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ation, validation and data-driven
prediction of enzymatic reactions

Esther Heid, *ab Daniel Probst, c William H. Green b

and Georg K. H. Madsen a

Enzymatic reactions are an ecofriendly, selective, and versatile addition, sometimes even alternative to

organic reactions for the synthesis of chemical compounds such as pharmaceuticals or fine chemicals.

To identify suitable reactions, computational models to predict the activity of enzymes on non-native

substrates, to perform retrosynthetic pathway searches, or to predict the outcomes of reactions

including regio- and stereoselectivity are becoming increasingly important. However, current

approaches are substantially hindered by the limited amount of available data, especially if balanced and

atom mapped reactions are needed and if the models feature machine learning components. We

therefore constructed a high-quality dataset (EnzymeMap) by developing a large set of correction and

validation algorithms for recorded reactions in the literature and showcase its significant positive impact

on machine learning models of retrosynthesis, forward prediction, and regioselectivity prediction,

outperforming previous approaches by a large margin. Our dataset allows for deep learning models of

enzymatic reactions with unprecedented accuracy, and is freely available online.
1 Introduction

Biocatalytic transformations are becoming increasingly impor-
tant, attractive, and accessible for the synthesis of pharmaceu-
ticals or ne chemicals.1–11 Recently, enzymatic synthesis routes
to chemicals such as 1,4-butanediol,12 branched chain higher
alcohols,13 or complex natural products such as the investiga-
tional HIV treatment islatravir,14 or the investigational antiviral
agent molnupravir15 were developed. This interest is largely
owed to the high chemo-, stereo-, and regioselectivity of
enzymes,2–5,16–18 their applicability in mild reaction conditions
and aqueous media, as well as their compatibility making the
combination of several reaction steps in a single reaction vessel
possible.3,17,19

Since enzymes can exhibit both substrate and reaction
promiscuity,20 i.e. can act on non-native substrates or catalyze
new reactions, the toolbox of possible biocatalytic trans-
formations extends well beyond reactions seen in nature. Low
catalytic activity may be increased by directed evolution.21–25

Furthermore, computer-aided de novo design of enzymes has
been reported for selected transformations,26 opening up the
possibility to design an enzyme for a given task. Enzymatic
reactions and cascades thus provide a promising eco-friendly
n, 1060 Vienna, Austria. E-mail: esther.

assachusetts Institute of Technology,

, Switzerland

the Royal Society of Chemistry
alternative to conventional synthesis pathways for a large
range of compounds.

However, compared to organic synthesis, where a huge
variety of computational tools based on heuristics and machine
learning aid the design of synthesis plans,27–37 enzymatic
synthesis tools are less common and oen limited in their
applicability and accuracy. Existing tools for bioretrosynthesis
planning,38–44 enzyme selection,45,46 and reaction rule extraction
or scoring47–49 are oen restricted by the available data, both
concerning the amount and the quality of reported reactions in
databases. Especially deep-learning-based approaches such as
reinforcement learning models,39 or transformer models43 rely
on large amounts of high-quality reaction data, which is easily
obtainable for organic reactions, but not for enzymatic reac-
tions. High-quality, curated datasets such as RHEA50 usually
only report one or a few reactions per enzyme class and are thus
small, whereas larger, uncurated databases such as BRENDA51

pose problems to resolve the provided substrate names, and
may contain unbalanced or erroneous reactions. In addition,
stereochemical aspects of enzymatic reactions are oen dis-
regarded, due to missing or erroneous entries in many data-
bases. This is a major limitation of current approaches, since
enzymatic reactions are favored especially for products con-
taining multiple stereocenters, which can be difficult to obtain
via organic reactions. Furthermore, atom mappings of enzy-
matic reactions in current databases are oen not available, and
can be tedious and error-prone to obtain, especially for
biochemical transformations. Datasets of enzymatic reactions
that include correct stereoinformation and are atom mapped,
Chem. Sci., 2023, 14, 14229–14242 | 14229
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Fig. 1 Schematic data processing pipeline to arrive at atom mapped,
balanced reaction SMILES from raw BRENDA entries. Grey boxes
represent the start and end points, purple parallelograms indicate input
or output, pink boxes represent processes, and orange diamonds pose
decision points in the pipeline.
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balanced, validated, diverse, and sufficiently large for data-
driven deep learning applications are currently not available,
severely hindering the development of new tools and models to
design enzymatic synthesis pathways. In a sense, the current
paradigm of data-driven research falls short in the eld of
enzymatic synthesis planning due to the limited size and quality
of the available data. We therefore propose to instead follow
a research-driven data approach, where the data necessary for
new developments is identied, created, and curated rst.

In this work, we obtain a broad, high-quality dataset of atom
mapped and balanced enzymatic reactions including stereo-
information by developing a large toolbox of automated reac-
tion curation and correction steps, which we apply to BRENDA
entries on natural and non-natural substrate–product pairs.
The obtained reactions comprise, to the best of our knowledge,
the currently largest atom mapped database of biocatalytic
transformations. The newly introduced Python code underlying
this study furthermore bridges several current gaps concerning
the handling of reactions, and tracking of atoms through
reactions which current packages such as RDChiral52 or RDKit53

do not address yet. We then showcase how the size and quality
of the obtained database, EnzymeMap, substantially improves
deep learning models of enzymatic reactivity for a broad range
of tasks and model architectures, leading to previously unseen
accuracies, as well as performances on par with state-of-the-art
organic synthesis planning tools. We make the full database
and processing steps freely available.
2 Methods

In the following, we describe the construction of a validated,
atom mapped database of balanced enzymatic reactions from
BRENDA entries. We then describe the details of the models
trained for retrosynthesis, forward predictions, and regiose-
lectivity prediction. The code to reproduce all processing steps
from a raw BRENDA entry to a validated, mapped reaction is
available as easy-to-use Python package at https://github.com/
hesther/enzymemap, along with the full dataset via Zenodo at
https://zenodo.org/records/8254726 (raw unmapped and
processed mapped reactions). The EnzymeMap Python
package amounts to nearly 4000 lines of code introducing
currently missing functionality for mapping reactions via
reaction rules, correcting wrong reactions, and standardizing
atom mappings, amongst many other functions. We note that
for some reactions or enzyme classes BRENDA includes
additional (uncurated) information not included in
EnzymeMap. If one is searching for more information on
a particular reaction or enzyme class such as reaction
conditions, we suggest the reader check the corresponding
BRENDA entry and the original literature sources.
2.1 Data preparation

An overview of the data processing pipeline developed in this
work is given in Fig. 1. The numbering of the individual steps
corresponds to the subsection numbering in the following. In
general, we denote molecules (substrates, products, cofactors)
14230 | Chem. Sci., 2023, 14, 14229–14242
by SMILES strings,54 and reactions by pairs of SMILES strings
separated by “[”. Enzymes were represented via their Enzyme
Commission number (EC numbers/classes), as well as (if
available) organism information and protein identiers. The EC
number is a numerical classication scheme which groups
enzymatic reactions and does not specify the specic enzyme,
its sequence or origin organism. For a given reaction we
recommend to query an enzyme database, or tools like BridgIt46

to identify genes for enzymatic reactions if this information is
not available.

2.1.1 Processing of the BRENDA text le. BRENDA 2023-1
was downloaded from the internet (free of charge).55 Scripts to
load BRENDA entries were taken from ref. 49, and several
formatting xes, such as missing whitespaces or hyphens were
added. Raw BRENDA reactions are given as text strings, with
substrates and products specied by trivial names, as well as
a tag to indicate reversibility. An example entry is shown in
Fig. 2, where aer step 1 (extracting names and stoichiometry),
the reaction text of the reservible reaction

was obtained, where
one molecule of acetyle and water react to one molecule of
acetaldehyde. When querying BRENDA, we nd that this reac-
tion is linked to acetylene hydratases in 12 different organisms
(where for nine of them reversibility is indicated), 14 literature
references and one uniprot entry.

