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utylation of hydroxyarenes
enabled by silver-p-acid catalysis:
diastereocontrolled synthesis of 1,3-
difunctionalized cyclobutanes†

Lei Tang, ‡ Qi-Nan Huang, ‡ Feng Wu, Yuanjiu Xiao, Jin-Lan Zhou,
Tong-Tong Xu, Wen-Biao Wu, * Shuanglin Qu * and Jian-Jun Feng *

Ring-opening of bicyclo[1.1.0]butanes (BCBs) is emerging as a powerful strategy for 1,3-difunctionalized

cyclobutane synthesis. However, reported radical strain-release reactions are typically plagued with

diastereoselectivity issues. Herein, an atom-economic protocol for the highly chemo- and

diastereoselective polar strain-release ring-opening of BCBs with hydroxyarenes catalyzed by a p-acid

catalyst AgBF4 has been developed. The use of readily available starting materials, low catalyst loading,

high selectivity (up to >98 : 2 d.r.), a broad substrate scope, ease of scale-up, and versatile

functionalizations of the cyclobutane products make this approach very attractive for the synthesis of

1,1,3-trisubstituted cyclobutanes. Moreover, control experiments and theoretical calculations were

performed to illustrate the reaction mechanism and selectivity.
Introduction

Cyclobutanes represent important structural units in natural
products and other biologically signicant molecules.1 More-
over, the cyclobutane scaffold, especially the 1,3-difunctional-
ized cyclobutane skeleton, is oen incorporated in drug design,
such as PF-03654746,2 linsitinib,3 and TAK-828F4 (Scheme 1A).
In these cases, a 1,3-substituted cyclobutane linker can act as an
aryl isostere with reduced planarity; exible ethyl- or propyl-
linkers can also be replaced by conformationally restricted
1,3-disubstituted cyclobutanes to limit the number of possible
conformations.1b Despite the importance of these cyclobutanes,
catalytic methods for their synthesis remained relatively less
explored in parallel with their homologues.5–7 Moreover, dia-
stereocontrolled synthesis of 1,1,3-trisubstituted cyclobutanes
featuring quaternary carbon stereocenters remains
challenging.7

In recent years, strain-release driven transformations have
recaptured signicant attention in synthetic organic chemistry,8

materials science,9 analytical chemistry10 and bioconjugation.11
and Chemometrics, Advanced Catalytic
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As the smallest of fused carbocycles, bicyclo[1.1.0]butanes
(BCBs) are highly strained (ring strain energy ∼ 66 kcal mol−1)
yet bench-stable, synthetically versatile carbocycles.12 The
release of ring tension embedded in BCBs, coupled with the p-
type reactivity for the central C–C s-bond, allows for the design
or discovery of new reactions for the synthesis of ring systems.13

Among them, ring-opening reactions via homo- or heterolysis of
the spring-loaded C–C bond represent powerful tools enabling
quick and efficient access to multisubstituted cyclobutane
derivatives. In this direction, there are six general strategies for
intermolecular ring-opening reactions of BCBs: (1) radical
strain-release reactions with radical nucleophiles. This strategy
provides powerful methods for making mostly 1,3-disubstituted
alkylated cyclobutanes, albeit mainly with poor diaster-
eoselectivity (not shown).7e,14 (2) Polar strain-release reactions
with 2-electron-based nucleophiles. The nucleophilic ring
opening reactions of BCBs concerned mainly the addition of
various heteroatom (O, N, P)-centred nucleophiles,15 such as
Hoz's O-cyclobutylation,15a Aggarwal's a-selective ring-open-
ing,15b Gaoni's azidation,15c Baran's amination,15d Wipf's
hydrophosphination15e and others.15f By contrast, the successful
use of carbon nucleophilic reagents in addition reactions to
BCBs still lags behind and had been limited to strong nucleo-
philes like organocuprates.7a–d Once again, poor diaster-
eoselectivity was detected in these examples (not shown). (3)
Simultaneous activation of BCBs by nucleophiles and electro-
philes. This method usually relies on the 1,2-migration process
of BCB–boronate complexes, and functionalization by capture
of an electrophile, thereby leading to 1,1,3-trisubstituted
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Scheme 1 Transition metal catalyzed ring-opening reactions of BCBs for the synthesis of cyclobutane derivatives and their scientific context.
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cyclobutane products with moderated to excellent diaster-
eoselectivity (Scheme 1B-I).7f–h (4) Palladium hydride enabled
hydroalkenylation of BCBs to afford 1,1-disubstituted cyclo-
butanes (Scheme 1B-II).16 (5) Polarity-reversal strategy. In 2020,
Gryko's group disclosed elegant work on Umpolung BCB acti-
vation with Co(I) complexes. Co(I)-catalysis allowed the in situ
formation of nucleophilic cyclobutyl radicals upon light-driven
homolysis of the intermediate Co(III)–alkyl species. This can
react with electrophiles to give 1,3-disubstituted cyclobutanes
with up to a 75 : 25 d.r. value (Scheme 1B-III).17 Besides these, (6)
oxygenophilic Lewis acid catalyzed ring-opening reactions of
BCBs with electrophiles and nal intramolecular E1 elimina-
tion giving rise to cyclobutene products (Scheme 1B-IV).18

