactions,
the formation of the innite 2D hexagonal array of numerous
triptycene molecules results in an enthalpy gain sufficient to
compensate for the entropy loss of the PDMS chain even at
a high temperature. Therefore, 1,8,13-Trip-PDMS can remain in
the solid state over a wide temperature range. The difference in
structural and thermal properties between previously reported
1,8-Trip-PDMS and the present polymer reects the integrity of
their assembly structures at the monomer level. This is clearly
represented by the large difference in melting point: 232 °C and
134 °C for 1,8,13-Trip and 1,8-Trip, respectively.29

Why can the replacement of a hydrogen with a methoxy
group at the 13-position of triptycene cause such a remarkable
change in the polymer properties? Recent studies suggest that
the dipole moment plays a crucial role in the self-assembly of
organic molecules and polymers.45–48 In the 2D hexagonal arrays
of 1,8,13-Trip-PDMS and 1,8-Trip-PDMS, the terminal triptycene
units most likely adopt antiparallel packing to cancel their
molecular dipole moments.29 According to density functional
theory (DFT) calculations using 1,8,13-trimethoxy triptycene
and 1,8-dimethoxy triptycene as models (Tables S2 and S3†), the
magnitude of the dipole moments of the former (1.893 D) and
latter (1.887 D) are comparable to one another, whereas their
orientations with respect to the molecular axis (c-axis) are
different (Fig. 8a and b, blue arrows). Fig. 8c and d shows 3D
models of the 2D hexagonal packing of 1,8,13-trimethoxy and
1,8-dimethoxy triptycenes with an anti-parallel orientation. The
dipole moment of 1,8,13-trimethoxy triptycene can be
completely negated in the 2D hexagonal array, thereby rein-
forcing the structural integrity. However, this does not hold true
for 1,8-dimethoxy triptycene, where dipole frustrations may be
© 2023 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2sc05491d


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
Ja

nu
ar

y 
20

23
. D

ow
nl

oa
de

d 
on

 1
/2

4/
20

25
 7

:5
1:

59
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
caused. Thus, the 2D hexagonal array of 1,8,13-trimethoxy
triptycene would be more thermodynamically stable than that
of 1,8-dimethoxy triptycene.

This is clearly reected in the large difference in their
melting points and might explain why, despite numerous
attempts, we have not yet succeeded in obtaining single crystals
from the 1,8-disubstituted triptycene derivatives we have
synthesized so far. We have begun precise molecular dynamics
simulations to better understand the structural aspects of the
triptycene derivatives, and the results will be reported in the
future.
Self-healing properties of 1,8,13-Trip-PDMS

Due to its non-covalently crosslinked nature, 1,8,13-Trip-PDMS
exhibits self-healing and recyclability. Thus, cracks on a free-
standing lm of 1,8,13-Trip-PDMS healed upon heating,
Fig. 9 Microscopic images showing the self-healing behavior of
a cracked 1,8,13-Trip-PDMS sample at (a) 90 °C, (b) 100 °C and (c) 110 °
C (scale bars = 200 mm). Photographs of (d) a dumbbell-shape sample
of 1,8,13-Trip-PDMS after being (d) cut with a knife, (e) self-healed at
100 °C for 5 minutes and (f) a photograph of the broken sample after
tensile measurement. Scale bars = 5 mm. (g) Stress–strain curves at
25 °C of pristine (black) and self-healed (red) samples of 1,8,13-Trip-
PDMS and (h) of pristine (black) and reproduced (blue) samples of
1,8,13-Trip-PDMS.

© 2023 The Author(s). Published by the Royal Society of Chemistry
where the time to repair depended on the temperature; for
instance, 90, 5 and 2 minutes at 90, 100 and 110 °C, respectively
(Fig. 9a–c). The higher the temperature, the larger the move-
ment of the polymer chains, thereby promoting faster recon-
struction of the 2D triptycene arrays, so that the self-healing is
completed in a shorter time.