2.1.2 Resolving and standardizing molecules. Next, all
trivial names present in the database were attempted to be
resolved to valid SMILES strings. In Fig. 2, this amounts to the
names . We followed six
different resolving strategies, where we queried a BRENDA
ligands download le whether the name is associated with an
InChi or CHEBI key, and then resolved via InChi,56 CHEBI,57 and
the trivial name. InChi keys were directly turned into SMILES
strings via RDKit,53 as well as sent as queries to Pubchem.58
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Processing of an exemplary reaction text from one substrate–
product pair of acetylene hydratase. Since the reaction is tagged as
reversible, two mapped and validated reactions are obtained.

Fig. 3 Oxidation of 17b-hydroxyetiocholan as an example of a reac-
tion where wrong stereoisomers were retrieved. For readability, atom
maps were omitted, as well as NAD+ and NADH. The reactive center is
marked in blue in the reactant molecules, and the corresponding
wrong chiral center in the product is marked in red.
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CHEBI keys were resolved via Pubchem either via a direct name
query, or a synonym query. Trivial names were resolved via
Pubchem and Opsin.59 All returned results were standardized,
and canonicalized using RDKit, and all unique entries kept.
Therefore, for a single name, multiple SMILES strings may
arise. We also tested tautomerization in RDKit but found several
reactions where tautomerization was not helpful, so chose to
remove it. In Fig. 2 the SMILES strings were
obtained for , respectively,
where all names were resolved to a single SMILES string. The
individual SMILES strings were combined to yield reaction
SMILES, where all possible combinations were taken into
account if one or more names were associated with several
SMILES strings. In Fig. 2 only a single reaction was obtained,
namely . We note that step 2 can yield multiple
SMILES string for a molecule name if records differ in the
queried databases. In that case, all options were further
considered, leading to multiple reaction SMILES for a single
entry. Multiple entries were pruned later aer atom mapped
SMILES strings were obtained, i.e. in step 6.

2.1.3 Correction heuristics. Each reaction was checked for
stoichiometry, as well as for common mistakes concerning
missing or wrong cofactors, hydrogens, or hydrogenperoxide.
Detected errors were corrected in an automated fashion, such as
increasing the amount of already present molecules, or adding
hydrogens. Furthermore, molecules occurring in racemic
mixtures were combined into a single molecule. In Fig. 2, the
reaction passed all tests, and was kept as is.

2.1.4 Atom mapping reactions. All balanced reactions were
then atom mapped by applying the publicly available reaction
rules from ref. 60 (termed “Broadbelt rule set” in the following)
and tracking each atom throughout rule application. Since the
Broadbelt rule set does not contain rules for reactions only
affecting stereochemistry (e.g. cis/trans isomerases or race-
mases), we mapped reactions with the same achiral reactants
and products directly without rule application. All other reac-
tions were mapped through rule application. We rst aimed to
© 2023 The Author(s). Published by the Royal Society of Chemistry
reproduce the recorded product via a single application of each
rule. If multiple rules produced the correct product, leading to
different atom mappings, only the rule changing the fewest
number of atoms and bonds, as well as being most frequently
applicable was used. To speed up rule application, we ordered
the rules from ref. 60 based on their frequency of applicability to
all BRENDA entries. In Fig. 2, this procedure yielded the map-
ped reaction .
The mapped reactions were saved along with the rules that were
used to produce them.

The mapped reactions were then corrected for stereochem-
istry if a chiral center not participating in the reaction changed.
This is usually the case when an isomeric SMILES was retrieved
only for either the reactant or product, if the correct information
was missing in the trivial name, or for wrong entries in the
molecular databases used for name retrieval. Fig. 3 depicts an
example where the wrong stereoisomer was retrieved for the
product, and thus corrected. In principle, we do not know
whether the stereoinformation is correct in the reactant or
product. We choose to keep the stereoisomer of the reactant
(concerning the chiral center which is not in the reaction
center), since many product entries in BRENDA are erroneous.
We note that this offers no guarantee to obtain a correct reac-
tion, but was benecial in a large number of cases uponmanual
examination.

We furthermore validated each mapped reaction, e.g.
checked whether the products can be recreated by extracting an
RDChiral52 template and applying it to the reactants. During the
course of the project, we corrected some errors in RDChiral,
available at https://github.com/hesther/rdchiral. If the template
could not recreate the reaction, the mapping was dropped.

Several reactions in BRENDA could not be mapped by
a single rule application. To address this, we developed an
algorithm to allow for reactions occurring at multiple sites. For
example, if a reaction yields the oxidation of two hydroxyl
moieties in a molecule, the respective oxidation rule needs to be
applied twice. We exhaustively enumerated the outcomes of
applying a rule up to two times (the maximum number of steps
can be customized in our soware package). To speed up this
enumeration, we used only the reaction rules already present in
the EC class from step 4A (or the full set if no reaction rules were
recorded yet). If multiple rule applications led to the desired
outcome, the overall reaction was saved, as well as all the
individual steps. As an example, Fig. 4 depicts the oxidation of
1,2-butanediol, which requires rule application (oxidation by
Chem. Sci., 2023, 14, 14229–14242 | 14231

https://github.com/hesther/rdchiral
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3sc02048g


Fig. 4 Oxidation of 1,2-butanediol as an example of a multi-step
reaction requiring rule application at two sites. For readability, atom
maps were omitted. The stoichiometry of the reaction was corrected
(note the missing “2” in the original reaction text). The multi-step
reaction can be split into four distinct single-step reactions, where
either the C1 or C2 can be oxidized first.

Fig. 5 Reduction of D-arabinose. The left reaction corresponds to
a combination of an closed and open form, thus wrongly assuming
that the reduction includes a ring-opening reaction. We therefore
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molecular oxygen) at two different sites. Since the order of the
individual steps is not known, all four individual reaction steps
are included in the database, and agged with a keyword to
indicate the reaction was obtained from a multi-step reaction.
For individual reactions, molecules not participating were
omitted, here for example the second oxygen molecule at step 1.
If the obtained single-step reactions were the same due to
symmetry, duplicates were dropped. Multi-step reactions as well
as their corresponding single-step components were then cor-
rected for stereoinformation similar to single step reactions.

For several reasons we chose to map reactions by applying
known rules instead of mapping via conventional atom
mapping tools.61–63 First of all, the available tools feature an
imperfect accuracy especially for biochemical trans-
formations.62 Second, recording the reaction rule used to map
a reaction allows for further processing steps, such as judging
the quality of a mapping, as well as the quality of the reaction
itself by comparing reaction rule counts across enzyme classes.
We can furthermore correct wrong stereoinformation in the
products. Finally, we can easily group reactions into classes by
comparing their reaction rules. Mapping via known rules thus
offers the possibility to construct a higher quality dataset
compared to simply mapping a known dataset with conven-
tional mapping tools. We demonstrate the benet of our
mapping scheme for subsequent machine learning tasks later
in this manuscript. However, we note that the coverage of
reactions that can be mapped heavily depends on the chosen
rule set. To the best of our knowledge, the Broadbelt rule set
from ref. 60 is the most complete and validated set currently
available, but even for this set a number of missing rules was
identied in the course of the present study, and will be
addressed in future work.

2.1.5 Proposing reactions based on reaction rules. A
signicant number of reactions in BRENDA are unbalanced, or
14232 | Chem. Sci., 2023, 14, 14229–14242
could not be mapped via reaction rules because the entry itself
was awed. Usually, the reactant was correctly extracted from
literature, but the product was not entered correctly, oen
because it is not explicitly mentioned in the original publica-
tion. For example, the reaction

, EC
1.1.1.103 wrongly lists isopropylaldehyde as product, although
the oxidation of isopropanol clearly should lead to propanone.
The same mistake (a ketone falsely named as aldehyde, which
introduces an additional carbon atom) occurred hundreds of
times in BRENDA for many different reactions, implicating
a systematic error in their reaction curation. To correct for
unmapped or unbalanced reactions, we propose probable
reaction outcomes to correct reactions based on the reaction
rules occurring in the same EC class and the similarity of both
reactants and products via Tanimoto similarities of Morgan
ngerprints64 as implemented in RDKit.65 These reactions are
agged as ‘suggested’, and may be ltered by the user. Both
reactant and product similarities were taken into account to
identify similar reactions based on the reactants, and then
choose the most probable product aer rule application, which
oen leads to multiple possible products due to the generic
nature of the employed rule set.