Despite signicant progress, the above strategies are typi-
cally plagued with diastereoselectivity issues. Among them, the
known strategy to solve the diastereoselectivity issues and
synthesize 1,1,3-trisubstituted cyclobutanes had been limited to
palladium and oxygenophilic bismuth Lewis acid catalysis,
which were developed by Aggarwal's group7f,h and Biju's group,
respectively.19 Therefore, the development of novel transition
metal catalyzed methodologies and exploration of further
reaction pathways of BCBs is of great value to BCB chemistry.

In the 1970s, Paquette20a,b and others20c–e have shown that
BCBs are capable of silver catalyzed rearrangements. Mecha-
nistic studies suggested that the argento cationic intermediate
formed by cleavage of an edge bond of BCBs could further
undergo rearrangement to generate 1,3-dienes (Scheme 1C). On
the basis of our experience in strained ring chemistry21 and in
order to expand the library of known BCBs, we envisioned that
such a carbophilic silver catalysis strategy would enable
a different approach to access the cyclobutyl cations from direct
activation of the central bond of BCBs. The capture of this
intermediate with a naphthol (or phenol) would lead to the
formation of the aimed 1,1,3-trisubstituted cyclobutane via
Friedel–Cras-type C-alkylation and protodemetalation.
However, there are challenges associated with this hypothesis:
© 2023 The Author(s). Published by the Royal Society of Chemistry
(i) the issue of site-selectivity (C–C bond cleavage: edge bond
versus central bond);20 (ii) the chemoselectivity issue (C- versus
O-cyclobutylation);15a,b (iii) the competitive bicyclobutane-to-
cyclobutene isomerization.18 Besides these, (iv) the other
problem that needs to be solved is the control of the
diastereoselectivity.
Results and discussion

To test the hypothesis, we initiated our investigation from the
reaction of BCB 1a and 2-naphthol (2a). Aer screening of
various reaction parameters, we found that the desired C(sp2)–
H cyclobutylation occurred with AgBF4 (2.5 mol%) as the cata-
lyst in toluene/DCE (1 : 1) at 100 °C; cis-3aa was obtained in 85%
NMR yield with a 95 : 5 d.r. value along with 11% NMR yield of
4a resulting from isomerization of 1a (Table 1, entry 1). Control
experiments showed that both the amount and type of silver salt
and the solvent are essential (entries 2–5). The reactions with
commonly used Brønsted and oxygenophilic Lewis acid
including TfOH, TsOH, Ga(OTf)3, Sc(OTf)3, Cu(OTf)2, and FeCl3
afforded desired products with poor yield and diaster-
eoselectivity (entries 6–8; see the ESI† for the complete set of
optimization data). Of note, when Zn(OTf)2 was employed, 63%
NMR yield of O-nucleophilic ring-opening product 5aa was ob-
tained as the major product (entry 9).

