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umber of measurements for
vibrational structure on quantum computers:
coordinates and measurement schemes

Marco Majland, *abc Rasmus Berg Jensen, bc Mads Greisen Højlund, c

Nikolaj Thomas Zinner ab and Ove Christiansen *ac

One of the primary challenges prohibiting demonstrations of practical quantum advantages for near-term

devices amounts to excessive measurement overheads for estimating relevant physical quantities such as

ground state energies. However, with major differences between the electronic and vibrational

structures of molecules, the question of how the resource requirements of computing anharmonic,

vibrational states can be reduced remains relatively unexplored compared to its electronic counterpart.

Importantly, bosonic commutation relations, distinguishable Hilbert spaces and vibrational coordinates

allow manipulations of the vibrational system that can be exploited to minimize resource requirements.

In this work, we investigate the impact of different coordinate systems and measurement schemes on

the number of measurements needed to estimate anharmonic, vibrational states for a variety of three-

mode (six-mode) molecules. We demonstrate an average of 3-fold (1.5-fold), with up to 7-fold (2.5-fold),

reduction in the number of measurements required by employing appropriate coordinate

transformations, based on an automized construction of qubit Hamiltonians from a conventional

vibrational structure program.
I. Introduction

The simulation of many-body quantum systems on quantum
computers is a promising candidate to achieve computational
advantages in both academic and practical applications.1–4

However, current quantum devices are subject to noise and
errors to a degree that restricts the available computational
resources. While practical quantum advantages are yet to be
demonstrated, hybrid quantum-classical algorithms such as the
variational quantum eigensolver (VQE) are expected to provide
such demonstrations.5–9 The electronic structure problem on
quantum computers has in recent years been investigated
greatly while the vibrational structure problem remains rela-
tively unexplored.10–13 Importantly, it has been suggested that
classically intractable vibrational structure problems may be
solved on quantum computers prior to their electronic equiva-
lents.10 Estimating eigenstates of many-body Hamiltonians
using the VQE requires the sampling of expectation values of
Pauli operators with a trial state. However, it has been shown
empirically that the estimation of the electronic ground state of
small molecules to chemical accuracy requires infeasible
mark

arhus University, DK-8000, Aarhus C,

y, DK-8000, Aarhus C, Denmark. E-mail:

the Royal Society of Chemistry
runtimes due to sampling overhead, which is called the
measurement problem.14,15 Different measurement schemes
have been employed to reduce the sampling overhead,
including the grouping of Pauli products into mutually
commuting sets,16–25 classical shadow tomography,26–29 low-rank
factorizations of the electronic Hamiltonian30 and algebraic
approaches.31 Current studies have however only investigated
electronic Hamiltonians. The impact of measurement schemes
on the measurement problem therefore remains relatively
unexplored in the context of vibrational structure.14 In contrast
to the two-body electronic Hamiltonian, the many-body vibra-
tional Hamiltonian contains up to N-body coupling terms
between the vibrational modes and depends on the choice of
vibrational coordinates. The choice of coordinate system
impacts the vibrational interactions and may be exploited to
obtain approximate mode decoupling. Such a decoupling
affects the distribution of small and large terms, which in
favorable cases decreases the importance of high-mode
coupling terms. This can be seen as better decoupling of coor-
dinates and fewer very important terms, but as all terms are
effected, this does not necessarily imply optimal variances. In
this paper, we investigate the impact of different measurement
schemes and coordinate systems on the number of measure-
ments needed to estimate the ground state of a variety of three-
and six-mode molecules. The runtime of a ground state calcu-
lation depends on the number of measurements required to
estimate the ground state energy, which is determined by the
Chem. Sci., 2023, 14, 7733–7742 | 7733
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variance of the Hamiltonian. We therefore study the required
number of measurements and demonstrate an average of 3-fold
(1.5-fold), with up to 7-fold (2.5-fold), reduction in this number
using appropriate coordinate transformations. These results are
obtained using state of the art vibrational structure potential
energy surfaces (PESs) and anharmonic wave function compu-
tations and an automized construction of qubit Hamiltonians
from a conventional vibrational structure program.
II. Background
II.A Sampling expectation values