We performed tensile measurements to test the mechanical
properties of a lm before and aer self-healing (Fig. 9d–g). A
dumbbell-shape lm sample was prepared by punching a free-
standing lm prepared by casting a chloroform solution of
1,8,13-Trip-PDMS (100 mg mL−1) onto a Teon sheet. The
sample was cut by a knife (Fig. 9d), healed at 100 °C for 5
minutes (Fig. 9e), and then subjected to tensile tests.

The pristine sample showed a Young's modulus of 1.75 MPa,
breaking strength of 0.12 MPa, and breaking elongation of 21%
(Fig. 9g, black curve). Aer healing, these parameters were
determined to be 1.90 MPa, 0.12 MPa and 16%, respectively
(Fig. 9g, red curve). Obviously, the mechanical properties of the
lm are almost fully recovered aer healing. Note that the
broken part of the sample aer the tensile measurement is
different from the healed part (Fig. 9f), indicating an excellent
self-healing ability. When a damaged sample was dissolved
again in chloroform, and a dumbbell-shape sample was repro-
duced, the resulting sample displayed stress–strain curves
(Fig. 9h, blue curve) almost identical to those observed for
a pristine sample (Fig. 9h, black curve).

Conclusions

We have presented how a seemingly slight chemical modica-
tion of a macromolecular entity can lead to surprisingly large
changes in structural and physical properties. In fact, the
weight fraction of methoxy groups introduced into the tripty-
cene termini is only ∼0.3 wt% with respect to the weight of the
entire PDMS molecule (1,8,13-Trip-PDMS). Moreover, unlike
multiple hydrogen bonding motifs, the methoxy group, and
even the triptycene unit itself, is not expected to exhibit any
strong intermolecular interactions. The fact that the 1,8,13-
substituted triptycene (1,8,13-Trip) attached to both termini of
PDMS can make the inherently liquid polymer a hard solid
without covalent cross-linking, as well as can result in
a morphology that is reminiscent of a phase-separated structure
of a block copolymer, unique rheological properties such as
thermoplasticity and self-healing properties, all have the same
origin; the ability of the terminal triptycene unit to assemble
into a well-dened 2D hexagonal array, to densely network the
PDMS chains and to force the domains of the networked PDMS
chains to align into a long-range 1D periodic order. From
a wider perspective, even without using particular functional
groups capable of exhibiting strong intermolecular interaction,
if a plane, in which a large number of molecules are engaged, is
created, sufficient enthalpy could be gained to overcome the
entropy loss associated with the decrease in the degrees of
freedom of the polymer chain, and in turn, a signicant
improvement in the mechanical properties of polymeric mate-
rials could be achieved. The 1,8,13-substituted triptycene motif,
which functions to suppress the mobility of uidic polymer
Chem. Sci., 2023, 14, 2431–2440 | 2437
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chains by making a plane, may be applicable to other polymers,
not only for improving their mechanical properties but also for
controlling their assembly morphology for the use of, e.g.,
nanopatterning.
Experimental section
Materials

Unless otherwise stated, all commercial reagents were used as
received. Hydride-terminated polydimethylsiloxanes (H-PDMS)
with Mn = 18 kDa (Product #: 482064) were purchased from
Sigma Aldrich Merck. 1,8,13-Trihydroxytriptycene (1)30 was
prepared according to previously reported procedures.
Methods

Analytical SEC was performed at 40 °C on a TOSOH GPC-8020
system equipped with a column (Shodex LF-804), a refraction
index (RI) detector and a UV detector (UV-8020), where chloro-
form (CHCl3) was used as an eluent at a ow rate of 0.40
mL min−1. A molecular weight calibration curve was obtained
using standard polystyrenes (TSKstandard polystyrene,
TOSOH). NMR spectroscopy measurements were carried out on
a Bruker AVANCE-500 spectrometer (500 MHz for 1H and 126
MHz for 13C). Chemical shis (d) are expressed relative to the
resonances of the residual non-deuterated solvents for 1H
[CDCl3:

