Sensors & Diagnostics

PAPER

Cite this: Sens. Diagn., 2023, ², 361

Recent advances in $MoS₂$ -based nanomaterial sensors for room-temperature gas detection: a review

Xu Tian[,](http://orcid.org/0000-0001-5152-2667)^a Shanli Wang,^a Haoyu Li,^a Mengyao Li,^a Ting Chen,*b Xuechun Xiao*^a and Yude Wang iD^{*c}

The two-dimensional (2D) material, MoS₂, has attracted great attention in the development of roomtemperature gas sensors in recent years due to its large specific surface area, ultra-high carrier mobility, strong surface activity, and high adsorption coefficient. However, pristine MoS₂ gas sensors still exhibit some drawbacks such as low sensing response, sluggish recovery process, and incomplete recovery, which are unfavorable for the application of gas sensors. Therefore, significant efforts have been devoted to the design of specific MoS₂-based gas sensors with enhanced sensing properties. In this review, we aim to discuss the recent advances in $Mo₂$ -based nanomaterial sensors for room-temperature gas detection. Firstly, some strategies to improve the gas sensing performance of $MoS₂$ -based gas sensors are introduced, including designing morphologies, creating sulfur vacancies, decorating noble metals, doping elements, introducing light, and constructing composites. Secondly, the types of gases that can be detected by MoS2-based gas sensors are proposed and summarized, and their sensing mechanisms are also analyzed. Finally, an outlook is presented and the future research directions and challenges are discussed. **PAPER**
 PAPER SECTION ANDRE SECTION CONTINUES AND CONTINUES ARENT CONTINUES AND ASSESS TO TOOM 1. PAPER CHEM SECTION 2018
 PAPER SECT

Received 17th November 2022, Accepted 22nd December 2022

DOI: 10.1039/d2sd00208f

rsc.li/sensors

1. Introduction

The detection of toxic and harmful gases is important to ensure the safety of life and protect the environment. In the past few decades, semiconductor metal oxide (SMO) gas sensors have been the dominant tools for the detection of toxic gases such as volatile organic compounds (xylene, toluene, formaldehyde (HCHO), ammonia $(NH₃)$, acetone, ethanol, methanol, and isopropanol), flammable and explosive gases (methane (CH₄), hydrogen (H₂), propane (C_3H_8) , carbon monoxide (CO), hydrogen sulfide (H_2S)), nitrogen oxides (nitrogen monoxide (NO), nitrogen dioxide $(NO₂)$), sulfur oxides (sulfur dioxide $(SO₂)$), and carbon oxides (carbon dioxide (CO_2)). To date, SMO gas sensors still occupy the central position in the field of gas detection due to their high sensing response, fast response/recovery time and excellent reproducibility. However, some deficiencies

presented by SMO gas sensors include their poor selectivity and high operating temperature, which have not been addressed to date. In particular, their high operating temperature will be detrimental to energy saving and limit their application in some special fields. Therefore, it is necessary to develop low-power, high-sensing performance gas sensors.

Recently, several reports have revealed that the emerging two-dimensional (2D) materials exhibit a sensing response to toxic gases at low/room temperature, which not only solves the problem of high power consumption of traditional gas sensors to a certain extent but also enable them to be applied in flexible wearable electronic devices to provide great convenience and achieve intelligent life. The 2D materials include reduced graphene oxide $(rGO)_1$ ¹ transition metal dichalcogenides $(TMDs)$, black phosphorus (BP) , hexagonal boron nitride $(h-BN)$,⁴ and transition metal carbides, nitrides and/or carbonitrides $(MXenes)$,⁵ which can be considered as promising gas sensing materials owing to their unique single-atom layer structure. Specifically, they exhibit high specific surface area close to the theoretical extreme, excellent semiconductor performance, unique surface configurations with dangling bonds on their edge sites, and flexible basal planes.⁶⁻¹⁰ Among them, the layered TMDs with the composition of MX_2 (M = Ti, Zr, Hf, V, Nb, Ta, Mo, W, Tc, Re, Pd, and Pt and $X = S$, Se, and Te)¹¹ have gained intensive attention as gas sensing materials because of their strong

^a National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, 650091 Kunming, People's Republic of China. E-mail: xchxiao@ynu.edu.cn; Fax: +86 871 65153832; Tel: +86 871 65035570

 b Institute of Materials Science & Devices, School of Materials Science and</sup> Engineering, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China. E-mail: chenting@mail.usts.edu.cn

 ϵ Key Lab of Quantum Information of Yunnan Province, Yunnan University, 650091 Kunming, People's Republic of China. E-mail: ydwang@ynu.edu.cn

Paper Sensors & Diagnostics

spin–orbit coupling interaction, tunable electronic properties, and high interaction ability for the adsorption of gas molecules.^{12,13} Among the TMDs, the semiconductor MoS_2 and WS_2 with atomically thin-layered structures, lower bandgap, abundant edge active sites, and excellent electrical and/or chemical properties exhibit good gas sensing abilities at room temperature (RT) .¹⁴⁻¹⁶ In particular, MoS₂ has become the most ideal gas sensing material $17,18$ owing to its ultra-high carrier mobility, high adsorption coefficient, tunable bandgap (1.2–1.9 eV), and excellent field-effect transistor behavior.^{19–22} These parameters have a positive impact on the sensitivity and stability of gas sensors and the designability of novel sensing materials based on $MoS₂$. $MoS₂$ presents four crystal structures including 1H, 1T, 2H, and 3R, which are defined by the coordination relationship between the Mo and S atoms and the stacking order between their layers, as shown in Fig. 1. The numbers 1, 2, and 3 represent the number of S–Mo–S layers in each unit cell, while the letters T, H, and R represent triangle, hexagonal, and rhombohedral, respectively. The $1T-MoS₂$ phase shows metallic nature, whereas the $2H-MoS₂$ phase exhibits semiconductor characteristic (n-type). In terms of thermodynamics, besides the 2H phase, three other crystal phases of $MoS₂$ possess a metastable structure, which can also be transformed under certain conditions.²³ Therefore, the thermodynamically stable $2H-MoS₂$ structure dominates current applications.²⁴ **Paper**
 Sensors a biancheology of the adoption of age schedular of age schedular contents are contributed on 2022.
 **Sensitive article is article in a creative contribution of a sensitive contribution-and independent

a**

Recently, several review papers highlighted 2D layered material-based resistive sensors.^{8,25,26} These works emphatically discussed the synthesis methods, gas sensing application of TMDs, and the sensing mechanisms of TMDs van der Waals nanocomposite junctions. Considering the advantages of $MoS₂$ and its potential application in developing room-temperature gas sensors, herein, we mainly review the recent advances of $MoS₂$ nanomaterial-based gas sensors for room temperature detection. Based on the existing review papers, we further present the development of $MoS₂$ gas sensors and discuss them in detail. Initially, we discuss some strategies for improving the gas sensing properties of MoS₂. Subsequently, we summarize the types of toxic gases that $MoS₂$ can sense at RT. Moreover, the sensing mechanisms of $MoS₂$ -based gas sensors towards different gases are also discussed. Furthermore, we conclude this review with some perspectives and outlooks on this new trend in the field of gas sensing.

2. Strategies to improve the gas sensing performance of $MoS₂$

Although $MoS₂$ has shown great advantages in the development of room temperature gas sensors, it still faces some challenges, for instance, due to the stacking of the S– Mo-S layers, bulk $MoS₂$ does not have sufficient contact with gas molecules and forms poor conductive network signals, which lead to a low response value and slow response recovery rate. Especially, the incomplete recovery at RT is a severe challenge for MoS_2 -based gas sensors. In this regard, more efforts have been devoted to designing specific $MoS₂$ based RT gas sensors with enhanced sensing properties. The improvement strategies include designing morphologies, creating sulfur vacancies, decorating noble metals, doping elements, introducing light, and constructing composites. In this part, we summarize the above-mentioned strategies for improving the gas sensing performance of $MoS₂$ materials.

2.1 Morphology design

For sensing applications, the morphology of $MoS₂$ plays a crucial role in enhancing the sensing performance by providing more reactive sites. A change in the morphology of

Fig. 1 Different polymorphs or phases of MoS₂: (a) 1H phase, (b) 1T phase, (c) 2H phase, and (d) 3R phase. Reprinted with permission from ref. 24. Copyright 2015, The Royal Society of Chemistry.