Consider a qubit Hamiltonian H ¼PihiPi; where hi denotes
matrix elements and

Pi ¼ 5
j
sa
j ; a˛fx; y; zg; (1)

denotes a product of Pauli operators. In the VQE, the ground
state energy functional is estimated as the expectation value of
the Hamiltonian with a trial state jj(q)i,

EðqÞ ¼ hjðqÞjHjjðqÞi ¼
X
i

hihjðqÞjPijjðqÞi: (2)

To reduce the number of measurements, the Hamiltonian
may be grouped into mutually commuting sets

S ¼
(
Ha ¼

X
b

Hb
a

���Hb
a ;H

g
a

� ¼ 0

)
(3)

such that H ¼PaHa: Each set, Ha, may be rotated into a diag-
onal basis and the operators of the set measured simulta-
neously. Let ma denote the number of measurements required
to estimate the energy contribution from Ha and M ¼Pama

the total number of measurements. By optimizing {ma} the
number of measurements required for a given precision 3 reads

M ¼
 P

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðHaÞ

p
e

!2

(4)

if ma are optimally allocated for each group.18 With the total
number of measurements depending on the variance of each
group, the measurements may be optimized by optimizing the
total group variances.
II.B Measurement schemes

Qubit-space measurement schemes group mutually commuting
Pauli products into measurable sets according to either qubit-
wise commutativity (QWC) or full commutativity
(FC).16–18,20,21,24,32 In the QWC scheme, the Pauli products
commute locally for each qubit subspace, whereas the FC
scheme only requires commutativity of the full tensor products.
It is important to note that the commutativity scheme alone (i.e.
QWC or FC) does not dene an algorithm for grouping operator
terms. For deniteness, we consider the sorted insertion (SI)
approach18,22 in combination with QWC or FC and denote the
resulting algorithms as SI/QWC and SI/FC, respectively. In the
SI approach one starts by ordering the operator terms (Pauli
7734 | Chem. Sci., 2023, 14, 7733–7742
strings) in decreasing order according to the absolute value of
their coefficients. The term with the largest coefficient is added
to the rst group. The algorithm then iterates through the
remaining terms, which are added to the rst group if they
commute (in the QWC or FC sense) with all other terms in that
group. When all terms have been checked, the algorithm starts
over by generating a second group and so on until no terms are
le. Despite its simplicity, the SI algorithm has been demon-
strated to outperform recent classical shadow tomographic
methods.18 Thus, the SI algorithm will be used in this work.

The qubit-wise commutativity of two terms implies that the
terms commute fully, although the converse is not true. In that
sense, QWC can be said to form a subset of FC. It should
however be kept in mind that the algorithms SI/QWC and SI/FC
will generally produce different groupings of a given set of
operator terms.

Aer grouping the operator terms, each group is diagonal-
ized. In the QWC case, the diagonalization can be performed
using only one-qubit gates, while the FC case will generally
require both one- and two-qubit gates. The QWC scheme thus
has a prima facie advantage in terms of circuit depth. For
electronic Hamiltonians it has however been shown that this
advantage is outweighed by other factors making the FC scheme
preferable18,19 in that case.
III. Vibrational structure
III.A Vibrational Hamiltonian and potential energy surfaces

Consider a molecule with M vibrational modes described by
a set of mass-weighted normal coordinates (NCs) (or other
orthogonal coordinates) qm. Neglecting the Coriolis and pseu-
dopotential terms of the Watson operator,33,34 the vibrational
Hamiltonian reads