2.1.6 Post-processing. As described above, a single
BRENDA entry can lead to multiple valid mapped reactions if
the trivial names were resolved to different SMILES strings.
Although formally valid, not all reactions may necessarily be
meaningful. For example, sugars were sometimes retrieved in
their closed or opened form for the reactants and products
respectively, as depicted in Fig. 5. We therefore counted the
number of bond edits (and the number of involved atoms) and
only kept the set of reactions with the minimal number of bond
edits observed.

For all mapped reactions in an EC class, we then computed
the frequency of appearance of its corresponding reaction rule,
and saved its relative frequency to the column ‘quality’. This
column can be used to lter the database for high-quality
reactions. Oen reactions with a low quality correspond to
reactions that were balanced and atom mapped, but neverthe-
less erroneous. For example, within EC 1.1.1.1, the oxidation
and reduction of hydroxy, oxy and carboxy groups occurred
frequently, as depicted in Fig. 6, whereas a rule showing an
oxidation plus methyl shi only occurred once, suggesting that
the entry in BRENDA was possibly wrong. In fact, the depicted
reaction was extracted from ref. 66 which states that the reac-
tant 3-methylbutanol was oxidized to 3-methylbutanal (not 3-
choose the reaction with less edits (right panel).

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Quality of reaction based on rule count.

Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
N

ov
em

be
r 

20
23

. D
ow

nl
oa

de
d 

on
 7

/2
4/

20
25

 2
:4

0:
45

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
methylbutanone as listed in BRENDA). The entry thus corre-
sponds to a wrong extraction of products in BRENDA, which we
found to occur frequently.

We then standardized the obtained mappings so that the
mapped reaction SMILES can be used directly to detect
duplicates.

As a nal post-processing step, we added the backward
reactions for reversible reactions. BRENDA labels some reac-
tions as reversible, some as irreversible and some as unknown.
For reversible reaction, we directly added the backward reaction
to our dataset and labeled it ‘reversed’. For reactions with
unknown reversibility, we queried whether reactions with the
reverse reaction template existed in the same EC class. If so, the
reverse reaction was added to the dataset and labeled ‘rever-
sed_suggested’. Altogether, we thus arrive at approximately 63k
reactions (235k if protein + organism information is taken into
account), yielding the largest atom mapped database of enzy-
matic reactions to date. If the EC class is disregarded, this boils
down to 48k non-duplicate reactions.

The keywords for reversible and presumably reversible are
listed in Table 1, together with all keywords for single andmulti-
step reactions, as well as suggested reactions based on the
recorded reactants.
Table 1 Meaning of the columns ‘steps’ and ‘source’ in the EnzymeMap

Flag

Steps = single
Steps = multi
Steps = single from multi
Source = direct
Source = direct reversed

Source = direct reversed_suggested

Source = suggested

Source = suggested reversed

Source = suggested reversed_suggested

© 2023 The Author(s). Published by the Royal Society of Chemistry
2.2 EnzymeMap database

The full EnzymeMap database is freely available via Zenodo at
https://zenodo.org/records/8254726 as a CSV le, with columns
as displayed in Table 2. The benchmarks described in this study
use version 2.0 of EnzymeMap. The columns

contain
information as obtained from BRENDA without any curation
or verication. We note that many reactions occur both as
natural and non-natural reactions, oen in different organ-
isms, but sometimes also in the same organism. Since this
information together with the original text of the reaction can
be used to link an entry back to BRENDA, we chose to keep this
information. Depending on the intended usage of the database,
we recommend to rst lter for the reactions of interest, and
then remove duplicates stemming from information not
needed for a specic application.
2.3 Other datasets

In addition to BRENDA, this work also utilized reactions from
KEGG and MetaCyc to compare the coverage and quality of
atom mappings of the EnzymeMap database.

A list of KEGG enzymatic reactions given as trivial names and
their EC numbers was downloaded from https://
www.genome.jp/kegg-bin/get_htext (accessed 2023-07-24)
amounting to 20k reactions. The reactions were then passed
through the EnzymeMap workow, leading to 10k entries
where a full 4-digit EC number was specied and all names
could be resolved (aer step 2). 7.1k entries had at least one
possible balanced reaction SMILES. Aer step 6, 8.0k
reactions (including reversed and suggested reactions, thus
more than the initial 7.1k mapped reactions) were obtained,
out of which 6.6k reactions were unique disregarding the EC
number.

MetaCyc version 27.0 was obtained from http://
www.biocyc.org/, Copyright SRI International 2022. The 18k
atom mapped SMILES strings distributed with MetaCyc did
not include cofactors and were partially not balanced, so that
we cross-linked the distributed atom mapped SMILES with
database

Description

Mapping via a single rule application
Mapping via two rule applications (multi-step reaction)
Single-step extracted from a multi-step reaction
Extracted directly from a single or multi-step BRENDA entry
Reverse reaction was extracted directly from a BRENDA entry, which was
specied as reversible
Reverse reaction was extracted directly from a BRENDA entry, but did not
include a reversibility tag
Likely reversible based on other reactions in EC class
BRENDA entry could not be mapped or was unbalanced. Product was
inferred based on rule frequency and product similarity
Reverse of a suggested reaction where the reversibility tag indicated
a reversible reaction
Reverse of a suggested reaction where the reversibility tag was not
specied. Likely reversible based on other reactions in EC class

Chem. Sci., 2023, 14, 14229–14242 | 14233
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Table 2 Format of the EnzymeMap database. All entries correspond to reactions that were balanced and mapped

Column Description

Index of the reaction in the raw le before mapping

Atom mapped reaction SMILES

Reaction SMILES where atom maps were removed

Original reaction text from BRENDA. This can be used to trace back to the original
BRENDA entry, which does not have any identier unfortunately
SMARTS of Broadbelt rule used for mapping

ID of the rule as distributed together with EnzymeMap

Whether entry was obtained directly, via reversal or via suggesting products, see Table 1

Whether entry was obtained from single or multiple rule applications, see Table 1

Relative frequency of rule

EC number

Whether reaction was classied as naturally occurring

Source organism

One or multiple IDs of protein sequences

Name of database for IDs in the protein_refs column
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the unmappedMetaCyc reactions to addmissingmolecules and
cofactors. Only entries with a full 4-digit EC class and not
leading to an error upon loading into RDKit were retained,
amounting to 7.0k reactions. The resulting reactions (balanced
SMILES strings) were then passed to the EnzymeMap workow
skipping steps 1–3. Aer step 6, 4.6k reactions (including
reversed and suggested reactions) were obtained, out of which
4.5k reactions were unique disregarding the EC number.
2.4 Machine learning models

In the following, we describe the methodology and details of the
employed machine learning models for retrosynthesis, forward
prediction and regioselectivity prediction, which we train on the
EnzymeMap database. To this end, we have selected tasks that
depend on atom mapped reactions (as opposed to tasks and
models taking only substrate information into account). For
each task, an open-source model architecture representing the
current state-of-the-art was chosen, namely (1) the single-step
retrosynthesis model from ref. 31 which underlies the popular
open-source synthesis planning tool ASKCOS,67 (2) the
transformer-based single-step forward and retrosynthesis
model of the successful IBM RXN model,68–71 and (3) the
message-passing neural network Chemprop which recently was
shown to produce high-quality reaction predictions.72–74

2.4.1 Template-based retrosynthesis via neural networks.
To assess the improvements EnzymeMap offers over other
databases, we train a neural network model to rank relevant
retrosynthetic templates to produce a given product, as also
used in the open-source synthesis planning tool ASKCOS.67 The
model therefore suggests reaction templates given an input
molecule, where we use RDChiral52 to produce chiral reaction
templates and retrain the template-relevance model from ref. 31
with the default hyperparameters described therein. Since the
14234 | Chem. Sci., 2023, 14, 14229–14242
model is trained as classication task (i.e. to identify the
template that led to the given product), it is important that all
templates extracted from a dataset are mutually exclusive. We
thus used the code from ref. 75 to arrive at exclusivity-corrected
templates.