 $MoS₂$ refers to its dimensions, which can be varied from zero, one, and two to three-dimensional nanostructures. $MoS₂$ with different dimensions exhibit unique physical and optoelectronic properties, defects, exposed facets, porosity, atomic configuration, 27 and thus its gas sensing properties will also be different. When $MoS₂$ is compressed to zerodimensional, completely special electronic and photophysical properties are generated due to the quantum confinement and edge effects, 28 such as a higher direct bandgap of 3.96 $eV₁²⁵$ larger edge-to-volume ratio, and higher in-plane electron transport rate. Niu et al^{29} synthesized MoS₂ quantum dots (MQDs) via the combined high speed shear, sonication and solvothermal treatment of bulk $MoS₂$ in N, N-dimethylformamide. Fig. 2a shows the HRTEM image of MQDs with an average size of 7.8 nm. $NH₃$ and $NO₂$ gases were recognized by the MQD sensor at RT. The dynamic sensing response of the MQD sensor towards various concentrations of $NO₂$ (Fig. 2b) and $NH₃$ (Fig. 2c) revealed that it had almost the same response value for both gases. However, the recovery was not complete due

Fig. 2 (a) HRTEM of MQDs. Dynamic response of the MQDs (green) upon exposure to increasing (b) $NO₂$ and (c) $NH₃$ concentrations. Reprinted with permission from ref. 29. Copyright 2016, The Royal Society of Chemistry. (d) SEM image of MoS₂ nanowires. Transient response of the MoS₂ nanowire sensor at (e) room temperature (RT) and (f) 60 °C. Reprinted with permission from ref. 30. Copyright 2018, AIP Publishing. (g) AFM image of single-layer MoS₂ sheet. Comparative two- and five-layer MoS₂ cyclic sensing performances with (h) NH₃ and (i) NO₂ (for 100, 200, 500, and 1000 ppm). Reprinted with permission from ref. 31. Copyright 2013, the American Chemical Society. (j) SEM images of MoS₂ nanoflowers. (k) Responses curves of MoS₂, SnO₂, and SnO₂/MoS₂ sensors to various concentrations (1-200 ppm) of NH₃. (I) Resistance curves of MoS₂, SnO₂, and $SnO₂/MoS₂$ to 50 ppm of NH₃ at room temperature (the insert table indicates the response and recovery times). Reprinted with permission from ref. 33. Copyright 2020, Elsevier B.V.

to the high-energy binding sites of the MQDs. This research team is working on how to balance the relationship between the selectivity and fast desorption in their further study.

One-dimensional $MoS₂$ nanostructures include nanowires and nanotubes. Their electronic properties also vary with a change in their diameter and chirality, for example, $MoS₂$ nanotubes exhibit a larger bond length and smaller semiconducting bandgap than that of the bulk $MoS₂$ nanosheets.²⁵ Kumar et $al.^{30}$ reported the fabrication of an $NO₂$ sensor based on one-dimensional $MoS₂$ nanowires (Fig. 2d), which were synthesized using chemical transport reaction through controlled turbulent vapor flow. The results showed that the $MoS₂$ nanowire sensor displayed a high sensing response to $NO₂$ gas; however, it still faced the problem of incomplete recovery at RT due to the strong binding between $NO₂$ and the reactive sites of $MoS₂$, as shown in Fig. 2e. Thus, to address its difficult recovery and low response at RT, this team investigated its sensing behavior at a high operating temperature (60 °C) (Fig. 2f). They proposed that the relatively quick adsorption and desorption of $NO₂$ gas molecules from $Mo₂$ at 60 °C were attributed to its high conductivity and the rapid interaction of gas molecules with the exposed edge sites of the nanowires. Also, they indicated that the oxygen and humidity occupy a large number of reactive sites in the $MoS₂$ nanowires at RT, and thus there were less $NO₂$ molecules to participate in the reaction, resulting in a weak response to $NO₂$ at RT.

 $MoS₂$ with monolayer or few-layer two-dimensional nanostructures is currently the most studied in the field of gas sensing. Monolayer $MoS₂$ shows a direct bandgap of 1.8 eV, while bulk $MoS₂$ possesses an indirect bandgap of 1.2 eV. This transition endows monolayer $MoS₂$ with superior semiconductor properties. Meanwhile, monolayer or few-layer $MoS₂$ expose abundant edge sites and a high specific surface area, which may be beneficial for the absorption of gas molecules. In addition, it also exhibits high toughness and has potential to be applied on flexible substrates. Late et al^{31} investigated whether the single-layer $MoS₂$ is an ideal structure for enhancing the gas sensing performances. The AFM image of single-layer $MoS₂$ is shown in Fig. 2g. They found that the single-layer $MoS₂$ device was not stable over time. For clarity and brevity, they examined the gas sensing responses of two-layer and five-layer $MoS₂$ to various concentrations of $NH₃$ (Fig. 2h) and $NO₂$ (Fig. 2i) gases at RT because they were the thinnest and the thickest, respectively. The results showed that five-layer $MoS₂$ had better sensitivity compared to that of the two-layer $MoS₂$, they agreed that this may be due to the different electronic structures with a variation in thickness (layering). However, this issue is complicated and needs further study. Li et $al.^{32}$ prepared fewlayer $MoS₂$ nanosheets via mechanical exfoliation for the RT detection of $NO₂$. This sensor achieved high responsivity and ultrafast recovery behavior to $NO₂$. They proposed that the high sensitivity was caused by the thin thickness of $MoS₂$,

while the fast recovery time was attributed to the weak van der Waals force between $NO₂$ and $MoS₂$.

Three-dimensional nanoflower-like $MoS₂$ (Fig. 2j) assembled by several nanosheets has also received great attention for gas sensing. $MoS₂$ nanoflower is mainly synthesized via a hydrothermal process. Wang et al^{33} prepared $MoS₂$ nanoflowers via a simple hydrothermal method at 200 °C for 22 h. Fig. 2k shows the dynamic sensing response curves of $MoS₂$, $SnO₂$, and $SnO₂/MoS₂$ sensors towards different concentrations of $NH₃$ at RT. It was observed that the nanoflower-structured $MoS₂$ and its nanocomposite-based gas sensors exhibited high sensing response values. The resistance curves (Fig. 2l) of the $MoS₂$, $SnO₂$, and $SnO₂/MoS₂$ sensors exposed to 50 ppm $NH₃$ revealed that they displayed a very fast response and recovery rate $(27/2.6 \text{ s}$ for $MoS₂$ sensor), which seems to be very interesting. Thang et al^{34} discussed the effect of the hydrothermal growth times of 24, 36, 48, and 60 h on the sensitivity of the obtained $MoS₂$ nanoflowers and concluded that 48 h was the best growth time. The 48 h- $MoS₂$ nanoflowers showed a high gas response of 67.4% and high selectivity to 10 ppm $NO₂$ at RT. The superior sensing performance of the 48 h-MoS₂ nanoflower was ascribed to its largest specific surface area, smallest crystallite size, and lowest activation energy among the prepared samples. The dynamic resistance characteristic revealed that the 48 h-MoS₂ sensor exhibited complete response and recovery to $NO₂$ gas at RT. The authors ascribed this result to the high specific surface area and defects of the 48 h-MoS₂. They proposed that several factors such as high specific surface area, defective/strained surface, and weak van der Waals binding between the target gas and the $MoS₂$ surface affected the gas adsorption and desorption behavior. However, the complete recovery mechanism of the $MoS₂$ sensor is a complex case, and there are some disputes due to the combined effects of physi- and chemi-sorption, role of defects sites and transduction mechanism.35 **Paper**

Sensors a busines continuous control to the solution on 20 balance the control to the solution of the solution-of the solution-of th

2.2 Vacancy promotion

The lack of adsorption sites in $MoS₂$ has become the main bottleneck in realizing a high sensing performance at RT. It has been theoretically and experimentally proven that the vacancies in $MoS₂$ act as high-energy binding sites and play an important role in enhancement the gas sensing performance. The vacancies mainly refer to two types, i.e., Mo vacancy and S vacancies. However, the lower binding energy of S vacancy (2.12 eV) compared to Mo vacancy (6.20 eV) makes its construction more desirable, wherein the S vacancy is defined as the absence of one or two sulfur atoms per MOS_2 .^{36,37} The strategy of generating S vacancies in MOS_2 aims to reduce the Gibbs free energy of gas adsorption,³⁸ increase the amount of charge transfer,³⁹ facilitate molecular adsorption and chemical functionalization,⁴⁰ offer abundant active sites, and even cause the dissociation of gas molecules.⁴¹ At present, S vacancies can be achieved by

microwave-hydrothermal treatment, liquid-phase ultrasonic exfoliation, metal quantum dot loading, 42 electron irradiation and thermal annealing.^{36,43,44}