H ¼ �1

2

XM
m¼1

v2

vqm2
þ
XM
m¼1

VðqmÞ þ
XM
m\m

0
Vðqm; qm0 Þ þ. (5)

where the potential in principle contains terms coupling up to
Mmodes simultaneously. The PES, i.e. the vibrational potential,
may be obtained using a variety of methods, e.g. using Taylor
expansion or the adaptive density-guided approach (ADGA).35 A
Taylor expansion of the PESs around the equilibrium geometry
provides the PESs in an economical form but suffers from the
limited reliability of such expansions including limited radius
of convergence and high risk of providing a variationally
unbound potential. In contrast, the ADGA is a robust and
accurate black-box procedure, which builds the potential
according to the need as determined from a vibrational calcu-
lation. The ADGA uses very inexpensive vibrational self-
consistent eld densities to iteratively sample the surface in
a physically motivated way. The PES construction is thereby
independent of the following correlated vibrational wave func-
tion computation, which is our main focus. Aer generating the
PESs, the vibrational Hamiltonian may be transformed into
a qubit Hamiltonian using existing encoding algorithms.11–13

III.A.1 Vibrational coordinates. A standard choice of coor-
dinates is NCs which provide excellent rst order insights into
© 2023 The Author(s). Published by the Royal Society of Chemistry
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the vibrations of stiff molecules close to their equilibrium
structures. The benet of NCs for stiff molecules close to their
equilibrium structures is that they decouple the Hamiltonian to
second order in distortions from the equilibrium structure.
However, the use of NCs does not suppress higher-order terms
(in fact, the contrary might be true away from equilibrium). This
motivates the search for other types of coordinates that ensure
some degree of decoupling of the Hamiltonian. Such coordi-
nates include various kinds of curvilinear coordinates (e.g. bond
angles and lengths or polyspherical coordinates), which are
oen deemed chemically relevant. These coordinates typically
reduce the couplings in the potential energy at the price of
increasing the coupling level and overall complexity of the
kinetic energy. To avoid this latter complication, we focus on
rectilinear coordinates that are derived from NCs by orthogonal
transformations. All such coordinates are uniquely dened by
a rectangular matrix Q with orthogonal columns that contains
expansion coefficients in terms of mass weighted Cartesian
displacements (see Appendix A). They include optimized coor-
dinates36,37 obtained by minimizing the vibrational self-
consistent eld (VSCF) energy for a given PES and localized
coordinates38 obtained by applying some localization scheme to
a set of NCs. A pragmatic and inexpensive compromise is
offered by the so-called hybrid optimized and localized coor-
dinates (HOLCs),39whichminimize a cost function including an
energy term and a localization term:

QHOLC ¼ argmin
Q

ðwEEðQÞ þ wLLðQÞÞ (6)

here, Q is varied over matrices that are related to the normal
coordinate matrix QNC by orthogonal transformations. The
energy term E(Q) is taken to be the VSCF energy for a second-
order Taylor approximation of the PES. This energy depends
on the choice of coordinates, as indicated. The localization term
(penalty term) L(Q) can be dened in various ways (we use the
simple localization scheme described in ref. 39; see Appendix A
for details). We note that setting wL = 0 yields NCs, while a large
value ofwL yields very localized (but not necessarily meaningful)
coordinates. We emphasize the fact that, as was mentioned in
the introduction, approximate decoupling of the Hamiltonian
does not necessarily provide optimal variances.

III.A.2 Distinguishability of vibrational modes. Since
vibrational modes are distinguishable (in constrast to elec-
trons), the vibrational Hilbert space factorizes into distin-
guishable one-mode subspaces. This factorization allows for
further grouping schemes that are not accesible to electronic
Hamiltonians. To see this, we write the vibrational Hamiltonian
as

H ¼
X
m˛M

Hm; Hm ¼
X
i

~H
m

i : (7)

The sum runs over sets of modes ðmÞ; which we denote as
mode combinations (MCs), and the set of all MCs ðMÞ is
referred to as the mode combination range (MCR). The operator
Hm is the sum of all terms that act non-trivially on the modes
contained in m: Consider, for example, the operators
© 2023 The Author(s). Published by the Royal Society of Chemistry
~H
ð0;1Þ ¼ A05A1515151 and ~H

ð2;3;4Þ ¼ 1515A25A35A4:
Since the MCs (0,1) and (2,3,4) are disjoint (non-overlapping),
the operators commute trivially. However, operators within
the same MC do not generally commute. We thus propose the
following grouping scheme: rst, non-overlapping MCs are
combined into larger batches of terms. Then, each such batch is
grouped in a trivially parallel fashion using either SI/QWC or SI/
FC. The resulting algorithms are denoted as SI/QWC/MCR and
SI/FC/MCR, respectively. Although the MC logic does not solve
the grouping problem on its own, it provides a sensible scheme
that cheaply divide the problem into batches of subproblems
(see Appendix B for an example).