Under the optimized conditions, we next explored the
substrate scope of BCBs as summarized in Table 2. We rstly
examined the nature of the ester group and both alkyl (3aa–3ca,
entries 1–3) and benzyl (entry 4, 3da) esters were obtained in
good yield with good to excellent diastereoselectivity. The
reaction of phenyl ester 1e was also successful yet with eroded
diastereoselectivity (entry 5). Different from Biju's work, apart
from BCB esters, 1,3-disubstituted bicyclobutanes bearing other
electron-withdrawing groups such as BCB ketone 1f, Weinreb
amide derived BCB 1g and sulfonyl BCB 1h provided the cor-
responding ring-opening products in acceptable yield with up
Chem. Sci., 2023, 14, 9696–9703 | 9697
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Table 1 Selected examples of the optimization of C(sp2)–H cyclobutylationa

Entry Variation cis-3aa yb (%) (d.r. = cis/trans) 4a yb (%) 5aa yb (%)

1 None 85 (95 : 5) 11 0
2c 10 mol% AgBF4 was used 73 (94 : 6) 14 0
3c 10 mol% AgBF4 in toluene 78 (91 : 9) 17 0
4c 10 mol% AgBF4 in DCE 51 (94.5 : 5.5) 9 0
5d AgOTf instead of AgBF4 61 (83 : 17) 18 0
6d TfOH instead of AgBF4 0 0 0
7d TsOH$H2O instead of AgBF4 75 (77 : 23) 8 0
8d Ga(OTf)3 instead of AgBF4 37 (77 : 23) 0 0
9d Zn(OTf)2 instead of AgBF4 9 (62 : 38) 31 63

a The reactions were performed with 1a (1.2 equiv.), 2a (1.0 equiv.) and AgBF4 (2.5 mol%) in toluene/1,2-dichloroethane(DCE) (1 : 1, v/v) at 100 °C for
3 h. b NMR yield with CH2Br2 as an internal standard. c 1a (1.1 equiv.) was used. d 1a (1.1 equiv.), 2a (1.0 equiv.) and the catalyst (10mol%) in toluene
at 80 °C for 12 h.

Table 2 Survey of the scope of BCBsa

Entry R1 EWG Yieldb (%) d.r.c

1 Ph CO2Me 80 (3aa) 95 : 5
2 Ph CO2Et 80 (3ba) 93 : 7
3 Ph CO2iPr 76 (3ca) 90 : 10
4 Ph CO2Bn 77 (3da) 93 : 7
5 Ph CO2Ph 64 (3ea) 81 : 19
6 Ph C(O)(2-naphthyl) 50 (3fa)d 86 : 14
7 Ph C(O)NMe(OMe) 80 (3ga) >98 : 2
8 Ph SO2Ph 56 (3ha)d 67 : 33
9 4-MeC6H4 CO2Me 76 (3ia) >98 : 2
10 4-CF3OC6H4 CO2Me 74 (3ja) 92 : 8
11 4-FC6H4 CO2Me 80 (3ka) >98 : 2
12 4-CF3C6H4 CO2Me 25 (3la) >98 : 2
13 3-MeC6H4 CO2Me 75 (3ma) >98 : 2
14 3-FC6H4 CO2Me 76 (3na)d 80 : 20

a Unless otherwise noted, the reactions were performed with 1 (0.36
mmol), 2a (0.3 mmol) and AgBF4 (2.5 mol%) in toluene/1,2-
dichloroethane(DCE) (1 : 1, v/v, 2 mL) at 100 °C for 3 h. b Isolated
yield of cis-3. c Determined by 1H NMR spectroscopic analysis of the
crude reaction product. d Combined isolated yield of the
diastereomers which cannot be separated by chromatography.
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to >98 : 2 d.r. (3fa–3ha, entries 6–8). The sulfonyl group is
a localizing electron-withdrawing group, which stabilizes the
negative charge by exerting mainly an inductive effect. By
contrast, the carbonyl group is a charge delocalizing group.15a

Notably, sulfonyl BCB is a suitable substrate in our silver-p-acid
9698 | Chem. Sci., 2023, 14, 9696–9703
catalytic system. However, it is not compatible with Biju's oxy-
genophilic bismuth Lewis acid catalytic system.19 This result
implies that the cationic Ag catalyst could preferably activate
the bridging C–C bond in BCB without the need to coordinate to
the ester oxygen. Subsequently, a variety of substituents at the
aromatic ring of BCB esters have been examined. BCBs with
substituents in the para- and meta-positions were compatible
with our catalyst system and afforded the corresponding 1,1,3-
trisubstituted cyclobutanes in good yield with up to > 98 : 2 d.r.
(3ia–3na, entries 9–14). The replacement of methyl (1i) by
a strongly electron-withdrawing CF3 group (1l) was an exception
as the yield decreased from 76% for 3ia to 25% for 3la (entry 9
vs. entry 12). It is probably because the BCB containing an
electron-decient unit can't stabilize the in situ generated
cyclobutyl cation.