Xia et al.⁴³ discussed the NO₂ gas sensing performance of conventional $MoS₂$ (C-MoS₂) and sulfur-vacancy-enriched $MoS₂$ (SV-MoS₂) under dark and near-infrared (NIR) light conditions at RT, respectively. The researchers employed X-ray diffraction (XRD), electron paramagnetic resonance (EPR), and X-ray photoelectron spectroscopy (XPS) characterization techniques to prove the presence of sulfur vacancies, enriched S vacancy defects, and defect-related surface species in the $MoS₂$ samples, as shown in Fig. 3a–c, respectively. The response in Fig. 3d reveals that the $SV-MoS₂$ sensor showed a better gas sensing performance to 200 ppm $NO₂$ than the C-MoS₂ sensor in both the dark and under NIR illumination, which can be ascribed to the presence of more active centers and increased electron transfer introduced by the S vacancies. Moreover, the response value of the $SV-MoS₂$ sensor under NIR light had a significant improvement compared to that in a dark environment, while a slight increase occurred in the C-MoS₂ sensor, demonstrating that the S vacancy-induced photocurrent could effectively detect NO2 gas at RT. Sensors & Diagnostics

microwsee hydrodical recentration in Colombia Creative are reference of θ Creative absorption and consider are the sensitive Commons Colombia Creative Commons Associates Articles. Non-Active Comm

Zhang et al^{45} introduced S vacancies in 2D-in-3D architecture $MoS₂$ by high temperature annealing in an argon atmosphere. They compared the sensing properties of different $MoS₂$ samples obtained at various annealing temperatures of 0 °C, 550 °C, 700 °C, and 850 °C to NO₂ at RT. The results showed that the hierarchical $MoS₂$ annealed at 850 °C exhibited an extremely high gas sensing performance in terms of sensitivity (Fig. 3e), selectivity and stability. These excellent sensing properties can be attributed to the large number of S vacancies in $MoS₂$, which were generated upon high temperature annealing and led to the strong interlayer coupling and spin–orbit coupling effects. The generation of S vacancies was confirmed by the decrease in the S : Mo ratio (Fig. 3f) under high temperature annealing by XPS measurements. In this regard, S vacancies play an extremely important role in improving the gas sensing performance of $MoS₂$ materials.

In addition, density functional theory (DFT) calculations also revealed that $MoS₂$ rich in S vacancies possessed a higher sensing performance to gases. Li et $al.^{46}$ calculated the adsorption properties and charge transfer of NO molecules on monolayer $MoS₂$ ($MoS₂-MLs$), S vacancydefective $MoS₂-MLs$ (S-vacancy), and vacancy complex of Mo and its nearby three sulfur vacancies (MoS3-vacancy) by density functional theory (DFT). The adsorption energy of an NO molecule on the most stable adsorption models of $MoS₂-MLs$, S-vacancy, and $MoS₃$ -vacancy was 0.14 eV, 2.57 eV and 1.95 eV, respectively. The theoretical results demonstrated that the MoS3-vacancy and S-vacancydefective MoS₂-MLs showed stronger chemisorption and greater electron transfer effects than pure $MoS_{2}-ML$,

Fig. 3 (a) XRD, (b) EPR, (c) Mo 3d XPS spectra of C-MoS₂ and SV-MoS₂ samples. (d) Gas responses of C-MoS₂ and SV-MoS₂ sensors in the dark and under NIR illumination. Reprinted with permission from ref. 43. Copyright 2019, the American Chemical Society. (e) Dynamic response curves of the S0, S550, S700, and S850 sensors toward different concentrations of NO₂ at room temperature. (f) Corresponding S: Mo atomic ratio of S0, S550, S700, and S850. Reprinted with permission from ref. 45. Copyright 2022, Elsevier B.V.

Paper Sensors & Diagnostics

implying that S-vacancy defects can effectively improve the NO sensing performance of $MoS₂$.

Although the vacancies on the surface of $MoS₂$ acts as active sites for the adsorption of gas molecules, their high adsorption energy will also result in a slow response and recovery rate.³⁵

2.3 Noble metal decoration

The decoration of noble metals (NMs) on $MoS₂$ has also been reported as another effective strategy to improve its gas sensing properties. NMs such as Au, Ag, Pt, Pd, Rh, and Ru are usually used as effective catalysts to enhance the surface reactivity of sensing materials and accelerate the reaction between the adsorbed oxygen species and the gas molecules.⁴⁷ Meanwhile, they can also change the electron accumulation and enhance the electron transfer due to the different work functions between the NMs and sensing materials. Moreover, NMs possess affinity for some specific gas molecules and assist in overcoming the problem of selectivity to a certain extent.⁴⁸

Jaiswal et $al.^{49}$ reported the preparation of a vertically aligned edge-oriented $MoS₂$ hybrid nanostructured thin film decorated with Pd nanoparticles $(Pd/MoS₂)$ on quartz and Si substrates using the DC magnetron sputtering technique. The 2D and 3D AFM micrographs of the Pd-functionalized vertically aligned $MoS₂$ thin film are shown in Fig. 4a and b, respectively. The Pd/MoS_2 hybrid film sensor exhibited an enhanced response of 33.7% and fast response/recovery rate ($~16/38$ s) compared to the pristine MoS₂ thin film sensor (1.2% response value and ∼29/158 s response/recovery time) to 500 ppm H_2 gas at RT (Fig. 4c). The enhancement in the H_2 gas sensing performance of the Pd/MoS₂ hybrid film sensor can be attributed to three aspects. Firstly, the catalytic activity of the small Pd nanoparticles endowed the hydrogen molecules with efficient decomposition ability. Secondly, the unique porous nanostructure of the vertically aligned edgeenriched $MoS₂$ possessed a higher specific surface area. Finally, the Schottky barrier at the junction between Pd and MoS₂ increased the electrical resistance in air due to the barrier height, becoming more sensitive to a change in H_2 resistance.

Halvaee et al.⁵⁰ synthesized Ag/MoS₂ nanorods via the hydrothermal method. This sensor displayed a selective sensing response for methanol vapor at RT. Firstly, the researchers discussed the effect of different amounts of Ag nanoparticles on the response of the sensor. They found that the mass ratio of 2 wt% Ag nanoparticles loaded on $MoS₂$ resulted in the best methanol sensing response. The improved gas sensing properties can be ascribed to the catalytic oxidation and chemical sensitization of Ag nanoparticles. Meanwhile, the selectivity of $Ag/MoS₂$ to methanol was much better than that of pure $MoS₂$. In addition to the small size of methanol, which could easily penetrate the layered $MoS₂$, Ag had a better decoration effect to improve the selectivity. **Paper**

Sensors a Diagnostics

No sealing performance of Mos. This area chosen, the surface commons of Mos. The surface commons called a response that the commons commons are surely commons are a more than the surface of

Park et al.⁵¹ prepared two-dimensional MoS₂ via a metal organic chemical vapour deposition (MOCVD) method, and

Fig. 4 (a) 2D and (b) 3D AFM micrographs of Pd-functionalized vertically aligned MoS₂ thin film. (c) Sensor response curve of the Pd/MoS₂ hybrid and pristine MoS₂. Reprinted with permission from ref. 49. Copyright 2020, Elsevier B.V. (d) TEM images of the Pt/MoS₂. Gas-sensing characteristics of the MoS₂ and Pt/MoS₂ gas sensors for (e) NH₃ and (f) H₂S. Reprinted with permission from ref. 51. Copyright 2020, IEEE Xplore.

subsequently modified its surface with Pt particles (Fig. 4d). Pt particles have a double p-type doping effect compared to Au particles and possess good corrosion and oxidation resistance. Accordingly, this sensor recognized both $NH₃$ and $H₂S$ gases at RT; however, the response for $H₂S$ was lower than that for NH_3 , as shown in Fig. 4e and f, respectively, confirming that there was less charge transfer between H_2S and Pt/MoS₂. Meanwhile, the response value of Pt/MoS₂ for the target gases was higher than that of bare $MoS₂$, demonstrating that the Pt particles made an excellent contribution to the improvement in gas sensing performance.