The model itself takes product Morgan ngerprints of length
2048 and radius 2 as input, and uses a single hidden layer of
2048 neurons with RELU activation functions to map the
ngerprint to its retrosynthetic template. A dropout rate of 0.2
was applied. The learning rate was set to 0.001, with early
stopping if the validation error did not improve for three
consecutive epochs.

Three different datasets were employed. RHEA,50 exactly as
provided in ref. 44, as well as MetAMDB76 (which is based on
BKMS-react77) and EnzymeMap (this work, based on
BRENDA51), since these datasets contain balanced atom map-
ped reactions. MetAMDB consists of approximately 43 000
reactions with atom mappings generated by the Reaction
Decoder Tool,61 and thus constitutes the largest atom mapped
reaction set prior to the current study, serving as a comparison
to EnzymeMap regarding quantity. RHEA was chosen because it
is highly curated and reliably, thus serving as a comparison
regarding quality. Furthermore, it was utilized in a recent bio-
retrosynthesis study.44 For MetAMDB and EnzymeMap, we
follow the RHEA preparation instructions from ref. 44 closely.
Namely, we removed all products occurring more than 100
times in the dataset to get rid of common cofactors or other
frequent molecules such as protons, and then deleted mole-
cules from the reactants that had no matching atoms in the
products. We then kept all reactions that had a single product
molecule. Importantly, duplicates were removed for all reac-
tions, which might occur where e.g. reactions differed only in
their cofactors before cofactor removal. This creation of single-
© 2023 The Author(s). Published by the Royal Society of Chemistry
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product reactions is necessary for the chosen model architec-
ture, which can only take a single product as input. For Enzy-
meMap, this led to 18k reactions and 2.8k templates. For
MetAMDB, 14k reactions and 5k templates were obtained. For
RHEA, 8k reactions and 4k templates were obtained. All data-
sets were randomly split to 80% training, 10% validation and
10% test sets. We used the entire dataset, including templates
that occurred infrequently or even only once. This made our
modelling task much more challenging compared to
approaches that exclude templates with few reaction prece-
dents. We furthermore report ablation studies with the same
test set as EnzymeMap for MetAMDB, RHEA, and subsets of
EnzymeMap, were all identical reactions to this common test
set were removed and the remainder of reactions split into 80%
training and 20% validation sets, respectively. In another
ablation study, we remapped EnzymeMap (either raw from
BRENDA, or aer the EnzymeMap workow) using the popular
transformer-based atom mapping soware RXNMapper,63

which is the current state-of-the-art mapper regarding versatility
and accuracy. We used default settings as provided in the
RXNMapper Python package.78

We report top-N accuracies for all models, i.e. the ratio of test
datapoints where the correct template was identied in the top-
N suggestions. Although this metric is associated with a few
shortcomings concerning its translation to real-world perfor-
mance for retrosynthesis tasks,79 it allows us to compare our
approach to performances for organic retrosynthesis, which is
typically reported using top-N accuracies.

2.4.2 Forward reaction and retrosynthetic pathway predic-
tion models based a transformer model. To assess the impor-
tance of a large and diverse dataset for deep learning reaction
models, we retrained a recently published enzymatic reaction
prediction tool43 within the IBM RXN toolbox,68–71 based on
a transformer architecture, and originally trained on the
ECREACT dataset.43 Both the forward-reaction prediction, as
well as the retrosynthesis prediction were retrained exactly as
described in ref. 43 aer adding the respective reactions from
EnzymeMap on top of ECREACT and deduplication. The orig-
inal model was retrained, too, to ensure that the correct values
were reproduced. In detail, the models ‘EC3’ were retrained,
which utilize the rst three digit of the EC number in the
reaction SMILES, for example for the EC number 1.1.3.2:

The forward model predicts the product side,
based upon the reactant side,

. The backward model takes the
product side as input and predicts the reactants, including the
three-digit EC number. Each model consisted of a transformer
encoder and decoder with 4 layers, a word vector and RNN size
of 384, positional encoding turned on, 8 attention heads with
global and self attention, adam as optimizer with b1 = 0.9 and
b2 = 0.998, a learning rate of 2.0 with the noam decay method,
and a dropout rate of 0.1. Batches of 6144 were used. Both
models were trained on an OpenNMT80 Version adapted for
molecules, see ref. 43 for further details.
© 2023 The Author(s). Published by the Royal Society of Chemistry
Since the models do not require atom mapped reactions, we
use the full set of reactions aer step 2 in Fig. 1, amounting to
100k reactions, where only duplicates within an EC class (but
not across EC classed) were removed, since the model makes
use of the EC class. Aer tokenization at the third-digit EC class,
and adding the ECREACT reactions, we arrive at 90k unique
reactions (as opposed to 57k reactions with only ECREACT). In
this benchmark, we do not showcase the capabilities of the
EnzymeMap correction and curation pipeline (since the reac-
tions are unmapped and uncorrected), but only the inuence of
the size of the dataset and the number of reactions per EC class.
The 100k reactions contain also unbalanced reactions, as well
as those that could not be mapped in our processing pipeline,
since we expect the transformer model to still be able to make
use of them. Furthermore, if different options to resolve a trivial
name to a SMILES string were found, the dataset contained all
options, which explains the large size of 100k versus 63k reac-
tions in EnzymeMap.

To further showcase the effect of data curation, correction
and validation, we retrain both the forward and backward
model with ECREACT with only processed EnzymeMap reac-
tions (n = 63k) added. Aer tokenization, the dataset amounts
to 84k reactions, so less than in the previous benchmark where
the raw reactions were added, but at higher quality.

We report top-N accuracies for the forward prediction,
backward prediction, and roundtrip task (backward prediction
followed by single forward prediction).

2.4.3 Regioselectivity models based on graph-
convolutional neural networks of the transition state. Lastly,
we showcase the importance of the underlying dataset when
predicting the regioselectivity of enzymatic reactions. We again
use the single-product versions of RHEA, MetAMDB, and
EnzymeMap described above for the template-relevance model.
For EnzymeMap, only reactions obtained via a direct, single rule
application were used. For all reactions in the respective data-
sets, reaction templates were extracted via RDChiral.52 The
templates were then applied to the reactants, and all reactions
were kept that produced more than one possibility for the
products. Thus, regioselective reactions were identied, i.e.
where multiple sites could have reacted in theory. Recorded
reactions were labeled “1” and all other reactions as “0”. For
example, if the application of a rule extracted from

, produced and
the following three lines were added to the dataset:

where and are SMILES strings. For Enzy-
meMap, this led to 21k reactions from 5.1k reactants. For
MetAMDB, 15k reactions from 3.3k reactants were obtained. For
RHEA, 7.6k reactions from 1.9k reactants were obtained. All
datasets were split randomly into 80% training, 10% validation
and 10% test data.