Note that the MC based commutativity is included in QWC
and FC but that the concrete algorithms (SI/QWC/MCR and SI/
FC/MCR) will generally result in different groups compared to
SI/QWC and SI/FC.

IV. Computational details

A total of 18 molecules were considered, including nine
triatomic (three-mode) systems and nine tetratomic (six-mode)
systems. All electronic structure calculations were performed at
the CCSD(F12*)(T)/cc-pVDZ-F12 level40,41 of theory as imple-
mented in the Turbomole42 program suite. The geometry of
each molecule was optimized using numerical gradients, aer
which a numerical Hessian was computed and used to generate
NCs and HOLCs with a series of localization parameters, wL.
Coordinate generation was performed using the MidasCpp
program,43 which was also used to construct electronic PESs
with the ADGA algorithm for each coordinate set as well as VSCF
and full vibrational conguration interaction (FVCI) computa-
tions. Following the PES construction, VSCF calculations were
carried out in large B-spline bases. The resulting VSCF modals
were then used as a basis in conventional FVCI calculations. We
studied the convergence of the FVCI energy in terms of the
number of VSCF modals and found that four (three) modals
recovered a large fraction of the FVCI correlation energy for the
three-mode (six-mode) systems (see Appendix C for details).
These bases were therefore chosen as a good balance between
accuracy and CPU-time for the variance computations, which is
the computational bottleneck of our locally developed Python3
code for this purpose. Having determined appropriate basis
sizes, the Hamiltonians were represented in a suitable format,
a process that is fully automatized within MidasCpp (see
Appendix D for a few considerations in this regard). The
Hamiltonian and the FVCI wave functions were nally trans-
formed to a qubit representation and the variance computed
using the aforementioned variance code. A direct encoding was
used due to its simplicity. We note that several encoding
methods other than the direct mapping have been studied. In
particular, compact encodings allow a reduction in the number
of qubits which, depending on the problem, either decrease or
increase circuit depths.11 In this preliminary study, however, we
focus on the direct mapping. For each molecule and coordinate
system, the measurement groups were generated using the SI/
QWC, SI/FC, SI/QWC/MCR and SI/FC/MCR algorithms as
described in Sections II.B and III.A.2 respectively.
Chem. Sci., 2023, 14, 7733–7742 | 7735
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V. Results

We initially consider the SI/QWC and SI/FC algorithms for each
molecule and each set of coordinates. Selecting the smaller of
the two variances (SI/QWC or SI/FC), Fig. 1 and 2 are obtained.
Almost all molecules exhibit the largest variances for strongly
localized coordinates with localization parameter wL = 1.0 ×

10−3. Such behaviour is not surprising, since strongly localized
coordinates are not necessarily physically meaningful. Locali-
zation of coordinates yields a smaller variance for some of the
molecules but not all, and as such no choice of coordinates is
systematically better than the others.
Fig. 2 Variances of the three-mode molecules normalized relative to
the minimum variance for all coordinate systems. For each coordinate
system, the variance depicted is the optimal variance considering both
the SI/QWC and SI/FC algorithm. Each HOLC coordinate system is
represented by its localization parameter wL and NC refers to normal
coordinates (equivalent to wL = 0). Note the broken first axis that
places the NC data points alongside the HOLC data.
V.A Invariance and reductions

To further estimate the impact of coordinate transformations,
two ratios are studied. Using the data displayed in Fig. 1 and 2
the lowest and highest variance is calculated for each molecule
with wL = 1.0 × 10−3 excluded as it is vastly inferior for most of
the molecules. The rst ratio compares the lowest and highest
of these variances,

r ¼ maximum variance

minimum variance
; (8)

while the second ratio compares the variance of NCs to the
minimum variance,

rNC ¼ NC variance

minimum variance
(9)