2.4 Element doping

Element doping refers to a change in lattice constant due to the incorporation of dopants in the lattice of M_0S_2 or replacement of the Mo, S lattice sites. In this process, the binding energy will be greatly enhanced and defects will be formed to become new active sites, and the electrical properties will also be changed due to the decrease in the electron–hole recombination rate.⁵² The doped elements can be divided into metal and nonmetal, where the metal dopants include Zn, W, Nb, Fe, Co, Ni, Cu, Ti, V, Ta, Al, and Ga, $45,53-58$ and nonmetal dopants include N, Si, B, N, P, and Cl.^{59–61} However, most doping strategies focus on theoretical calculations based on density functional theory (DFT) , $62-65$ where theoretical results reveal that doped- $MoS₂$ sensors exhibit a higher adsorption energy, stronger noncovalent interaction, greater carrier transport number, and faster conductivity rate to target gases. $60,62,63$ Therefore, more efforts should be devoted to the experimental exploration of doping $MoS₂$. At present, some experimental studies have been reported.

Wu et al.⁵⁹ designed an N element-doped MoS₂ gas sensor by controlling the solvothermal temperature to realize the conversion of $MoS₂$ from n-type to p-type. The researchers proposed that doping could also address the challenge of sluggish sensing of $MoS₂$ at RT owing to the adjustable active sites and electrical property. Fig. 5a displays the gas sensing response value of pristine $MoS₂$ and optimal N-doped $MoS₂$ (NMoS₂-2) sensors to various concentrations of NO₂ at RT. It was observed that the NMS_2 -2 sensor showed obvious p-type semiconductor feature because the N atoms have one less valance electron than the S atoms in the $MoS₂$ matrix. Meanwhile, the sensing response value of the NMS_2-2 sensor was not obviously improved compared to that of the pristine $MoS₂$. However, the fast response/recovery rate (Fig. 5b and c) of the $NMoS₂$ -2 sensor revealed that there was a superior fast charge transfer character, as confirmed by the Sensors & Diagnostics

Published are a double-byte doing collect compared to calculations based on density interactions are a collect compared to density interactions are a creative commons and the sensity interactions ar

Fig. 5 (a) Response, (b) response time, and (c) recovery time of NMoS₂-2 and pristine MoS₂ upon exposure to 10, 20, 40, 60, and 80 ppm NO₂. Reprinted with permission from ref. 59. Copyright 2021, Elsevier B.V. (d) Response value versus NO₂ concentration for W₀-W₃. (e) Transient response characteristic of (e) W₀ and (f) W₃ at 20 and 50 ppm NO₂. Reprinted with permission from ref. 53. Copyright 2020, Elsevier B.V.

Liu et al^{53} synthesized W-doped MoS₂ sensors with different W ratios via a hydrothermal method. The results showed that appropriate ratios between Mo and W were conducive to enhancing the $NO₂$ sensing properties at RT. As shown in Fig. 5d, when the Mo: W ratio was $1:2$ (named $W₂$), the sensing response was observed to be the best for various concentrations of $NO₂$. Furthermore, the response/ recovery times of the W-doped $MoS₂$ (W₂) sensor (Fig. 5f) was greatly improved compared to the undoped MoS₂ sensor (Fig. 5e), which was mainly attributed to the effective suppression of defects by W doping.

Briefly, according to the current research results, the doping method can be regarded as an effective method to solve the slow response/recovery ability of $MoS₂$.

2.5 Light assistance

Light assistance has shown promise for the activation of gas sensor materials. $MoS₂$ possesses a tunable band gap and excellent photoelectrical properties, and thus it is also an effective way to improve its gas sensing performance by light activation. Light activation mainly assists the recovery rate of

 $MoS₂$ gas sensors,⁶⁶ and the photochemical reaction occurring between the light-generated electron/hole carriers in $MoS₂$ and adsorbed gas molecules promotes the desorption process. $67,68$ At present, two light activation gas sensing mechanisms have been proposed, i.e., the "optoelectronic" and "photocatalytic" mechanisms. The optoelectronic mechanism refers to the generation of a photocurrent, which regulates the conductivity of the material and causes a large change in the resistance of the sensor upon gas exposure. $15,69$ The photocatalytic mechanism considers the process of photocatalytic oxidation of reducing gases into NO_x , CO_2 and H_2O , 70.71 thus accelerating the chemisorption reaction between the sensing material and target gases. **Paper**
 Sensors a Disaprosite:
 Concelulate articles interaction between the Nolley Phereior, Nantyng in Mog, in America, because the Euler Montential Celeration of the Non-Commons are the Euler Montential Celeration

Wang et al^{72} proposed the visible-light photocatalytic enhancement gas sensing mechanism based on $MoS₂/rGO$ hybrids for the detection of formaldehyde (HCHO) at RT. The comparison of response/recovery times of the MoS2/rGO sensor to 10 ppm HCHO in the dark and under visible-light illumination, as shown in Fig. 6a, which revealed that the visible light accelerated the gas molecule adsorption/ desorption process. In addition, the O_2 -TPD spectra of MoS₂, as shown in Fig. 6b, demonstrated that visible light induced the adsorption of more oxygen species. Meanwhile, $CO₂$ peaks at 1358 and 1572 cm⁻¹ and broad H₂O peak at around 3420 cm⁻¹ were observed by in situ IR spectroscopy (Fig. 6c) when $MoS₂$ was exposed to HCHO and illuminated by visible

Fig. 6 (a) Dynamic resistance variations of the MoS₂/rGO sensor to 10 ppm HCHO in the dark and under visible-light illumination. (b) O 1s XPS spectra of MoS₂ in the dark and after visible-light illumination for 5 min. (c) in situ IR spectra of the MoS₂ sample under different conditions. Reprinted with permission from ref. 72. Copyright 2020 Elsevier B.V. (d) Transient sensor response upon exposure to 10 ppm NO₂, and a UV-LED was turned on during the recovery process. (e) Schematic of the recovery mechanism for MoS₂ under UV-LED illumination after NO₂ exposure. Reprinted with permission from ref. 73. Copyright 2019, IOP Publishing Ltd Printed in the UK.

light, which suggests that the visible-light illumination triggered the photocatalytic oxidation of HCHO to $CO₂$ and $H₂O$ on the surface of MoS₂.

Kang et al.⁷³ reported that UV light-illuminated $MoS₂$ could achieve the recovery of its initial resistance when $NO₂$ gas was withdrawn at RT (Fig. 6d). They believed that excitons were generated in $MoS₂$ under UV light illumination, which could be separated into electrons and holes when an in-plane electric field of 2 kV cm^{-1} was applied. The absorbed NO_2 ⁻ by capturing electrons from MoS_2 previously would react with the photo-generated holes to result in the formation of $NO₂$, which accelerated the desorption process (Fig. 6e). Meanwhile, the photo-generated electrons remaining in the conduction band of $MoS₂$ would decrease the resistance. Thus, this explains why UV-light illumination caused a rapid return to the initial resistance of the platform after releasing $NO₂$ gas.

2.6 Construction of composites

The construction of $MoS₂$ -based composite gas sensors has been demonstrated to be one of the most effective methods to improve the gas sensing properties. In comparison to pure $MoS₂$, $MoS₂$ nanocomposites with well-designed architectures are more desirable. The types of composites include binary and ternary structures, which can achieve an enhancement in

gas sensing performance by making use of the merits of each component to generate synergistic effects and construct heterojunctions. The heterojunctions include n–n, n–p, and $p-p$ types; however, MoS₂ can exhibit either a p- or n-type gas sensing response to reductive vapor depending on its annealing temperature in $air.^{74}$ The heterojunctions can effectively rectify the electron transfer at the contact surface of two materials and increase the interface barrier due to their different Fermi levels, which can significantly improve the gas sensitivity of composite sensing materials. Moreover, MoS2-based composites accelerate the response/recovery rate of the sensor to some extent. Therefore, constructing composites of $MoS₂$ may be one of the most effective modification methods. Materials compounded with $MoS₂$ can be classified into the following categories: **Sensors & Diagnostics**

Ughtt, which suggests that the visible light illuminated on 24 December 10 Paccel in Common Common

(i) Metal oxide semiconductors: n-type $CeO₂$,⁷⁵ ZnO,⁷⁶ SnO_2 ,⁷⁷ WO_3 ,⁷⁸ In_2O_3 ,⁷⁹ TiO_2 ,⁸⁰ and MoO_3 (ref. 81) and p-type CuO, 82 Co₃O₄, 83 NiO, 84 Cu₂O, 85 PANI, 86 and PPy. 87

Bai et $al.^{88}$ reported the preparation of a roomtemperature $NO₂$ gas sensor based on an $MoS₂/SnO₂$ p-n heterojunction. $MoS₂$ exhibited p-type semiconductor behavior in this work, which was induced by the oxygen vacancies/defects. The $MoS₂$ nanoflakes were vertically grown on the $SnO₂$ nanotubes *via* electrospinning, and subsequent hydrothermal method, as shown in the SEM image in Fig. 7a. The optimal $MoS₂(@SnO₂-2 sensor)$ (the mole ratio of Sn: Mo