We note that the models did not make use of the EC class or
protein information, and therefore only learn which reaction
Chem. Sci., 2023, 14, 14229–14242 | 14235
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Fig. 7 Composition of BRENDA (without natural/non-natural,
organism and protein information). (Outer ring): number of reactions
per EC class. (Middle ring): fraction of balanced (colored) and unbal-
anced (gray) reactions. (Inner ring): fraction of reactions that were
atom mapped (colored, multiple mappings per BRENDA entry were
only counted once) or remain unmapped (gray). Since unbalanced
reactions can be mapped via step 5 of our workflow, this number
might be larger than the number of balanced reactions. Exact numbers
in Table 3.
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outcomes are more likely in a general sense, and not specic to
a protein. Reactions with different outcomes based on the EC
class or protein identity thus add noise to the dataset, so that
even a perfect model cannot reach 100% accuracy. We did not
include the EC class or protein sequence, since recent work
identied major shortcomings in current approaches to encode
the protein information in a meaningful way even for highly
curated data.81

We then trained a classication model on the full training
sets, as well as random subsamples of differing sizes. We chose
the graph-convolutional neural network architecture Chem-
prop72 with reaction support from ref. 73 (CGR-Chemprop) for
our classication models, since this framework was recently
demonstrated to learn high-accuracy reaction properties such
as barrier heights, rates, and regioselectivities.74 CGR-
Chemprop relies on transforming reaction SMILES to their
corresponding condensed graph of reaction, an overlay between
the reactant and product graphs, i.e. the articial, graph-based
transition state of the reaction. We trained for 100 epochs and
used 10-fold cross-validation for each prediction task since the
performance is very sensitive to the data split. All other hyper-
parameters such as number and size of layers, or learning rates
were kept at their default values (three rounds of message
passing with hidden size of 300, mean aggregation over the
graph, 2 feed-forward layers with a hiden size of 300). We report
the at accuracy of the classication, i.e. the model's ability to
discern between reactive and non-reactive data points. For
example, if the classication model predicted for
the test set

the accuracy (percentage of correct predictions) would be two
out of ve, i.e. 20%. We furthermore report the top-1 accuracy to
identify the correct products given the reactants, i.e. the fraction
of test data points where the reaction labeled “1” had a higher
raw predicted value than all reactions labeled “0” originating
Table 3 Number of mapped and unmapped reactions without duplicate
where the mapping could either be inferred from the originally recorded
was suggested from reaction rules in the same EC class

# # with prot

Mapped from original, single step 44 894 162 322
Mapped from original, multi-step 1122 3195
Single-step reactions via splitting multi-
step

2269 5811

Mapped from suggestion, single step 6327 13 133
Reversed reactions known reversibility 6929 46 230
Reversed reactions suggested
reversibility

6681 28 897

Mapped with natural substrate/product 10 558 48 570
Unbalanced 8599 17 307
Balanced but unmapped 5841 20 005

14236 | Chem. Sci., 2023, 14, 14229–14242
from the same reactants and template. For the example above, if
the raw scores from the model (prior to applying a threshold to
create binary labels from the continuous predictions) were

, then the model scored the correct
products at rank 1 for , and at rank 2 for

, leading to a top-1-accuracy of 50%.
3 Results and discussion
3.1 Database analysis

Table 3 lists the number of mapped reactions that were ob-
tained via direct mapping of the original entry via a single
reaction rule application (step 4A in Fig. 1), via multiple rule
applications (step 4B in Fig. 1), as well as via suggesting prod-
ucts based on the reactants of unmapped or unbalanced reac-
tions (step 5 in Fig. 1). In total, 63 137 reactions with a unique
mapped reaction within an EC class were obtained, not taking
into account information on natural/non-natural substrates,
organisms and proteins. Disregarding the EC class, 47 974
s in EC class (and with protein/organism information in third column),
database entry via one or multiple steps of reaction rule application, or

# EC 1 # EC 2 # EC 3 # EC 4 # EC 5 # EC 6

10 621 12 263 16 622 2698 1414 1266
428 134 444 64 46 6
550 319 1270 61 47 22

1425 1797 2514 365 96 130
2899 2301 364 539 740 86
3813 320 916 1350 84 198

3791 2952 2103 907 565 240
3121 1805 2638 717 139 179
2866 1074 1011 585 160 145

© 2023 The Author(s). Published by the Royal Society of Chemistry
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unique reactions were obtained. When also discerning between
natural/non-natural substrates, organisms and proteins, a total
of 234 845 non-duplicate entries is obtained. Themajority of the
reactions in EnzymeMap (71%) stem from single step reactions
from the original BRENDA entries. 17% of non-duplicate entries
(21% taking into account organisms and proteins) stem from
BRENDA entries classied as “natural substrate/product pair”.

Fig. 7 depicts the number of mapped reactions per EC class,
split into overall (outer circle), balanced (second circle) and
mapped (inner circle) reactions, aer all pre- and post-
processing steps. We nd that no EC class exhibits a dis-
proportionally large number of imbalanced reactions or failed
mappings, and that EnzymeMap is mainly comprised of reac-
tions in the EC classes 1 (oxidoreductases), 2 (transferases) and
3 (hydrolases) to nearly equal amounts, whereas the EC classes 4
(lyases), 5 (isomerases) and 6 (ligases) only make up about 10%
of all reactions in total. Translocases (EC 7) were not considered
for mapping, since they catalyze the movement of ions or
molecules across membranes, so that the reactant and product
molecules are usually the same.

We then compared the obtained reactions to KEGG and
MetaCyc aer removing atom mappings, and found that of the
nearly 48k unique reactions in EnzymeMap, only 0.5k are also
found in MetaCyc (0.6k aer passing MetaCyc through the
EnzymeMap workow, i.e. also adding reverse reactions), and
1.8k are also found in KEGG (5k aer passing KEGG through the
EnzymeMap workow), where we compared the unmapped
reaction SMILES strings. EnzymeMap thus provides access to
several tens of thousands of reactions not covered by other
databases. The workow furthermore is not limited to BRENDA.
With minimal changes to the setup of the initial raw reactions,
we were easily able to map reactions from KEGG and MetaCyc,
leading to 8.0k and 4.6k mapped reactions, respectively. We
distribute those alongside EnzymeMap, since a combination of
all sources might be benecial for future data-driven prediction
of enzymatic reactions. For MetaCyc, we were furthermore able
to compare the atom mappings distributed with MetaCyc with
atom mappings from the EnzymeMap workow. For reactions
that led to a valid mapped reaction with our workow, we found
same mappings for 70% of the reactions (accounting for
equivalent mappings due to symmetry). For the reactions with
Fig. 8 Example of a wrong atom map in MetaCyc for the entry
‘ACETYLGLUTKIN-RXN’.

© 2023 The Author(s). Published by the Royal Society of Chemistry
different atom mappings, our mappings had an equal or less
number of bond edits than the MetaCyc mappings in 92% of
cases. Manual examination of random cases where EnzymeMap
lead to better mapping results than the native MetaCyc
mappings revealed a few hundred of errors in MetaCyc, with an
example shown in Fig. 8, where ve atoms are wrongly mapped.
We also found cases where atoms corresponding to different
elements (for example phosphorus and carbon) were assigned
the same map number. This highlights the need for better atom
mapping routines for enzymatic reactions, or at least better
post-processing steps to ag erroneous reactions, even for
highly curated databases like MetaCyc. However, the Enzyme-
Map workow is not without aws itself, due to missing rules in
the employed Broadbelt rule set, leading to possibly wrong
mappings or no mappings at all. For the latter case, we
compared the number of MetaCyc reactions that could not be
mapped via the EnzymeMap workow per 1-digit EC class, and
found that all EC classes are about equally affected by failed
mapping attempts. Manual inspection revealed many reactions
in MetaCyc, for which no rule exists currently, including multi-
step reactions involving different reaction steps (e.g. a reaction
followed by decarboxylation), reactions involving changes in
rings, some transfer reactions, ring-forming reactions, and
hydrolysis of peptide bonds, amongst others. We attempt to
address missing rules in a future publication, and thus future
versions of EnzymeMap. Since a new rule set only requires to
update one le and re-run the workow, the incorporation of
new rules is a trivial exercise. For the remainder of this study
(and the current version of EnzymeMap), we stick with the
Broadbelt rule set, since the creation and validation of a new
rule set is well beyond the scope of the current study.