That is for NOF the ratio r is that of the variances at wL =

5.0 × 10−3 and wL = 5.0 × 10−5, as these are the maximum and
minimum variances for the molecule when excluding the
Fig. 1 Variances of the three-mode molecules normalized relative to
the minimum variance for all coordinate systems. For each coordinate
system, the variance depicted is the optimal variance considering both
the SI/QWC and SI/FC algorithms. Each HOLC coordinate system is
represented by its localization parameter wL and NC refers to normal
coordinates (equivalent to wL = 0). Note the broken first axis that
places the NC data points alongside the HOLC data.

7736 | Chem. Sci., 2023, 14, 7733–7742
consistently unfavourable wL = 1.0 × 10−3 data point. Likewise
rNC is variance ratio of NCs to wL = 5.0 × 10−5.

If rNC > 1, NCs provide a larger variance compared to HOLCs
and thus HOLCs are preferential. In contrast, if rNC = 1, NCs
provide a smaller variance compared to HOLCs and thus NCs
are preferential. r therefore serves as a measure of the overall
impact on variance of coordinate transformation, whereas rNC
measures the extent to which HOLCs improve the variance
compared to NCs. These reductions measures are depicted in
Fig. 3 and 4.
Fig. 3 The ratio for the three-mode molecules between the variances
of the worst and best choice of coordinates [eqn (8)] in blue diamonds,
along with the ratio between the variances of the optimal choice of
coordinates and NCs [eqn (9)] in black dots. All coordinate systems are
compared excluding the localization parameter wL = 1.0 × 10−3 since
these coordinates were inferior for all molecules.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 The ratio for the six-mode molecules between the variances of
the worst and best choice of coordinates [eqn (8)] in blue diamonds,
along with the ratio between the variances of the optimal choice of
coordinates and NCs [eqn (9)] in black dots. All coordinate systems are
compared excluding the localization parameter wL = 1.0 × 10−3 since
these coordinates were inferior for all molecules.
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The mean reduction for the three-mode (six-mode) mole-
cules is around 3 (1.5) with relatively large standard deviations.
The largest improvements for the three-mode (six-mode)
molecules amounts to around a 7-fold (2.5-fold) reduction.
Meanwhile, some of the molecules exhibit approximate invari-
ance under reasonable coordinate transformations (r close to 1).
V.B Molecular symmetry

We see no clear pattern relating to point group symmetry as
exemplied by themolecules O3 and S3. Despite being extremely
similar with respect to symmetry and structure, they behave
quite differently with respect to the computed variances (see
Fig. 5 Variances of the three-modemolecules for each grouping scheme
their localization parameter wL, with NC denoting normal coordinates (e
points alongside the HOLC data. All grouping schemes employ sorted
general, using sorted insertion for all terms (not using MCR groupin
commutativity schemes is small.

© 2023 The Author(s). Published by the Royal Society of Chemistry
Fig. 1, 3 and 5). These results highlight the complexity of the
interdependence between the choice of coordinates, the details
of the PES and the vibrational structure of the molecule.
V.C SI/QWC and SI/FC schemes

To study the SI/QWC and SI/FC schemes, the variances were
calculated for each measurement scheme which is depicted in
Fig. 5 and 6. In contrast to a corresponding electronic structure
study,18 no commutativity scheme systematically outperforms
the other across molecules and coordinates. In particular, no
appreciable return on investment is observed for the additional
circuit depth of FC compared to QWC. The vibrational operators
are very different from their electronic counterparts with the
electronic Hilbert space spanned by spin-orbitals and the
vibrational Hilbert space of modal basis functions. This might
explain the difference in relative performance of the SI/QWC
and SI/FC algorithms when comparing vibrational and elec-
tronic structure.