Fig. 7 (a) SEM images of MoS₂@SnO₂-2 nanocomposite. (b) Responses of the prepared sensors to different concentrations of NO₂. (c) Schematic of sensing mechanisms of MoS₂@SnO₂-2 nanocomposite. Reprinted with permission from ref. 88. Copyright 2021 Elsevier B.V. (d) SEM image of Co₃O₂/MoS₂ sample. (e) NH₃ gas-sensing properties of LbL self-assembled MoS₂/Co₃O₄ nanocomposite sensors with different layers. (f) Schematic of the sensing mechanism of n-type MoS₂/p-type Co₃O₄ hybrid in air and ammonia. Reprinted with permission from ref. 89. Copyright 2017, the American Chemical Society.

was $1:1/2$) exhibited the highest sensing response value compared to the other mole ratio sensors and pristine $SnO₂$ sensor towards different concentrations of NO₂ gas (Fig. 7b). Meanwhile, its response/recovery times (2.2/10.54 s) were also fast. The enhancement in the gas sensing properties could be attributed to the unique morphological structure, high specific surface area, large number of sulfur edge active sites, and p–n heterojunction created between Mo_{2} and SnO_{2} . The sensing mechanism could be explained by the surface depletion layer model caused by oxygen adsorption, as shown in Fig. 7c. The ionized chemisorbed oxygen (O_2^-) produced on the surface of sensing material formed NO_3 ⁻ by introducing $NO₂$ gas due to the oxidation reaction. This process caused a change in the carrier concentration, and especially after the formation of heterojunctions, this change would be greater. **Paper**
 Sensors Article constrained on 24 December 2022. This are constrained on 24 December 2022. The constrained on 24 December 2022. The constrained on 2022. The common constrained on 2022. The common can be a state

Zhang et al.⁸⁹ fabricated a Co₃O₄/MoS₂ p-n heterojunction nanocomposite (Fig. 7d) sensor on interdigital electrodes via the layer-by-layer self-assembly route. Firstly, they discussed the effect of the number of layers on the composite assembled with one, three, five, and seven layers (S1, S3, S5, and S7) on the $NH₃$ gas sensing performance at RT, respectively. The five-layered $Co₃O₂/MOS₂$ sensor exhibited the best NH_3 sensing response, as shown in Fig. 7e. The sensing mechanism could also be ascribed to the large change in the width of the depletion layer when exposed to an air and $NH₃$ atmosphere, respectively, which was caused by the p-n heterojunction. NH₃ reacted with the adsorbed $O_2^$ to produce NO gas and release electrons (Fig. 7f), which resulted in an increase in the resistance of the sensor.

(ii) Two-dimensional materials: transition metal dichalcogenides (TMDs) such as $\text{WS}_2\text{,}^{90,91}$ $\text{WSe}_2\text{,}^{92}$ and $\text{VS}_2\text{,}^{93}$ hexagonal boron nitride (h-BN); 94 transition metal carbides, nitrides and/or carbonitrides such as $Ti_3C_2T_x$ MXene;⁹⁵ reduced graphene oxide (rGO); $96-98$ and graphene.⁹⁹

The $MoS₂$ composites with other TMDs can change the amplitude of variation in target gases to increase the response value. For example, Zheng et $al.^{100}$ synthesized 2D van der Waals junctions by stacking n-type and p-type atomically thin $MoS₂$ films via chemical vapor deposition (CVD) and soft-chemistry route, respectively. This idea was very interesting and meaningful. They employed the two different semiconductor characteristics of $MoS₂$ to construct a p-n junction sensor. This sensor displayed outstanding sensitivity to $NO₂$ at RT, which was much higher than that of pristine n-type and p-type $MoS₂$. The enhanced sensing performance was ascribed to the built-in electric field generated at the p-n interface, which resulted in a huge change in resistance upon contact with $NO₂$ molecules.

Ikram *et al.*⁹¹ reported the preparation of an $MoS₂(\mathcal{Q}WS₂)$ heterojunction sensor for the effective detection of $NO₂$ at RT. When the sensor contacted with $NO₂$ molecules, more electrons in the composite could be captured by $NO₂$ compared to that of the single $MoS₂$ or $WS₂$ component due to the double-electron supply effect, which caused a higher change in resistance. In addition, Zhang et $al.^{93}$ proposed that the combination of different TMDs with different geometrical and electronically energetic alignments exhibited unique features. Porous $VS₂$ with intrinsic metallic and highly conductive characteristics was epitaxially grown on $MoS₂$ nanosheets. They constructed an $MoS₂/VS₂$ quartz crystal microbalance sensor, which showed high sensitivity and selectivity to $NH₃$. The metallic $VS₂$ transferred electrons to $MoS₂$, causing more electrons to accumulate on the side of $MoS₂$, which contributed to the $O₂$ acquiring a large number of electrons to form adsorbed oxygen and increased the initial resistance of the heterostructure in air. Therefore, it showed better sensitivity than the pure $MoS₂$ and $VS₂$.

Liu et al.⁹⁴ designed an $MoS₂$ gas sensor capped with a thin layer of h-BN. They found that the h-BN layer capped on the $MoS₂$ layer improved the device stability, robustness and anti-fading capacity, while leaving the gas sensing capability unchanged due to the strong oxidation resistance of h-BN.

In the case of $Ti_3C_2T_x$ MXene, it has high conductivity and active termination groups of $T_x = -F$, $-OH$, and $-O$. Yan et al.¹⁰¹ analyzed the NO₂ sensing reinforcement of the MoS₂/ $Ti₃C₂T_x$ MXene composite sensor, where they considered that the excellent electrical property of MXene will make up for the deficiency of $MoS₂$ in this respect. A large number of carriers was transferred from MXene to M o S ₂ to create a similar Fermi energy level. The role of MXene was similar to the above-mentioned metallic $VS₂$. In addition, the surface active groups would be more conducive to adsorbing the $NO₂$ oxidizing gas.

Graphene and rGO with a large surface area and high charge carrier mobility, which have been considered as alternative sensing material candidates or gas sensing performance modification materials. Graphene can be used to detect individual molecules, causing the ultimate sensitivity.¹⁰² Sangeetha et al.¹⁰³ reported that the enhanced gas sensing properties of an $MoS₂/graphene$ sensor towards NO2 including outstanding sensitivity and rapid response/ recovery times (22/35 s) were attributed to the synergistic effect of the two materials. The $MoS₂$ nanoparticles connected with graphene promoted the absorption of more gas molecules in the presence of evanescent wave light. Compared with graphene, rGO is rich in surface vacancies and oxygen functional groups.^{104,105} Chen et al.⁹⁶ constructed $3D$ MoS₂/rGO composites *via* a low temperature self-assembly method as a low-temperature $NO₂$ gas sensor. They believed that the improvement in the gas sensing performance of $MoS₂/rGO$ compared to pure $MoS₂$ and rGO in addition to the contribution of heterojunction between the rGO nanosheet and $MoS₂$ nanoflowers, was attributed to the chemically active sites, large surface area, and van der Waals forces of rGO, which are also advantageous for gas adsorption.

(iii) Other functional materials: multi-walled carbon nanotubes $(MWCNT)$,¹⁰⁶ poly(3-hexylthiophene) (P3HT),¹⁰⁷ C_3N_4 , ¹⁰⁸ PbS, ¹⁰⁹ GaN, ¹¹⁰ CdTe, ¹¹¹ ZnS, ¹¹² SnS₂, ¹¹³ etc.

MoS2 composites with other functional materials also combine the merits of these materials such as high electrical

conductivity, unique electronic transfer channels, similar sensitivity and selectivity, and high specific surface area to comprehensively improve the gas sensing performance or use the synergistic effect between these materials and $MoS₂$ to achieve the goal of gas sensing. Chen et $al.^{112}$ synthesized $2D/0D$ MoS₂/ZnS heterostructures, which achieved the highly sensitive and recoverable detection of $NO₂$ at RT. The recovery time of the composite sensor to 5 ppm $NO₂$ was 4.6 min, which was much shorter than that of bare $MoS₂$. The p–n heterojunction created between $MoS₂$ and ZnS could act as a charge transfer bridge during $NO₂$ adsorption and desorption. Besides, the enriched active sites of $MoS₂$, the synergistic effects between the two components promoted an enhancement in sensing properties.