3.2 Retrosynthesis based on neural-network

Fig. 9 depicts the top-N accuracy of neural networks trained on
identifying templates which lead to the recorded precursors, i.e.
predicting retrosynthetic single-step pathways. The gray area
corresponds to top-N accuracies typically achieved by organic
retrosynthesis models for the USPTO-50k dataset, with values
taken from ref. 82, 83 and 75 including neural network models
Fig. 9 Top-N accuracies for retrosynthesis models trained on
different databases (RHEA, MetAMDB and EnzymeMap). The gray area
corresponds to top-N accuracies typically achieved by organic ret-
rosynthesis models on the USPTO-50k dataset.

Chem. Sci., 2023, 14, 14229–14242 | 14237
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on ngerprints, graph-convolutional neural networks on graphs,
and transformer models on strings or graphs. Although these are
different models trained on different datasets (i.e. not directly
comparable), they showcase an important prerequisite for
computer-aided retrosynthesis, namely that powerful one-step
synthesis models are needed, which can subsequently be used
in multi-step synthesis planning tools. Using EnzymeMap, for
the rst time, an enzymatic retrosynthesis model is able to
compete with the accuracy of organic retrosynthesis tools, which
is remarkable given that the model is very simple, and was not
optimized in any way. In comparison, models trained on Met-
AMDB or RHEA feature a relatively low accuracy. A low top-N
accuracy is especially problematic for designing multi-step
synthesis pathways, where clever ranking algorithms are essen-
tial to navigate the combinatorially explosive number of template
application possibilities at each reaction step. For instance,
using the low top-1-accuracy of 0.18 for RHEA from Table 4,
designing a pathway of three independent steps by taking the
top-1 template at each step, only 0.183 = 0.006 = 0.6% of test
products would yield the correct synthesis pathway. In practice,
this would be even lower since we do not want to nd just any
pathway consisting of three reactions that produce the product,
but pathways starting from e.g. buyable materials, or having no
unnecessary loops of protection and de-protection. In compar-
ison, 9.7% of test products (0.463 = 0.097) would be recovered
using the EnzymeMap model (taking only the top-1 recommen-
dation), which is an about twenty-fold increase in success rate.
We therefore anticipate EnzymeMap to also perform well with
multi-step retrosynthesis models, although the training of such
models via e.g. Monte Carlo Tree Search or Reinforcement
Learning is beyond the scope of the current study.

Table 4 furthermore lists several ablation studies to showcase
the importance of the data curation, cleaning, and validation
routines developed in this study. First, we explore whether
mapping the resolved raw reaction SMILES from BRENDA via an
alternative route to Fig. 1 affects the performance of
Table 4 Top-N accuracies for retrosynthesis models trained on
different databases (RHEA, MetAMDB and EnzymeMap)

N 1 3 5 10 50

Internal test set
RHEA 0.18 0.32 0.38 0.45 0.57
MetAMDB 0.28 0.43 0.48 0.54 0.62
EnzymeMap 0.46 0.62 0.69 0.76 0.85
raw BRENDA + RXNMappper 0.32 0.44 0.51 0.57 0.67
EnzymeMap + RXNMapper 0.35 0.51 0.58 0.65 0.75

Same test set
RHEA 0.04 0.08 0.09 0.10 0.15
MetAMDB 0.23 0.35 0.40 0.45 0.56
EnzymeMap
� No multi, no rev., no sugg 0.35 0.51 0.57 0.64 0.72
� No reversed, no suggested 0.38 0.54 0.59 0.66 0.75
� No suggested 0.39 0.55 0.62 0.69 0.78
� No reversed 0.40 0.56 0.63 0.70 0.79
� No multi 0.43 0.61 0.68 0.76 0.83
� All 0.46 0.62 0.69 0.76 0.85

14238 | Chem. Sci., 2023, 14, 14229–14242
retrosynthesis models. To this end, we map the rst reaction
SMILES per BRENDA entry using the state-of-the-art transformer-
based atom mapper RXNMapper.63 This leads to a large loss in
performance yielding top-N accuracies close to those achieved by
the MetAMDB model. We therefore conclude that the careful
mapping, correction, and validation approach for enzymatic
reactions developed in this work is essential for a good perfor-
mance of reaction prediction models. Second, we take the
cleaned and curated reactions from EnzymeMap and re-map
them with RXNMapper. This also leads to a large loss in perfor-
mance, although to a less extent, resulting in top-N accuracies
below the performances typically achieved for organic reactions.
We therefore conclude that also the quality of atom maps is
essential for training reaction prediction models, and that
simple, uncurated mapping impacts the performance negatively.
This ablation study therefore showcases the importance of data-
base quality.

We then retrain all models and test them on the EnzymeMap
test set, aer removing overlap in the training and validation
sets with the new test set. For RHEA and MetAMDB, this
provides an even harder task trying to predict retrosynthesis
steps of reactions for which no close analogue might be avail-
able in the training set, so that the low performances in Table 4
were somewhat expected. The performance loss is less for
MetAMDB vs. the much smaller RHEA, indicating that Met-
AMDB covers a wider range of reaction functionalities.

We then removed reactions from the EnzymeMap training
and validation sets in a further set of ablation studies to
benchmark the importance of database quantity. The perfor-
mance degrades for every loss of information, starting with
omitting multi-step reactions, reverse reactions, suggested
reactions, and combinations thereof, showcasing the value and
need for each of the processing steps in the EnzymeMap
workow. The increased coverage of enzymatic reaction space
by adding multi-step reactions, reverse reactions, or correcting
entries via suggesting outcomes (instead of dropping the entry)
is benecial to the performance of the trained retrosynthesis
model, highlighting the need for larger reaction databases.

The ablation studies therefore highlight the importance of
the developed data generation/curation approach both in terms
of quality and quantity of the obtained reactions. Although our
approach adds computational burden compared to out-of-the-
box mapping strategies, the performance improvement in
machine learning models warrants its use, and, for the rst
time, enables accurate data-driven modeling of enzymatic
synthesis planning.
3.3 Forward reaction prediction and retrosynthesis based on
transformers

Next, we showcase the merits of EnzymeMap for large deep-
learning models not dependent on atom mappings, i.e.
benchmark only the effect of increased coverage, but not
quality. The IBM RXN-for-Chemistry platform provisions
forward and backward models for biocatalysed reaction
predictions. Both models have been trained using a multi-task
transfer learning approach on a transformer architecture.43
© 2023 The Author(s). Published by the Royal Society of Chemistry
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The multi-task transfer learning regime consisted of samples
from two training sets: the USPTO data set containing 1 million
organic reactions and the data set ECREACT consisting of 56
579 biocatalysed reactions sourced from the databases RHEA,
BRENDA, PathBank, and MetaNetX.84–87 Including the enzyme
commission numbers during training enables the backward
model to not only predict the substrates based on a product, but
also the class of the catalysing enzyme. While themodel showed
state-of-the-art performance, it was held back by the limited
availability of enzyme-catalysed reactions. As ECREACT con-
tained only 11 130 reactions extracted from BRENDA, retraining
the models using the considerably larger non-atom mapped
version of EnzymeMap in addition to ECREACT leads to a 59%
increase in training set size (at an overall dataset size of 90 028),
which results in an increase in the mean predictive accuracy of
sub-classes in the forward model across all enzyme classes and
an increase in the mean predictive accuracy of the retro model
with the exception of transferases and ligases, see Table 5. As
the new data introduced with the inclusion of EnzymeMap not
only adds new samples for the regions of reaction space covered
by ECREACT but also increases the covered space, the increase
in dataset size does not always lead to an increase in predictive
accuracy. Indeed, the addition of diverse data can even lead to
a (insignicant) decrease in predictive accuracy as is the case for
ligases in the backwards model.