In Fig. 5 there are some signicant differences in the
performance of the two commutativity schemes, e.g. SO2 and
O3, is observed for the three-mode systems. This is however not
observed for the six-mode systems (Fig. 5), which might be due
to a peculiarity of the three-mode Hilbert space. With three
modes there is a single MC in the MCR that contains a vast
majority of all terms in the Hamiltonian. For the six-mode
systems the number of terms are more evenly distributed
among the MCs, which may explain the different observed
behaviours of the commutativity schemes as operators from two
non-overlapping MCs commute (see Section III.A.2).
V.D Vibrational heuristics for sorting

From Fig. 5 and 6 it is clear that SI/QWC and SI/FC outperform
SI/QWC/MCR and SI/FC/MCR. SI/QWC and SI/FC thus seem to
(Sections II.B and III.A.2). The HOLC coordinate systems are defined by
quivalent to wL = 0). Note the broken first axis that places the NC data
insertion with the commutator schemes indicated in the legend. In
g) produces the smallest variances and the discrepancy between

Chem. Sci., 2023, 14, 7733–7742 | 7737
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Fig. 6 Variances of the six-mode molecules for each grouping scheme (Sections II.B and III.A.2). The HOLC coordinate systems are defined by
their localization parameter wL, with NC denoting normal coordinates (equivalent to wL = 0). Note the broken first axis that places the NC data
points alongside the HOLC data. All grouping schemes employ sorted insertion with the commutator schemes indicated in the legend. In
general, using sorted insertion for all terms (not using MCR grouping) produces the smallest variances and the discrepancy between
commutativity schemes is small.

Fig. 7 The number of measurements for estimating a single energy
evaluation for each of the three-mode benchmark molecules using
the SI/QWC sorting scheme. The three-mode bases includes 4 modals
per mode.

Fig. 8 The number of measurements for estimating a single energy
evaluation for each of the six-mode benchmark molecules using the
SI/QWC sorting scheme. The six-mode bases include 3 modals per
mode.
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be the best options, which in some sense is not surprising. The
MCR methods essentially divide the set of all Hamiltonian
terms into smaller subsets, in a chemically motivated fashion.
The SI algorithm then sorts these subsets in order to obtain the
nal groups, hence the sorting is restricted, meaning that the
sorting has less exibility. For larger molecules this might
however be an advantage if the sorting overhead becomes
signicant due to the non-linear scaling of sorting algorithms.
This scaling implies that in general sorting of multiple small
sets is faster than the sorting of one large set. Additionally, the
sorting of smaller sets is trivially parallelizable in contrast to
a single sorting of the full set. As seen for S3 and FNS the MCR
methods has the potential to yield groupings of comparable
variance to plain SI hence it is possible that the MCR methods
7738 | Chem. Sci., 2023, 14, 7733–7742
might yield a faster overall time to solution for large molecules.
For the three-mode systems the vast majority of terms are
contained within the MC m ¼ ð1; 2; 3Þ; hence the potential
speed-up in group generation is negligible in this case.
However, for larger molecules, the number of combinations of
higher-order terms increase rapidly.

V.E Measurement numbers

Using the SI/QWC variances with the optimal choice of coor-
dinates, for each molecule, the number of measurements for
estimating a single energy evaluation are shown in Fig. 7 and 8.
These measurement numbers are calculated using eqn (4) with
an error of 3 = 1mEh corresponding to relevant accuracy for
vibrational structure. The number of measurements required
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 Convergence of the correlation energy with respect to the
modal basis set size for the three-mode molecules. The displayed
fraction is relative to the 10 modal computation for each molecule.
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for both the three-mode and six-mode molecules falls in the
order of magnitude range 107 to 108. That the measurement
numbers for the three- and six-mode systems are so close on
average is somewhat surprising considering the size of Hilbert
space or the number of operator terms in the Hamiltonian. The
dimensions of the Hilbert space are

D ¼ NM ¼
(

64 for M ¼ 3;N ¼ 4;
729 for M ¼ 6;N ¼ 3;

(10)

whereas the number of second quantized terms (in the format
of Appendix D) for a three-mode coupled Hamiltonian is

Nterms ¼
0
@M

3

1
AN6 þ

0
@M

2

1
AN4 þ

0
@M

1

1
AN2:

¼
8<
:

4912 for M ¼ 3; N ¼ 4;

15849 for M ¼ 6; N ¼ 3

(11)
Fig. 10 Convergence of the correlation energy with respect to the
modal basis set size for the six-mode molecules. The displayed frac-
tion is relative to the 8 modal computation for each molecule.