Jaiswal et al^{111} employed CdTe quantum dots with high sensitivity to $NO₂$ gas at RT to decorate $Mo₂$ nanoworms. The composite sensor could efficiently achieve spill-over effects and change the electronic structure. Furthermore, the p–n heterojunction, synergistic effect, defective intersurfaces, and unique morphology with large specific surface area jointly facilitated the high and fast adsorption of $NO₂$ molecules.

Besides the above-mentioned $MoS₂$ -based binarystructured composite gas sensors, $MoS₂$ -based ternarystructured composites have also been designed to achieve ideal gas sensing performances due to their unique/novel

In our previous work,¹¹⁴ a novel two-dimensional Ti₃C₂T_x $MXene@TiO₂/MoS₂ heterostructure was synthesized for the$ efficient and selective detection of $NH₃$ at RT. Its morphology is shown in Fig. 8a, where $MoS₂$ nanosheets grew on the surface of MXene and rectangular $TiO₂$ particles were derived from MXene during the high-temperature hydrothermal process. It could be seen that the composite sensors (MTM) exhibited a higher $NH₃$ gas sensing response value compared to that of pristine MXene and $MoS₂$, as shown in Fig. 8b, and outstanding selectivity was exhibited by the MTM-2 composite sensor, as shown in Fig. 8c. Finally, we concluded that the enhancement in the gas sensing performance was ascribed to the unique morphology and p–n heterojunction of the ternary $MXene@TiO₂/MoS₂$ composite. Moreover, the insertion of TiO₂ expanded the interlayer spacing of the Ti₃- C_2T_x MXene and provided more reactive sites for NH₃ adsorption. **Sensors & Diagnostics**

Considering and indetective, and high specific static article is make area to spacephot chicago. Some bureaution in $C_{\rm F}$ and $C_{\rm F}$ and $C_{\rm F}$ and $C_{\rm F}$ and $C_{\rm F}$ are all the energy

Ding et al.¹¹⁵ constructed an MoS₂-rGO–Cu₂O (MG–Cu) ternary composite for the efficient detection of $NO₂$ at RT. The hollow $Cu₂O$ nanospheres were anchored on the surface of $MoS₂-rGO$, and the TEM image of this composite is shown in Fig. 8d. The sensor exhibited 11- and 5-times higher sensing response values to 500 ppb $NO₂$ compared to pure $MoS₂$ and binary $MoS₂-rGO$, respectively (Fig. 8e). Besides, it

Fig. 8 (a) SEM images of Ti₃C₂T_x MXene@TiO₂/MoS₂ (MTM-0.2). (b) Dynamic sensing characteristics of the prepared sensors to ammonia vapor at RT of 27 °C and RH of 43%. (c) Gas sensing responses of the Ti₃C₂T_x MXene@TiO₂/MoS₂ (MTM-0.2)-based gas sensor for a concentration of 100 ppm of various gases at RT of 25 °C and RH of 41%. Reprinted with permission from ref. 114. Copyright 2022, The Royal Society of Chemistry. (d) TEM image of MoS₂-rGO-Cu₂O (MG-Cu) ternary composite. (e) Sensing response of MG and MG-Cu with different amounts of graphene to 500 ppb NO₂ at room temperature. (f) Stability of 25 MG–Cu sensor to 500 ppb NO₂ at room temperature. Reprinted with permission from ref. 115. Copyright 2021, Elsevier B.V.

also displayed excellent long-term stability (Fig. 8f). The superior sensing properties of this ternary composite sensor were mainly ascribed to the porous $Cu₂O$, which acted as a gas molecule permeation diffusion channel, while $MoS₂$ -rGO acted as the bridge for electron transport. Meanwhile, the synergy of the shell-structure and heterojunction constructions among the three components contributed to the enhanced performance.

3. Categories of gas detected by $MoS₂$ -based sensors

According to the discussion in the previous section, it can be seen that $MoS₂$ -based gas sensors mainly show excellent recognition for $NO₂$ and $NH₃$ gases at RT. Alternatively, a few other gases can also be detected at RT such as nitric oxide (NO), hydrogen (H_2) , ethanol, methanol, formaldehyde (HCHO), carbon monoxide (CO), sulfur dioxide $(SO₂)$, benzene, acetone, and triethylamine (TEA), but the relevant reports are relatively scarce. In this case, it is worth exploring why $MoS₂$ -based gas sensors can identify these gases, especially for $NO₂$ and $NH₃$ detection. In this section, we will classify the different gases detected by $MoS₂$ -based gas sensors at RT and discuss their sensing mechanisms. **Paper**
 Sensors a Disaprosticle due to the transfer of the sensor and consideration due to sell and the sensor of

3.1 NO₂, NO, CO, and $SO₂$

NO2 possesses high electrophilicity as an electron acceptor, 112 which means that it can easily trap electrons from the conduction band of sensing materials without high energies, causing an increase in the hole concentration of $MoS₂$ and a large change in the resistance of the sensor. Moreover, $MoS₂$ has more adsorption sites for $NO₂$ molecules. Regarding this, some theoretical calculation studies have verified the stronger affinity of $MoS₂$ for $NO₂$. Yue et al^{116} employed first-principles calculations to investigate the adsorption energy and charge transfer of various gas molecules such as H_2 , O_2 , H_2O , NH_3 , NO, NO_2 , and CO on monolayer $MoS₂$. They concluded that all the calculated gas molecules were physically adsorbed on the surface of $MoS₂$. However, regardless of the adsorption sites on MoS₂ including H site (top of the MoS₂ hexagon), T_S (top of S atoms) site, and B site (top of Mo–S bonds), $NO₂$ exhibited the highest adsorption energy and more charge transfer than other gases. Meanwhile, the H site was the most favorable adsorption site for H_2O , NH_3 , and NO_2 molecules, resulting in adsorption energies of −234, −250, and −276 meV, respectively. Jiang et al.¹¹⁷ also carried out the first-principles calculations to verify that perfect-layered $MoS₂$ (without vacancy) exhibited higher adsorption energies for N-based gas molecules such as NO and $NO₂$ compared with other gases. Meanwhile, this team also calculated the adsorption energies of $NH₃$, NO, and NO₂ adsorbed on defective $MoS₂$ with Mo vacancy and S vacancy. They found that the adsorption energies of NO and $NO₂$ on defective MoS2 with Mo vacancy increased remarkably compared with perfect $MoS₂$. The electron localization function indicated that O–S and N–S covalent bonds were formed between NO and defective $MoS₂$, $NO₂$ and defective $MoS₂$, respectively, demonstrating that there was chemical adsorption between them.

Besides theoretical studies, experimental studies have also confirmed that there is strong interaction between $NO₂$ molecules and $MoS₂$. Ikram *et al.*¹⁰⁸ reported the preparation of a highly sensitive RT NO₂ sensor based on M_0S_2/C_3N_4 hybrid material. They confirmed the presence of the Mo–N bond based on the high-resolution N 1s spectra of the $MoS₂/$ C_3N_4 hybrid after absorbing NO₂, illustrating that Mo was a strong adsorption site for N-based gases.

The gas sensing mechanism of $MoS₂$ -based gas sensors towards $NO₂$ at RT is mainly based on the Langmuir–
Hinshelwood (adsorption–desorption) model.^{118,119} Hinshelwood (adsorption–desorption) Specifically, in an air atmosphere, the $O₂$ molecules surround the surface of $MoS₂$ -based nanomaterials and extract free electrons from the conduction band of $MoS₂$ to form adsorbed oxygen species such as O_2^- , O^- , and O^{2-} . The equations describing this reaction are as follows:

$$
O_{2(gas)} \to O_{2(ads)} \tag{1}
$$

$$
O_{2(ads)} + e^- \rightarrow O_{2ads} \tag{2}
$$

$$
\overline{\mathbf{O}_{2ads}}^- + \mathbf{e}^- \to 2\overline{\mathbf{O}_{ads}}^- \tag{3}
$$

$$
O_{ads}^- + e^- \rightarrow O_{ads}^{2-} \tag{4}
$$

However, the oxygen ion O_2 ⁻ is predominant at low temperature (RT∼150 °C).¹²⁰ The formation of O₂[−] results in a high baseline resistance for n-type $MoS₂$ or low baseline resistance for p-type $MoS₂$. When introducing $NO₂$ on the surface of $MoS₂$, the oxidising gas further captures electrons from MoS_2 to form NO_2^- , and more holes accumulate in the conduction band of $MoS₂$, causing a higher resistance for n-type $MoS₂$ or lower resistance for p-type $MoS₂$. Meanwhile, the NO₂ gas will also react with O_2^- to generate NO₃⁻. When an $MoS₂$ -based sensor is put into an air atmosphere again, NO_2 ⁻ and NO_3 ⁻ would desorb and the released electrons come back to MoS₂, and thus the resistance will decrease for n-type $MoS₂$ or increase for p-type $MoS₂$ again. The reaction is as follows:

$$
NO_{2(gas)} + e^- \rightarrow NO_{2ads} \tag{5}
$$

$$
2NO2(gas) + O2ads- + e- \rightarrow 2NO3ads- \tag{6}
$$

$$
NO_{2ads}^- + 2NO_{3ads}^- \rightarrow 3NO_{2(gas)} + O_{2(gas)} + e^-
$$
 (7)