The above benchmarks showcase the effect of a sheer
increase in dataset size, but not necessarily dataset quality. We
therefore also retrained all models with only the processed and
validated EnzymeMap reactions + ECREACT (with an overall
dataset size of 83 470). Here, we nd even further improvements
Table 5 Top-N-accuracies of the forward, backward and roundtrip pred
digit EC classes trained on different datasets. Training with ECREACT r
unprocessed reactions increases the performances for most EC classes
performance further increases

Forward

N = 1 N = 3 N = 5 N = 10

ECREACT43 (n = 59 579) Overall 0.49 0.59 0.64 0.69
EC 1 0.27 0.45 0.51 0.57
EC 2 0.64 0.69 0.73 0.78
EC 3 0.39 0.58 0.62 0.67
EC 4 0.28 0.38 0.41 0.44
EC 5 0.15 0.27 0.32 0.39
EC 6 0.34 0.55 0.61 0.63

ECREACT + raw
EnzymeMap (n = 90 028)

Overall 0.49 0.60 0.65 0.70
EC 1 0.32 0.47 0.54 0.60
EC 2 0.63 0.70 0.74 0.78
EC 3 0.45 0.60 0.65 0.70
EC 4 0.39 0.57 0.62 0.65
EC 5 0.29 0.46 0.52 0.56
EC 6 0.35 0.49 0.58 0.63

ECREACT + processed
EnzymeMap (n = 83 470)

Overall 0.54 0.67 0.72 0.76
EC 1 0.39 0.60 0.66 0.71
EC 2 0.65 0.72 0.75 0.81
EC 3 0.59 0.74 0.79 0.82
EC 4 0.41 0.63 0.68 0.71
EC 5 0.25 0.38 0.46 0.54
EC 6 0.28 0.54 0.60 0.66

© 2023 The Author(s). Published by the Royal Society of Chemistry
compared to the raw EnzymeMap dataset for nearly all enzyme
classes in both the forward and reverse model. Thus, even for
unmapped reactions, curating a high-quality dataset can have
benecial effects to models trained on them, highlighting the
need of both high-quality and high-quantity datasets for
chemical deep learning.

Overall, EnzymeMap leads to a large performance increase in
both the forward and retro model. The retrained models (on the
previous version 1 of EnzymeMap) have been made available as
the default biocatalysis models on the IBM RXN-for-Chemistry
platform (https://rxn.res.ibm.com).
3.4 Regioselectivity prediction based on graph-convolutional
neural network

Fig. 10 depicts the classication accuracy of CGR-Chemprop
trained on regioselective reactions from EnzymeMap, Met-
AMDB, and RHEA, as well as the fraction of data points in the
test set where the true product was ranked highest (as opposed
to false products obtained via template application to different
sites in the reactants) in dependence on the number of training
reactions. For the full training sets, Table 6 furthermore lists the
achieved accuracy and top-1 accuracy. As evident in Table 6,
EnzymeMap offers a large performance boost for regiose-
lectivity predictions for the full datasets (right-most data points
in Fig. 10), but also for random subsets of the training data.
Interestingly, we nd a better top-1 accuracy for RHEA vs.
MetAMDB when trained on the same number of datapoints
(right panel in Fig. 10), which underpins the quality of RHEA
which is heavily curated. Similarly, we conclude that
iction task with the IBM Rxn-for-Chemistry transformer models with 3-
eproduces the results reported in ref. 43. Additionally adding all raw,
and tasks. When utilizing only the validated EnzymeMap reactions, the

Backward Roundtrip

N = 1 N = 3 N = 5 N = 10 N = 1 N = 3 N = 5 N = 10

0.60 0.67 0.69 0.71 0.40 0.42 0.42 0.43
0.19 0.28 0.31 0.38 0.08 0.10 0.11 0.13
0.86 0.90 0.91 0.91 0.61 0.62 0.62 0.63
0.31 0.43 0.45 0.48 0.19 0.25 0.26 0.27
0.46 0.62 0.64 0.67 0.18 0.20 0.20 0.21
0.19 0.25 0.29 0.31 0.05 0.07 0.07 0.07
0.44 0.55 0.56 0.58 0.26 0.29 0.29 0.29
0.52 0.61 0.64 0.66 0.32 0.35 0.36 0.37
0.22 0.31 0.36 0.40 0.09 0.13 0.15 0.16
0.80 0.86 0.88 0.89 0.52 0.54 0.54 0.54
0.30 0.41 0.46 0.48 0.24 0.29 0.31 0.32
0.45 0.60 0.64 0.67 0.21 0.26 0.28 0.30
0.23 0.40 0.46 0.48 0.11 0.16 0.18 0.18
0.40 0.44 0.46 0.49 0.23 0.26 0.27 0.29
0.55 0.64 0.67 0.69 0.37 0.41 0.42 0.43
0.23 0.34 0.37 0.42 0.12 0.16 0.18 0.19
0.81 0.87 0.88 0.89 0.58 0.60 0.61 0.61
0.38 0.54 0.57 0.62 0.30 0.38 0.40 0.42
0.52 0.62 0.65 0.69 0.24 0.28 0.29 0.32
0.23 0.38 0.42 0.46 0.08 0.14 0.14 0.15
0.29 0.33 0.37 0.37 0.14 0.17 0.17 0.17
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Fig. 10 (Left) Classification accuracy of models trained on different
databases (RHEA, MetAMDB and EnzymeMap) for predicting the
regioselective outcome of a reactions. (Right) top-1 accuracy for
identifying the most probable outcome given a set of reactants.
Errorbars correspond to 95% confidence intervals from 10-fold cross-
validation.

Table 6 Classification accuracy and top-1 accuracy of CGR-Chem-
prop models trained on different databases (RHEA, MetAMDB and
EnzymeMap) for predicting the regioselective outcome of reactions

accuracy top-1 accuracy

RHEA 0.82 0.71
MetAMDB 0.84 0.71
EnzymeMap 0.87 0.76
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EnzymeMap not only offers a benet in size and diversity (i.e.
coverage of reactions), but also in its low inherent noise ob-
tained via the extensive validation and curation efforts
described in the Methods section. Through comparison of
different training sizes, we conclude that both the quantity and
quality of recorded reactions inuence the performance of
reaction prediction models, giving EnzymeMap a large benet
over other databases. With the full dataset utilized, we obtain
a at accuracy of 87% to discern between reactive and non-
reactive reaction instances, as well as a top-1 accuracy of 76%
to identify the correct regioselective reaction outcome given
a set of product options. Together with the high accuracies re-
ported for retrosynthesis and forward prediction, this lays the
groundwork of successful data-driven biocatalytic synthesis
design. We anticipate further performance improvement upon
inclusion of enzyme information to the model input, so that the
model can learn different regioselectivies exhibited by different
enzymes (which in this study only manifests as aleatoric, irre-
producible error).

4 Conclusion

Wehave developed a database curation, validation, andmapping
pipeline for enzymatic reactions, producing an extensive dataset
of atommapped, balanced, validated, and diverse reaction which
include correct stereoinformation from BRENDA entries. We
showcase that this new dataset, EnzymeMap, is sufficiently large
for data-driven deep learning and offers signicant performance
14240 | Chem. Sci., 2023, 14, 14229–14242
improvements over all previous databases for retrosynthesis,
forward prediction and regioselectivity prediction tasks. For the
rst time, we report prediction performances on par with organic
retrosynthesis tools. This performance boost comes from both
better coverage (larger number of total reactions, larger number
of reactions per EC class), as well as better quality regarding the
reactions itself and their atom mappings. We distribute the full
pipeline as easy-to-use Python package, and demonstrated that
the workow can be easily adapted to other databases such as
MetaCyc or KEGG. We expect that the EnzymeMap database will
spark numerous inventions in the eld of computer-aided
enzymatic reaction prediction, especially for applications
relying on mapped, balanced reactions such as the computer-
aided design of enzymatic cascades.
Data availability