We then examined the scope of naphthols and phenols
(Scheme 2).This method is amenable to a series of 2-naphthols
bearing different R3 substituents, including aryl (2b 22 and 2f),
halogen (2c, 2h and 2j), and propargyl (2g) groups at the C4–C7
positions of 2-naphthols, and led to the corresponding trisub-
stituted cyclobutanes with synthetically useful phenoxy func-
tionalities, in moderate to excellent yields (43–92%) with up to
>98 : 2 d.r. 1-Naphthols also furnished the corresponding
product with good yield and excellent diastereoselectivity (2k–
m). Relatively low yields and selectivities were observed with p-
methoxy- and phenyl-substituted phenols (3an and 3ao), while
3,5-dimethylphenol (2p) afforded the corresponding product in
a good yield and d.r. value.

The reaction proved to be easily scalable and was performed
on a preparative scale (1.0 mmol) without any loss in efficiency
and selectivity, furnishing the product cis-3am in 81% yield with
>98 : 2 d.r. (Scheme 3). The synthetic utility of the products was
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Scheme 2 Survey of the scope of naphthols and phenols.a–d a The
reactions were performed with 1a (0.36 mmol), 2b–p (0.3 mmol) and
AgBF4 (2.5 mol%) in toluene/1,2-dichloroethane(DCE) (1 : 1, v/v, 2 mL)
at 100 °C for 3 h. b Isolated yield of cis-3. c d.r. value was determined by
1H NMR spectroscopic analysis of the crude reaction product.
dCombined isolated yield of the diastereomers which cannot be
separated by chromatography.
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demonstrated by carrying out a series of functional group
interconversions of the phenolic hydroxyl- and ester groups. On
one hand, a number of different groups, including the phos-
phine group (7), H (8) and alkyl group (9), could be incorporated
into the aromatic ring via cross-coupling aer converting the
phenoxy group into triate 6. On the other hand, ester 3aa can
undergo addition, hydrolysis and reduction reactions to give
tertiary alcohol 9, carboxylic acid 10 and primary alcohol 12
respectively. Notably, 1-benzoxepin derivatives 11 and 13
Scheme 3 Scale-up synthesis and synthetic transformations.

© 2023 The Author(s). Published by the Royal Society of Chemistry
featuring a bridged ring system can be synthesized through
Keck macrolactonization and intramolecular Mitsunobu reac-
tions respectively.

To interrogate the mechanism, a series of control experi-
ments were conducted. The desired reaction did not occur when
2-methoxynaphthalene was employed (Scheme 4A). Moreover,
the deuterium labeling experiment conrmed the critical role of
the hydroxyl group of naphthol in those C(sp2)–H cyclo-
butylations (Scheme 4B). When 3aa with 75 : 25 d.r. was applied
under the standard conditions, no change in the diaster-
eoselectivity of 3aa was found (see, ESI†). This result suggests
that high diastereoselectivity may not be obtained via an
isomerization pathway (trans- to cis-3aa). The treatment of 4a
with standard conditions gave 3aa in 22% NMR yield. However,
cyclobutene 4a was far less reactive than bicyclobutane 1a
(Scheme 4C versus Table 1 entry 2).