In the case of NO gas, it is also an electron acceptor and easily oxidized into $NO₂$ gas in air. Although some theoretical studies show that the adsorption interaction of $MoS₂$ for NO is weaker than that of $NO₂$, there is also chemical adsorption and significant charge transfer between it and $MoS₂$, as

confirmed by density of states analysis.⁴⁶ To date, NO roomtemperature gas sensors based on $MoS₂$ have also been reported, and the sensing mechanism is according to the following equations:

$$
NO_{(gas)} + e^- \rightarrow NO_{ads} \tag{8}
$$

$$
NOads- + O2ads- + e- \rightarrow NO(gas) + O2ads-
$$
 (9)

When $MoS₂$ -based gas sensors are exposed to NO gas, the reduction reaction of NO occurred, as shown in eqn (8), which leads to an increase in resistance for n-type $MoS₂$. Once the NO gas is withdrawn, the electrons return from NO_{ads}⁻ to MoS₂, resulting in a decrease in the resistance of $MoS₂$.

In addition to $NO₂$ and $NO₂$ gases, CO and $SO₂$ can also be detected by MoS₂-based gas sensors at RT, but there are not many reports in this regard. Their sensing mechanisms are the same as $NO₂$ and NO on the surface of MoS₂, which is based on the interaction between absorbing oxygen and gas molecules to release electrons, leading to a change in the resistance of MoS₂. Zhang *et al.*¹²¹ reported the preparation of a highly sensitive Ag-loaded $ZnO/MoS₂$ ternary nanocomposite room-temperature CO sensor. They described the sensing reaction by eqn (10), as follows:

$$
CO + O_{ads}^- \rightarrow CO_2 + e^-
$$
 (10)

When the sensor was exposed to CO, its resistance decreased due to the release of electrons. The presence of noble metal Ag with catalytic activity accelerated the reaction.

Zhang et al^{122} demonstrated that Ni-doped MoS₂-based gas sensors exhibited an excellent $SO₂$ sensing performance at RT. The Ni-doped $MoS₂$ system had strong electrochemical

activity due to the overlap of the conduction band and valence band, where the flow of electrons was easier from the valence band to conduction band. When the SO_2 and Nidoped $MoS₂$ system interacted, the bond length values of the SO2 molecules and the electronic structure of the Ni-doped MoS₂ system changed significantly, as verified by DFT calculation.

The sensing mechanism of $MoS₂$ -based gas sensors towards SO_2 is based on eqn (11) ,¹²³ as follows:

$$
SO_2 + O_{2ads}^- + e^- \rightarrow SO_3 + e^-
$$
 (11)

Table 1 summarizes the $MoS₂$ nanomaterial-based gas sensors for the detection of $NO₂$, NO, CO, and $SO₂$ gases at RT in recent years. It can be seen that there are more reports focused on the detection of $NO₂$ rather than NO, CO, and SO_2 , illustrating that MoS_2 has a strong interaction for N-based gases. In addition, it is difficult for pristine $MoS₂$ NO2 sensors to recovery completely, and thus several modification strategies have greatly improved their response and recovery rate to a certain extent.

3.2 NH₃

In contrast to $NO₂$, NH₃ gas is a well-known electron donor owing to the fact that it contains a pair of lone electrons, which are not involved in bonding. Therefore, the electron concentration will increase for the n-type $MoS₂$ sensing layer when exposed to $NH₃$, resulting in a low resistance. The adsorption energies of CO, $NO₂$, and $NH₃$ on pristine $MoS₂$ were analyzed by DFT calculation.¹⁴⁵ The results showed that the most stable adsorption energies for CO, $NO₂$, and $NH₃$ were 0.008, −0.131, and −0.217 eV, respectively, implying that the high interaction between $NH₃$ and MoS₂. The low positive value of 0.008 indicated that CO on $MoS₂$ was exothermic, unstable, and weakly adsorbed. Zhao et al ¹⁴⁶ also employed **Paper**
 Sensors a Disaprosite setup of the conduction base article in No, Po_{pp} and NH₁ as another and N-1 and

DFT calculation to investigate the adsorption energies of O_2 , NO, $NO₂$, and $NH₃$ gas molecules on pristine MoS₂. They found that the adsorption energies values of O_2 , NO, NO₂, and NH_3 gases on MoS_2 were 0.013, 0.026, 0.037, and 0.041 eV, respectively. Although all these gases exhibited weak physical adsorption interaction on $MoS₂$, obviously, $NH₃$ had the highest.

Sharma et al.¹⁴⁷ and Singh et al.¹⁴⁸ verified the high sensitivity of $MoS₂$ to $NH₃$ gas at RT via experimental measurements. Another important parameter involved is the response/recovery time, and these researchers observed that the pristine MoS_2 -based NH_3 sensors showed a fast response/recovery time of $22/32$ s towards 100 ppm NH₃ and $75/130$ s towards 50 ppm NH₃, indicating that a fast and complete recovery can be achieved when $NH₃$ gas was detected.

The gas sensing mechanism of the $MoS₂$ -based gas sensor towards $NH₃$ at RT is also based on the adsorptiondesorption theory. The following equations are used to describe the interaction between $NH₃$ and the MoS₂ sensing layer.

$$
4NH_3 + 5O_{2ads}^- \rightarrow 4NO + 6H_2O + 5e^-
$$
 (12)

When $MoS₂$ sensors are exposed to the reducing $NH₃$ gas, the NH₃ molecules will react with O_{2ads}^- to form NO and H_2O accompanied by the release of electrons; meanwhile, NH₃ molecule itself contains lone pair electrons, which makes more electrons return to the conduction band of $MoS₂$, causing a large change in resistance.

To further improve the gas sensing performance of $MoS₂$ based gas sensors to $NH₃$ at RT, several MoS₂ nanocomposite NH3 gas sensors have been proposed in recent years. Table 2 presents a summary of $MoS₂$ nanomaterial-based gas sensors for the detection of NH₃ gas at RT.

Table 2 A summary of $MoS₂$ -based room-temperature $NH₃$ gas sensors

3.3 H₂

H₂ as an abundant, green and renewable energy source has been used in various fields such as fuel cells, automobiles, and power plants.¹⁵⁶ Moreover, it is also applied in the chemical industry, nuclear reactors, petroleum extraction, and semiconductor processing.¹⁵⁷ However, H_2 is also associated with many potential safety hazards duo to its explosive and flammable nature.¹⁵⁸ Especially when its concentration is higher than 4% in the atmosphere, an explosion will occur. Therefore, the efficient detection of H_2 is particularly important. Currently, although SMO H_2 sensors exhibit high gas sensing response values, their high operating temperature also brings hidden dangers to a certain extent because the explosive limit of H_2 is easily reached at a high temperature. Thus, the detection of H_2 at low or room temperature will greatly improve the safety. To date, many low or room-temperature H_2 sensors based on $MoS₂$ have been reported. Theoretically, $MoS₂$ is not sensitive to nonpolar molecules of H_2 .¹⁵⁹ Bollinger *et al.*¹⁶⁰ believed that the edges of $MoS₂$ behave like metallic inter-connecting wires for the adsorption of H_2 at RT. Dolui et al.¹⁶¹ and Gomez et al.¹⁶² also proposed that H_2 behaves as an electron acceptor, which is favourable for absorption along the edges of $MoS₂$ flakes. To date, the main approach employed to increase the sensitivity of $MoS₂$ to $H₂$ is its functionalization with noble metals including Au, Ag, Pt, and Pd. Zhang et al .¹⁶³ investigated the effect of different noble metals (Cu, Au, Ag, Pt, and Pd) decorated on monolayer $MoS₂$ on its hydrogen sensing performances by first principles. They concluded that the introduction of all the noble metals had a positive effect on H_2 adsorption, which contributed to the hybridization of the noble metal d, S p, Mo d and H s orbitals. Especially Pt and Pd could enhance the adsorption interaction and increase the charge transfer between H_2 molecules and monolayer MoS₂. Some experimental studies are also consistent with the theoretical results. Baek et al , 164 Jaiswal et al^{49} and Mai et al^{165} used Pd to functionalize $MoS₂$ and realize the detection of H₂ at RT. The former **Sensors & Diagnostics**
 Satisfy an arbundant, green and renewable energy sturn; has on 20206; is archivele on 2022

If as an arbundant, metalline and the cells, automobile, and Particle in the studied on the december 2

research groups suggested that the mechanism of H_2 sensing on Pd/MoS₂ is ascribed to the electron transfer from MoS₂ and Pd in air due to the lower work function of $MoS₂$ than Pd. Alternatively, the formation of Pd-hydride (PdHx) on Pd surface when exposed to H_2 resulted in electron transfer in the opposite direction from PdHx to $MoS₂$, resulting in a change in sensor resistance. The latter research group concluded that the deposition of Pd nanoclusters on $MoS₂$ caused p-type semiconductor behavior in the $Pd/MoS₂$ composite. Meanwhile, the strong affinity of Pd provided more favorable adsorption sites for H_2 molecules and initiated their chemical reactions.

