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The selective installation of fluorine-containing groups into biologically relevant molecules has been used

as a common strategy for the development of pharmaceutically active molecules. However, the selective

incorporation of gem-difluoromethylene groups next to sterically demanding secondary and tertiary

alkyl groups remains a challenge. Herein, we report the first cobalt-catalyzed regioselective

difluoroalkylation of carboxylic acid salts. The reaction allows for the facile construction of various

difluoroalkylated products in good yields tolerating a wide range of functionalities on either reaction

partner. The potential of the method is illustrated by the late-stage functionalization of molecules of

biological relevance. Mechanistic studies support the in situ formation of a cobalt(I) species and the

intermediacy of difluoroalkyl radicals, thus suggesting a Co(I)/Co(II)/Co(III) catalytic cycle.
Fig. 1 Select fluorine-containing therapeutics.
Introduction

The incorporation of uorine into organic substructures is one
of the most widely studied areas of synthetic organic chemistry
due to the numerous applications that uorinated compounds
possess.1 The gem-diuoromethylene unit is an important
therapeutic moiety because of its ability to increase metabolic
stability2 or improve the pharmacokinetic properties of mole-
cules.3 The signicance of this structural motif in drug
discovery is further illustrated by the large variety of
diuoroalkane-containing pharmaceutical compounds such as
HIV-1 therapeutic agents,4 and chemotherapy drugs (Fig. 1).5

However, the incorporation of these uorinated linkages
remains a signicant synthetic challenge and still relies on
traditional methods such as the use of nucleophilic or electro-
philic uoride sources (e.g., DAST or Selectuor).6

In recent years, transition metal-catalyzed cross-couplings
have emerged as convenient strategies for the construction of
uorine-containing organic compounds.6h,7–12 Recent efforts
have led to the construction of various C(sp2 or sp)–CF2R bonds
where the uorinated alkane is oen connected to the aryl,13

vinylic,12f,14 or propargylic9f,11b,15 positions. In contrast, the
selective installation of the diuoromethylene group adjacent to
aliphatic all carbon quaternary C(sp3)-centers remains innately
challenging and sparsely reported (Scheme 1).11c,12b,16,17

Nonetheless, integrating quaternary carbon centers has the
potential to impart conformational rigidity and metabolic
stability, leading to improved pharmacokinetic properties of
Scheme 1 Decarboxylative difluoroalkylations.
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Table 1 Initial optimization results

Entry Variations in conditions Yielda 3a : 3a′ [%]

1 — 84(77) : 16
2 No cobalt —
3 No ligand —
4 10 mol% of CoBr2 15 : 30
5 15 mol% of CoBr2 24 : 36
6 Co(BF4)2 instead of CoBr2 40 : 80
7 CoI2 instead of CoBr2 54 : 19
8 DMF, DMSO, THF instead of MeCN <25
9 60 °C instead of 95 °C 40 : 18
10 dppe instead of dppBz 31 : 52
11 dppf instead of dppBz 45 : 50
12 dtbbpy instead of dppBz 42 : 28

a Yields determined by quantitative 1H NMR analysis. Numbers in
parentheses are isolated yields.
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molecules.18 With this in mind, we set out to develop diuor-
oalkylation of quaternary benzyl nucleophiles for the facile
construction of all carbon quaternary C(sp3)–CF2 bonds.

We envisioned leveraging decarboxylation as an efficient
strategy for the generation of benzylic nucleophiles from
organic acids.19 There are a few reports on decarboxylative
diuoroalkylations known in the literature.20,20d,21,22 Altman and
co-workers have previously developed decarboxylative electro-
philic benzylations of diuoroenolate nucleophiles (Scheme
1A).23 Although the chemistry proved highly effective for the
diuoroalkylation of primary electron-rich benzyl electrophiles,
the outcomes were substantially worse with electron-decient
benzyl electrophiles. Furthermore, coupling of 2° or 3° benzyl
electrophiles was not possible. To address the challenge of
diuoroalkylation of sterically-demanding benzyl moieties, we
posited an alternate strategy involving umpolung of the reactive
intermediates (i.e. using benzyl nucleophiles with a,a-diuor-
ocarbonyl electrophiles).