The EnzymeMap dataset version 2.0 (along with the re-mapped
KEGG and MetaCyc les) is available via Zenodo at https://
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readable CSV le containing the EC number, the original reac-
tion text, mapped and unmapped reaction SMILES, as well as
further metadata as described in the methods section. The code
to reproduce all processing steps from a raw BRENDA entry to
a validated, mapped reaction is available as easy-to-use Python
package at https://github.com/hesther/enzymemap. The
repository furthermore contains scripts for the retrosynthesis
and regioselectivity models. Instructions to retrain the
transformer model are available in ref. 43 and were used as
provided. All employed soware packages are freely available
on GitHub: https://github.com/rxn4chemistry/rxnmapper for
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Author contributions

E. H. conceptualized and supervised the project, acquired
funding, curated and analyzed data, developed the underlying
methodology, implemented code for data processing, analysis
and training machine learning models (regular and graph-
convolutional neural networks), validated and visualized the
obtained results, as well as wrote the manuscript. D. P. imple-
mented code for training machine learning models (molecular
transformer), visualized the corresponding results and
contributed toward the writing of the manuscript. W. H. G. and
G. K. H. M. supervised the project, as well as reviewed and
edited the manuscript.
Conflicts of interest

There are no conicts to declare.
© 2023 The Author(s). Published by the Royal Society of Chemistry

https://zenodo.org/records/7841781
https://zenodo.org/records/7841781
https://github.com/hesther/enzymemap
https://github.com/rxn4chemistry/rxnmapper
https://github.com/hesther/rdchiral
https://github.com/hesther/templatecorr
http://brenda-enzymes.org/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3sc02048g


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
N

ov
em

be
r 

20
23

. D
ow

nl
oa

de
d 

on
 7

/2
4/

20
25

 2
:4

0:
45

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
Acknowledgements

E. H. acknowledges support from the Austrian Science Fund
(FWF), project J-4415. The authors acknowledge the MIT
SuperCloud and Lincoln Laboratory Supercomputing Center for
providing HPC resources that have contributed to the research
results reported within this paper.
Notes and references

1 M. A. Valliere, T. P. Korman, M. A. Arbing and J. U. Bowie,
Nat. Chem. Biol., 2020, 16, 1427–1433.

2 J.-M. Choi, S.-S. Han and H.-S. Kim, Biotechnol. Adv., 2015,
33, 1443–1454.

3 T. Classen and J. Pietruszka, Bioorg. Med. Chem., 2018, 26,
1285–1303.

4 R. A. Sheldon and D. Brady, Chem. Commun., 2018, 54, 6088–
6104.

5 J. H. Schrittwieser, S. Velikogne, M. Hall and W. Kroutil,
Chem. Rev., 2018, 118, 270–348.

6 E. Ricca, B. Brucher and J. H. Schrittwieser, Adv. Synth.
Catal., 2011, 353, 2239–2262.

7 C. Hold, S. Billerbeck and S. Panke, Nat. Commun., 2016, 7,
12971.

8 S. P. France, L. J. Hepworth, N. J. Turner and S. L. Flitsch,
ACS Catal., 2017, 7, 710–724.

9 J.-K. Guterl and V. Sieber, Eng. Life Sci., 2013, 13, 4–18.
10 J. A. Rollin, T. K. Tam and Y.-H. P. Zhang, Green Chem., 2013,

15, 1708–1719.
11 J. M. Sperl and V. Sieber, ACS Catal., 2018, 8, 2385–2396.
12 H. Yim, R. Haselbeck, W. Niu, C. Pujol-Baxley, A. Burgard,

J. Boldt, J. Khandurina, J. D. Trawick, R. E. Osterhout,
R. Stephen, et al., Nat. Chem. Biol., 2011, 7, 445–452.

13 S. Atsumi, T. Hanai and J. C. Liao, Nature, 2008, 451, 86–89.
14 M. A. Huffman, A. Fryszkowska, O. Alvizo, M. Borra-Garske,

K. R. Campos, K. A. Canada, P. N. Devine, D. Duan,
J. H. Forstater, S. T. Grosser, et al., Science, 2019, 366,
1255–1259.

15 T. Benkovics, J. McIntosh, S. Silverman, J. Kong, P. Maligres,
T. Itoh, H. Yang, M. Huffman, D. Verma, W. Pan, et al.,
ChemRxiv, 2020, preprint, DOI: 10.26434/
chemrxiv.13472373.v1.

16 M. Hönig, P. Sondermann, N. J. Turner and E. M. Carreira,
Angew. Chem., Int. Ed., 2017, 56, 8942–8973.

17 C. M. Clouthier and J. N. Pelletier, Chem. Soc. Rev., 2012, 41,
1585–1605.

18 J. Dong, E. Fernández-Fueyo, F. Hollmann, C. E. Paul,
M. Pesic, S. Schmidt, Y. Wang, S. Younes and W. Zhang,
Angew. Chem., Int. Ed., 2018, 57, 9238–9261.

19 Y. Ni, D. Holtmann and F. Hollmann, ChemCatChem, 2014,
6, 930–943.

20 O. Khersonsky, C. Roodveldt and D. S. Tawk, Curr. Opin.
Cell Biol., 2006, 10, 498–508.

21 G.-M. Lin, R. Warden-Rothman and C. A. Voigt, Curr. Opin.
Syst. Biol., 2019, 14, 82–107.
© 2023 The Author(s). Published by the Royal Society of Chemistry
22 C. K. Savile, J. M. Janey, E. C. Mundorff, J. C. Moore, S. Tam,
W. R. Jarvis, J. C. Colbeck, A. Krebber, F. J. Fleitz, J. Brands,
et al., Science, 2010, 329, 305–309.

23 K. Chen and F. H. Arnold, Bio Technol., 1991, 9, 1073–1077.
24 P. S. Coelho, E. M. Brustad, A. Kannan and F. H. Arnold,

Science, 2013, 339, 307–310.
25 M. T. Reetz, Proc. Natl. Acad. Sci. U.S.A., 2004, 101, 5716–

5722.
26 J. B. Siegel, A. Zanghellini, H. M. Lovick, G. Kiss,

A. R. Lambert, J. L. St. Clair, J. L. Gallaher, D. Hilvert,
M. H. Gelb, B. L. Stoddard, et al., Science, 2010, 329, 309–313.

27 C. W. Coley, L. Rogers, W. H. Green and K. F. Jensen, ACS
Cent. Sci., 2017, 3, 1237–1245.

28 M. H. Segler and M. P. Waller, Chem.–Eur. J., 2017, 23, 5966–
5971.

29 T. Badowski, E. P. Gajewska, K. Molga and B. A. Grzybowski,
Angew. Chem., Int. Ed., 2020, 59, 725–730.

30 S. Ishida, K. Terayama, R. Kojima, K. Takasu and Y. Okuno, J.
Chem. Inf. Model., 2019, 59, 5026–5033.

31 M. E. Fortunato, C. W. Coley, B. C. Barnes and K. F. Jensen, J.
Chem. Inf. Model., 2020, 60, 3398–3407.

32 B. Liu, B. Ramsundar, P. Kawthekar, J. Shi, J. Gomes, Q. Luu
Nguyen, S. Ho, J. Sloane, P. Wender and V. Pande, ACS Cent.
Sci., 2017, 3, 1103–1113.

33 P. Karpov, G. Godin and I. V. Tetko, International Conference
on Articial Neural Networks, 2019, pp. 817–830.

34 K. Lin, Y. Xu, J. Pei and L. Lai, Chem. Sci., 2020, 11, 3355–
3364.

35 B. Chen, R. Barzilay and T. Jaakkola, arXiv, 2019, preprint,
arXiv:1905.12712, DOI: 10.48550/arXiv.1905.12712.

36 I. V. Tetko, P. Karpov, R. Van Deursen and G. Godin, Nat.
Commun., 2020, 11, 1–11.

37 H. Dai, C. Li, C. W. Coley, B. Dai and L. Song, arXiv, 2020,
preprint, arXiv:2001.01408, DOI: 10.48550/arXiv.2001.01408.
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