© 2023 The Author(s). Published by the Royal Society of Chemistry
It should, however, be recalled that the three-mode systems
are dominated by a single three-mode coupling with many
terms while the six-mode systems have a comparatively large
number of mode couplings that each contribute a relatively
small number of terms. This impacts the grouping of terms
aer the qubit transformation and, in turn, the variances and
measurement numbers. The general structures of the two Hil-
bert spaces are thus quite different, and a naive argument based
on the size of the Hilbert space or the number of operator terms
alone is not sufficient.
VI. Conclusion

In this work, we have presented different vibrational coordi-
nates that provide reductions in measurements for quantum
computations of anharmonic vibrational wave functions using
realistic potential energy surfaces (PESs). It was shown that an
average of 3-fold (1.5-fold), with up to 7-fold (2.5-fold), reduc-
tions may be achieved by appropriately transforming the
vibrational coordinates for three-mode (six-mode) molecules.
One must emphasize the size of the molecules which were used
in the benchmarks. Localized coordinates are generally
favourable for relatively large molecules for which delocalized
interactions may be negligible. Thus, localized coordinates
should be further investigated in the context of larger systems to
investigate the performance for larger molecules. Contrary to
what has been observed for electronic structure, we see no
systematic reduction in variance using the sorted insertion with
full commutativity (SI/FC) scheme compared to the sorted
insertion with qubit-wise commutativity (SI/QWC) scheme.
Such differences between electronic and vibrational structure
may arise due to the different commutation relations
(fermionic/bosonic). Additionally, the Hilbert spaces differ in
structure, with the electronic Hilbert space spanned by spin-
orbitals and the vibrational Hilbert space spanned by modal
basis functions. Combining the sorted insertion (SI) algorithm
with the grouping of non-overlapping interaction terms in the
mode combination range (MCR) algorithm (Section III.A.2) does
not provide better groupings compared to the plain SI algo-
rithm. They are however still interesting because the sorting of
multiple sets is trivially parallelizable which might be useful if
the sorting overhead becomes signicant, e.g. for large
molecules.

These results agree with previous conclusions for electronic
structure where minimizing the total number of groups does
not necessarily provide optimal variances.
VII. Appendix A: details on
coordinates

For an N-atomic molecule we introduce a 3N dimensional
column vector d containing the Cartesian displacements from
the equilibrium geometry. We likewise introduce a 3N × 3N
diagonal matrix G of atomic masses,

G = diag(M1, M1, M1,., MN, MN, MN). (A1)
Chem. Sci., 2023, 14, 7733–7742 | 7739
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A set of mass weighted displacements is then dened as d ′ =

G1/2d and forms the basis for further coordinates q via an
orthogonal transformation Q:

q = QTd ′. (A2)

Normal coordinates correspond to the choice of Q that
diagonalizes the mass weighted Hessian:

(G−1/2FG−1/2)Q = QL, (A3)

where L is the vector of eigenvalues and F is the unweighted
Hessian. Six eigenvectors (ve for linear molecules) have zero
eigenvalues and correspond to the overall rotation and trans-
lation of themolecule. These eigenvectors are not included inQ.
New rectilinear coordinates Q′ can be obtained by performing
orthogonal transformations of the Q matrix:

Q ′ = QL (A4)

here, L is an M × M orthogonal matrix, where M = (3N − 6)
(non-linear molecules) orM= (3N− 5) (linear molecules). In the
hybrid optimized and localized coordinate (HOLC) algorithm,39

L is parametrized through Jacobi sweeps. The algorithm opti-
mizes L such that the following cost function is minimized:

f(Q ′ ) = wEE(Q
′ ) + wLL(Q

′ ). (A5)