Results and discussion

To begin, we took inspiration from Wang's cobalt-catalyzed
gem-diuoroalkylation of a-tertiary aryl ketones (Scheme
1B).12b While that chemistry required the use of stoichiometric
LDA and 50 mol% Zn reductant, it was anticipated that
a decarboxylative coupling strategy would allow additive-free
synthesis under more neutral conditions.24

We initiated our studies by optimizing the conditions for the
cobalt-catalyzed diuoroalkylation of 2-methyl-2-(4-
nitrophenyl)propanoic acid potassium salt (1a) with bromodi-
uoroacetate (2a) using the conditions adapted from a related
allylation study.24 Interestingly, with 10 mol% CoBr2 and
10 mol% of dppBz, we observed the corresponding diuor-
oalkylated (3a) in reasonable yields along with 30% of the
protonated product 3a′ (Table 1, entry 4). Gratifyingly, when the
cobalt loading was increased to 20 mol%, we observed the
highest yield (81%) for the diuoroalkylated product 3a and
decreased amount of the protonated byproduct 3a′ (Table 1,
entry 1). Control studies conrmed the necessity of both cobalt
and the ligand for efficient reactivity (Table 1, entries 2 & 3).
Replacing CoBr2 with other cobalt sources such as Co(BF4)2 or
CoI2 gave decreased yields of 3a (Table 1, entries 6 & 7). The
initial solvent of choice, MeCN, was found to be the best for the
reaction (Table 1, entry 8). Various bis-phosphine and diamine-
containing ligands were screened; however, all of them failed to
give an improvement in yield compared to that of dppBz (Table
1, entries 10–12). Aer additional screenings (see ESI† for more
details), it was determined that CoBr2 (20 mol%), dppBz
(10 mol%), and 1a (12 mol%) in CH3CN at 95 °C were optimal
for this reaction, producing the desired product 3a in 77%
isolated yield.

With the optimized conditions in hand, we sought to expand
the protocol to accommodate other uoroalkylating reagents
and carboxylate salts, enabling the construction of a unique
range diuoroalkyl groups. Remarkably, in all cases, the
product formation was regiospecic, with the C–CF2 bond
formation occurring at the site where decarboxylation had
© 2023 The Author(s). Published by the Royal Society of Chemistry
occurred (3h & 3j–k). A wide range of potassium salts of various
substituted 4-nitrophenyl acetic acids were found to be tolerant
to the reaction conditions, providing the coupled products in
moderate to good yields (Scheme 2). In addition to a simple
methyl substituent (3a; 77%), the alkyl chain was extended to
accommodate other longer alkyl chains (3b; 66% and 3c; 36%),
albeit with lower yields. Both benzylic- and homobenzylic-
substituted carboxylate salts gave reasonable yields for the
corresponding uoroalkylated product (3d; 45% and 3e; 56%). A
carboxylate salt containing a cyclopentyl group at the alpha
position gave the subsequent uoroalkyated product in 60%
yield (3g). Carboxylate salts bearing other important functional
groups such as ester (3h; 55%), ether (3i; 49%), nitrile (3j; 61%),
and ketone groups (3k; 71%) were all tolerated under the reac-
tion conditions. Owing to the biological importance of hetero-
cyclic compounds, the pyridine-containing carboxylate salt 1l
was tested under our reaction conditions. We were delighted to
nd that 1l also underwent the transformation to deliver the
corresponding diuoroalkylated product 3l in 82% yield. While
many couplings occurred to provide products in moderate to
good yield, it was noted that, as the steric hindrance around the
quaternary carbon increased, the yields of coupling were
adversely affected. This was especially clear with the naphthyl-
substituted salt giving only 28% of the corresponding diuor-
oalkylated product (3m). Similar results were obtained with the
a-phenyl carboxylate salt, giving only 28% of the corresponding
diuoroalkylated product 3o. In instances with lower yields for
the product, the mass balance was always accounted for by the
amount of the protonated byproduct isolated.

Additionally, the scope of different diuorobromo coupling
partners was explored. Various acetamides, both cyclic and
acyclic, were found to be well-tolerated during this
Chem. Sci., 2023, 14, 13902–13907 | 13903
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Scheme 2 Scope of decarboxylative difluoroalkylations. a Scope of nitro carboxylates. b Scope of difluorobromo alkanes. c All reactions were run on
a 0.1 mmol scale. Yields reported are isolated yields. Reaction conditions: CoBr2 (20 mol%), dppBz (10 mol%), 1a (12 mol%), CH3CN (2 mL), 95 °C.