To further elucidate the mechanistic details of this reaction
and to explain the observed stereoselectivity, density functional
theory (DFT) calculations23 were carried out on the model
reaction of BCB 1a and 2-naphthol (2a) promoted by the silver
catalyst. On the basis of the control experiments and DFT
calculations, a plausible catalytic cycle for this diaster-
eoselective transformation is summarized in Scheme 5 (we have
considered different possible reaction pathways, and only
discuss the most favorable one here; for more details see the
ESI†). The molecular orbital analysis of 1a reveals that the
bridging C–C bond exhibits the characteristics of a p-bond
(Fig. S1†). Thus, the cationic Ag catalyst (a typical p-acid) pref-
erably activates the bridging C–C bond rather than the C]O
bond, leading to the ring-opening of BCB and formation of the
carbon cation intermediate A (Fig. S2†). Then, the nucleophilic
attack of A by the p-bond of 2a forms a new C–C bond and
affords the intermediate B. Next, another molecule of 2a enters
into the reaction with its p-bond coordinating to the p-acidic Ag
atom of B, followed by 1,3-migration of Ag, leading to a silver
enolate intermediate C with a hydrogen bond between the
hydroxyl group and the enolate carbon. Subsequently, the
proton is facilely transferred from the hydroxyl group to the
enolate carbon of the BCB moiety, releasing the naphthol silver
salt D and giving the protonated intermediate E. The process
from B to E can be viewed as the replacement of the Ag atom by
Scheme 4 Mechanistic experiments.

Chem. Sci., 2023, 14, 9696–9703 | 9699
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Scheme 5 Proposed mechanism. The values in brackets are calcu-
lated relative Gibbs free energies (in kcal mol−1).
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the proton. This process would not change the stereochemistry
of the BCB carbon, because the substrate 2a could only
approach the BCB ring from the top direction by coordination
with the Ag atom (for more energetic and geometric informa-
tion see Fig. S3 and S4†). In addition, this is in agreement with
the deuterium labeling experiment (Scheme 4B) that the proton
in the product is from the hydroxyl group of 2a. Finally, the
naphthol anionmoiety ofD abstracts the proton of E, producing
the nal major product cis-3aa and releasing F, in which the p-
acidic Ag+ catalyst is coordinated by the p-bond of 2a.

The DFT studies show that the diastereoselectivity is deter-
mined by the nucleophilic attack step (A / B), where the
nucleophile 2a approaches the carbocation A through either the
top or the bottom directions, nally leading to isomers of trans-
and cis-3aa, respectively. The transition states for these two
nucleophilic attack modes are compared. As shown in Scheme
6, there is a hydrogen bond interaction in TS2-cis, which helps
to stabilize this transition state. In contrast, it shows
Scheme 6 Comparison of the two transition states for the formation
of cis- and trans-3aa. The selected bond distances are in Å.

9700 | Chem. Sci., 2023, 14, 9696–9703
electrostatic repulsion between the acidic hydrogen and the
positive Ag center in TS2-trans, which hinders this nucleophilic
attack. Thus, TS2-cis is lower than TS2-trans by 3.3 kcal mol−1,
which well agrees with the experiment that cis-3aa is the major
product. It is of note that the nucleophilic attack could also
occur by the oxygen atom of 2a. However, the calculations show
that this O-nucleophilic attack is less favorable than both TS2-
cis and TS2-trans (Fig. S3 and S5†). In addition, the reaction of
cyclobutene 4a with 2a to form 3aa is also examined by DFT
calculation, which is predicted to have a higher activation
barrier (Fig. S6†), in agreement with lower yields (Scheme 4C).
Conclusion

In summary, by taking advantage of hydroxyarenes as C-nucle-
ophiles rather than O-nucleophiles in unusual silver catalyzed
polar strain-release ring-opening of BCBs, an atom-economic
and highly selective method (up to >98 : 2 d.r.) for the
synthesis of 1,1,3-trisubstituted cyclobutanes was developed.
The salient features of this transformation include readily
available starting materials, low catalyst loading, wide
functional-group compatibility, versatile functionalizations of
the cyclobutane products and scalability. Notably, mechanistic
experiments and DFT calculations were performed to gain
insights into the reaction mechanism, which shows that the
silver catalyst acts as a carbophilic p-acid rather than an oxy-
genophilic Lewis acid to effectively activate the BCB bridging C–
C bond and promote the transformation. The diaster-
eoselectivity is determined by hydrogen bond interaction and
steric repulsions in the nucleophilic attack step. This reactivity
mode may open opportunities for the development of other
reaction processes.
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