The energy term E(Q ′) is taken as the vibrational self-
consistent eld (VSCF) energy on a second-order approximate
PES, while we use an atomic localization term:

L
�
Q

0� ¼ �
XM
k¼1

XN
i¼1

ðCikÞ2 (A6)

Cik ¼
X

a¼x;y;z

�
Q

0
ia;k

�2
(A7)
VIII. Appendix B: MCR grouping for
five-mode systems

For a ve-mode system with one-, two-, and three-mode
couplings in the Hamiltonian, the grouping based on the
MCR may be obtained by grouping disjoint two- and three-body
couplings along with one-body couplings. The two- and three-
body couplings yield {H(i,j,k) + H(m,n)j(m, n)<(i, j, k)} while the
one-body couplings yield {H(i)}. An example is presented in the
following:

� S0 = {H(0,1,2), H(3,4)}

� S1 = {H(1,2,3), H(0,4)}

� S2 = {H(2,3,4), H(0,1)}

� S3 = {H(0,2,3), H(1,4)}
7740 | Chem. Sci., 2023, 14, 7733–7742
� S4 = {H(0,3,4), H(1,2)}

� S5 = {H(0,1,4), H(2,3)}

� S6 = {H(1,3,4), H(0,2)}

� S7 = {H(0,1,3), H(2,4)}

� S8 = {H(0,2,4), H(1,3)}

� S9 = {H(0), H(1), H(2), H(3), H(4)}

The terms commute since their mode couplings are disjoint.
The terms also exhibit maximal mode coupling since all modes
are active in the terms. However, the operators for each mode
coupling within anMCR do not mutually commute andmust be
diagonalized. Using the SI algorithm, each MCR group may be
decomposed into subgroups which mutually commute. The
MCR grouping for the three- and six-mode molecules studied in
this work are generated analogously to the ve-mode system.
Due to the more complex combinations for the six-mode
system, however, we present the example of a ve-mode
system for simplicity.

IX. Appendix C: modal basis set
convergence

In order to test the convergence of the modal basis set dimen-
sions, we calculate full vibrational conguration interaction
(FVCI) ground state correlation energies for up to ten (eight)
modals per mode for the three-mode (six-mode) systems. The
results are presented in Fig. 9 and 10. As can be seen, a large
fraction of the ground state correlation energies is recovered for
four (three) modals per mode for the three-mode (six-mode)
systems.

X. Appendix D: operator format

The Hamiltonian for the vibrational problem is usually repre-
sented in a sum-of-products (SOP) form,

H ¼
X
t

ct
Y
m˛mt

hm;t ¼
X
m

Hm; (D1)

where ct is the coefficient for the term indexed by t. Any given
term includes a product of one-mode operators hm,t for a set of
modes mt. The one-mode operators can be written as

hm;t ¼
X
pmqm

hm;t
pmqma

m†
pm a

m
qm : (D2)

The SOP format covers most practically relevant cases such
as Taylor expanded potentials and more elaborate polynomial
representations such as those generated by the adaptive
density-guided approach (ADGA) algorithm.35 When designing
algorithms for classical computers, it is extremely benecial to
keep the operator in the SOP form and never expand the
products of one-mode operators. However, for the purpose of
© 2023 The Author(s). Published by the Royal Society of Chemistry
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transforming the Hamiltonian into qubit format, we expand all
product into simple strings of creating and annihilation oper-
ators. As an elementary example, consider the terms pertaining
to a given two-mode combination,

Hmn ¼
X
t

cth
m;thn;t

¼
X
pmqm

X
pnqn

X
t

cth
m;t
pmqmh

n;t
pnqna

m†
pm a

m
qma

n†
pn a

n
qn

h
X
pmqm

X
pnqn

Hm;n
ðpmqmÞðpnqnÞa

m†
pm a

m
qma

n†
pn a

n
qn :

(D3)

This example is readily generalized to terms containingmore
modes. A trivial but important point is that the number of
coefficients in eqn (D3) does not depend on the number of
terms in the SOP expansion in eqn (D1).
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