Scheme 3 (a) Larger-scale reaction. (b) Synthetic utility.
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transformation. Cyclic piperidine (3p; 66%), piperazine (3q;
64%), morpholine (3r; 77%), indoline (3s; 70%), and tetrahy-
droisoquinoline (3t; 75%) derived acetamides gave the corre-
sponding uoroalkylated product in good yields. The reaction
was even successful with a uoxetine-derived diuoro-
bromoacetamide providing the corresponding cross-coupled
product in 67% yield (3v). Simple alkyl substituted diuor-
oacetamides such as N-propyl (3w), N-cyclohexyl (3x), N-cyclo-
propyl (3y), N-benzyl (3z), and N-isopropyl (3aa) were also found
to undergo the transformation efficiently, with the cyclopropyl
ring staying intact under the reaction conditions. Importantly,
a diuorobromoacetamide derived from L-phenylalanine also
gave the cross-coupled product 3ab in 88% yield, without any
observable racemization of the existing stereocenter (see ESI†
for more details). This highlights the utility of decarboxylative
couplings that obviate strong-base additives.12b The reaction
with a gabapentin-derived diuorobromoacetamide likewise
proceeded in good yield, and could be scaled up to a 1 mmol
scale without large reduction in the yield (Scheme 3a).
13904 | Chem. Sci., 2023, 14, 13902–13907 © 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Mechanistic insights. (a) Competition experiment (b) radical evidence (c) sequence of SET (d) hypothetical difluoroalkylation mechanism.
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Finally, we further demonstrated the synthetic potential of
this cobalt-catalyzed decarboxylative diuoroalkylation method
through the synthetic modication of the diuoroalkylated
products. For example, the resulting gabapentin-derived
product 2m can be selectively reduced under Zn/AcOH condi-
tions to the aniline derivative 4a. Moreover, the reduction of the
ester group using BH3$SMe2 provides the corresponding
alcohol 4b which can undergo further derivatizations (Scheme
3b).

To gain more insight into the mechanism of this cobalt-
catalyzed decarboxylative diuoroalkylation reaction, a series
of different experiments was performed. A competition experi-
ment between bromodiuoroacetate (2a) and bromodi-
uoroacetamide (2d) showed that 2a reacted 10× faster than the
related amide (2d) (Fig. 2a). This rate difference could result
either from the more favorable oxidative addition of the bro-
modiuoroacetate to Co(I) or preferential single electron
transfer from Co(I). Expectedly, the more electron decient
bromodiuoroacetates are easier to reduce than bromodi-
uoroacetamides.25 Importantly, concerted oxidative addition
vs. single electron transfer pathways are distinguished by the
intermediacy of a diuoroalkyl radical in the latter pathway.

With this in mind, a radical clock experiment was performed
with substrate 2p, which delivered the cyclized product 4c in
17% yield along with protocyclized product 4d and the dehy-
drocyclized product 4e in 15% and 35% respectively. Beyond
that, a TEMPO trapping experiment showed the formation of
adduct 4g in 37% yield and produced less than 5% of the
coupled product (3a). Furthermore, the use of an external
radical trap such as styrene delivered the corresponding three-
© 2023 The Author(s). Published by the Royal Society of Chemistry
component coupled product via a regioselective radical trap-
ping pathway that furnished the product 4i exclusively (Fig. 2b).
Based on our previous mechanistic studies for the cobalt-
catalyzed decarboxylative allylation reaction, we have
proposed the formation of an L1Co(I) species as the active
catalytic species under these reaction conditions (see ESI for
details; Fig. S10†).24 Furthermore, since the addition of the
uoroalkylating agent (2a) to the active Co–Br catalyst didn't
show any evidence for irreversible bond scission products while
being monitored using 19F NMR, we propose that decarbox-
ylative metalation to form the more electron-rich alkyl-Co
species might occur prior to SET (Fig. 2c, see ESI† for details).

Taken together, we propose the following mechanism for the
cobalt-catalyzed decarboxylative diuoroalkylation reaction
(Fig. 2d). The reduction of the CoBr2/dppBz complex by the
carboxylate 1a generates the catalytically active Co(I) species
(A).24 Decarboxylative metalation generates species B,19 which in
turn reduces the diuoro alkyl bromide via SET, generating the
diuoroalkyl radical C. Radical C undergoes subsequent radical
oxidation and trapping by the cobalt complex to form species D.
Reductive elimination from complex D delivers the diuror-
oalkyated product and regenerates the active cobalt(I) species.
Conclusions

In summary, we have developed a simple and efficient method
for the regioselective diuoroalkylation of potassium salts of
carboxylic acids. This cobalt-catalyzed decarboxylative approach
allows for the facile construction of quaternary C(sp3)–CF2
bonds in a fully regio- and chemoselective fashion in moderate
Chem. Sci., 2023, 14, 13902–13907 | 13905
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to good yields. The reaction proceeds with moderate to good
efficacy, modest functional group tolerance, as well as a broad
substrate scope, producing molecular CO2 and KBr as the only
waste by-products. Mechanistic studies demonstrated a single
electron transfer to the diuoroalkyl halides from a Co(I) species
leading to the formation of a discrete diuoroalkyl radical.
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