1H(d) = 7.26 ppm, acetone-d6:
1H(d) = 2.05 ppm] and

13C{1H} [CDCl3:
13C(d) = 77.16 ppm, acetone-d6:

13C(d) = 29.8
and 206.3 ppm]. Absolute values of the coupling constants are
given in Hertz (Hz), regardless of their sign. Multiplicities are
abbreviated as singlet (s), doublet (d), triplet (t) and multiplet
(m). Infrared (IR) spectra were recorded at 25 °C on a JASCO FT/
IR-6600ST Fourier-transform infrared spectrometer. High-
resolution APCI-TOF mass spectrometry measurements were
performed on a Bruker microTOF II mass spectrometer equip-
ped with an atmospheric pressure chemical ionization (APCI)
probe. DSCmeasurements were carried out on aMettler–Toledo
DSC 1 differential scanning calorimeter, where temperature and
enthalpy were calibrated with in (430 K, 3.3 J mol−1) and Zn
(692.7 K, 12 J mol−1) standard samples in sealed Al pans.
Cooling and heating proles were recorded and analyzed using
the Mettler–Toledo STARe soware system. Thermogravimetric
analysis (TGA) was performed on a SHIMADZU TGA-50 analyzer.
Rheological measurements were performed on an Anton Paar
MCR102 rotational rheometer equipped with a parallel-plate-
type jig with a diameter of 2 cm and a sample gap of 300 mm.
Prior to the rheological measurements, samples were heated at
200 °C for 10 min, and the data were obtained on cooling from
200 to 30 °C under a strain of 0.1%. Variable-temperature
powder XRD of polymer samples were measured in a glass
capillary with a diameter of 1.5 mm using a Rigaku NANOPIX
equipped with a HyPix-6000 (Rigaku) detector. The scattering
vector (q = 4p sin q/l), scattering angle q and the position of the
incident X-ray beam on the detectors were calibrated using
several orders of layer reections from silver behenate (d =

58.380 Å), where l refers to the wavelength of the X-ray beam
(Cu Ka, 1.54 Å). The sample-to-detector distance was ca. 90 mm.
2438 | Chem. Sci., 2023, 14, 2431–2440
The obtained diffraction patterns were integrated along the
Debye–Scherrer ring to afford 1D intensity data using the
Rigaku 2DP soware. The cell parameters were rened using
CellCalc ver. 2.10 soware. For the self-healing test, optical
microscopy (OM) was performed on a Nikon Eclipse LV100POL
optical polarizing microscope equipped with a Mettler–Toledo
HS1 controller attached to a HS82 hot stage. Atomic force
microscopy (AFM) measurements of the thin-lm of 1,8,13-Trip-
PDMS were performed on a Bruker Dimension Icon atomic
force microscope operated in tapping mode using a silicon
cantilever tip (OMCL-AC160TS, Olympus Corp., Japan) with
a nominal tip radius of 7 nm. Experiment data were obtained by
a NanoScope V controller with a NanoScope soware 9.7, and
further analyzed using NanoScope Analysis 2.0 soware. The
thin-lm sample of 1,8,13-Trip-PDMS for AFM measurement
was prepared by spin-coating (1000 rpm, 2 min) on the silicon
wafer from THF solution (10 mg mL−1), heated at 200 °C under
vacuum, and then cooled at a rate of 1 °C min−1. Tensile
measurement was carried out using an INSTRON universal
testingmachine (6800 Single Column Table Model) with a 250 N
load cell at a strain rate of 0.5 mm min−1 at 25 °C. Density
functional theory (DFT) calculations were performed using the
Gaussian 16 program package.49 Geometry optimization and
calculation of the dipole moment were performed at the B3LYP/
6-31G(d) level of calculations. The Cartesian coordinates and
energy of the optimized structure are listed in Tables S2 and
S3.†

Data availability

All experimental data associated with this work are available in
the ESI.†
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