Besides the use of noble metals to trigger the sensitive response of $MoS₂$ to $H₂$ at RT, another strategy is to compound some potential materials that respond to H_2 , such as $MoO₃,¹⁶⁶$ graphene,¹⁶⁷ and SnO₂ (ref. 168) with MoS₂ as suitable templates or supports. Table 3 displays the $MoS₂$ nanomaterial-based gas sensors for $H₂$ gas detection at RT. The sensing mechanism can be explained based on the interaction between H_2 molecules and O_{2ads} . The whole reaction can be given by the following equations:

$$
H_{2(gas)} \to H_{2(ads)} \tag{13}
$$

$$
H_{2(ads)} \to 2H_{(ads)} \tag{14}
$$

$$
2H_{(ads)} + O_{2ads}^- \rightarrow H_2O + e^-
$$
 (15)

3.4 Other VOCs

The other VOC gases that can be detected by $MoS₂$ -based gas sensors at RT include ethanol, methanol, formaldehyde (HCHO), and benzene. VOCs gases, as reducing agents, present electron-donating characteristics similar to NH₃. To date, there are a few reports on the detection of these gases at RT by $MoS₂$ -based sensing devices, which mainly consider the activity, electronic characteristics, molecular size of the

Table 3 A summary of MoS₂-based room-temperature H₂ gas sensors

gas itself, and the affinity of sensitive materials to gas molecules.

Wu et al.¹⁷⁹ prepared an Fe-TiO₂/MoS₂ composite film ethanol RT sensor. They proposed that Fe ion doping can optimize the electrical property of the sensing material. The sensor was sensitive to ethanol, which was attributed to the fact that the hydroxyl in the rotating ethanol molecule faced the Fe–TiO₂ substrate and elongation of the C–O and H–O bonds on the adsorption surface of Fe–TiO₂, which resulted in a shorter adsorption distance and higher adsorption strength. The density of states revealed that there was strong adsorption interaction between ethanol and Fe–TiO₂ due to the large shift in the energy level of the Fe 3d and O 2p orbitals after adsorption. Finally, combined with the p–n heterojunctions generated at the interface of n-type $Fe-TiO₂$ and p-type $MoS₂$, the sensing response to ethanol was stronger.

Chakraborty et $al.^{180}$ analyzed the highly selective methanol sensing mechanism of electrodeposited pristine $MoS₂$ using first principle analysis. They found that although the electron-donating capability and charge transfer of 2-propanol and ethanol were higher than that of methanol, the smaller dimension of methanol, two favorable adsorption sites (Ori-A and Ori-B) of methanol on $MoS₂$ surface, and approximately 20-times larger adsorption energy than that of ethanol and 2-propanol were the main reasons for the high sensitivity of $MoS₂$ towards the detection of methanol.

Actually, pristine $MoS₂$ does not have good sensitivity to formaldehyde, although it is a small molecule. Deng et al^{181} employed DFT to investigate the adsorption of formaldehyde on Ni-, Pt-, Ti- and Pd-doped monolayer MoS₂, respectively. They found that $Ti-MoS₂$ was the dominant one in terms of adsorption energy. Moreover, the projected density of states (PDOS) and charge transfer indicate that the interaction between the formaldehyde molecule and Ti dopant was chemisorption via the Ti-O bond, illustrating that $Ti-MoS₂$ may be suitable for the detection of formaldehyde. In addition, some compounds based on $MoS₂$ can also be sensitive to formaldehyde, but the mechanism of their sensitivity has not been clearly defined.

Zhang et al.¹⁸² reported that a Pd-TiO₂/MoS₂ composite sensor showed selectivity and sensitivity towards benzene at RT. The sensing mechanism could be ascribed to the fact that Pd in $TiO₂/MoS₂$ has catalytic interaction toward benzene with a C–H bond and the synergistic effect of the ternary nanostructures, which can facilitate effective charge transport.

The following equations describe the reactions between the oxygen ion O_2^- created on the surface of MoS_2 -based sensing materials and ethanol, methanol, formaldehyde, and benzene molecules, respectively.^{183,184}

$$
C_2H_5OH_{(ads)} + 3O_{2ads}^- \rightarrow 2CO_2 + 3H_2O + 6e^-
$$
 (16)

$$
2CH_3OH_{(ads)} + 3O_{2ads}^- \rightarrow 2CO_2 + 4H_2O + 3e^-
$$
 (17)

$$
HCHO_{(ads)} + O_{2ads}^- \rightarrow CO_2 + H_2O + e^-
$$
 (18)

$$
C_6H_{6(ads)} + 15O_{2ads}^{\qquad \qquad } \rightarrow 12CO_2 + 6H_2O + 15e^- \qquad \qquad (19)
$$

Table 4 presents a summary of the $MoS₂$ nanomaterialbased gas sensors for the detection of ethanol, methanol, formaldehyde, and benzene gases at RT.

4. Conclusions and outlook

Obviously, $MoS₂$ exhibits great capabilities in the field of gas sensing, especially for room-temperature gas detection. In this review, firstly, the strategies for improving the gas sensing performance of $MoS₂$ were introduced. Subsequently, the different types of gases that can be detected by $MoS₂$ based gas sensors at room temperature were proposed and classified. Meanwhile, the sensing mechanisms of $MoS₂$ based gas sensors towards different gases were also analyzed.

Pristine $MoS₂$ gas sensors exhibit low gas sensing response values and incomplete recovery problems at room temperature, which are unfavorable for gas detection. Consequently, various strategies have been developed for improving the gas sensing performance of $MoS₂$ based gas sensors including morphology design, creating sulfur vacancies, decorating with noble metals, doping elements, light assistance, and construction of composites. Although the morphology design of $MoS₂$ involves multiple patterns such as quantum dots, nanowires, nanosheets, and nanoflowers, each morphology exhibits unique physical and chemical properties and gas sensing performance

characteristics, and the key issue of incomplete recovery has not been well solved. The vacancies in $MoS₂$ belong to high energy binding sites, especially S vacancies as active sites to enhance the gas molecules adsorption. However, this high adsorption capacity will also result in a slow response and recovery rate. The decoration of the surface of MoS₂ with noble metals can assist in overcoming the problem of selectivity to a certain extent due to the fact that noble metals possess affinity for some specific gas molecules. Element doping can address the challenge of sluggish sensing of $MoS₂$ at room temperature owing to the adjustable active sites and electrical property. To date, doping strategies focus on theoretical calculations based on density functional theory, while experimental studies are rare. The light-assisted strategies include UV-light and visible-light activation. The power of these two lights is different, resulting in optoelectronic and photocatalytic gas sensing mechanisms, respectively, which accelerates the chemisorption reaction and causes a large change in the resistance of the sensor upon exposure to gases. Room-temperature $MoS₂$ nanocomposite gas sensors are the most studied at present. The construction of composites of $MoS₂$ (binary or ternary) can be considered one of the most effective modification methods to address the low gas sensing response and delayed recovery time of pristine $MoS₂$ gas sensors. The heterojunctions and synergistic effects created by the different components are conducive to improve their comprehensive gas sensing performance. Especially the high electrical conductivity, unique electronic transfer channels, and similar sensitive selectivity are observed in nanocomposites. **Sensors & Diagnostics**

On the access in Mos. Delayer on 2022. Holong the above mentioned article is a sensitive points are the sensitive points and the sensitive points are the sensitive points at Mos. Holong charges are

According to the reports on the detection of several gases by $MoS₂$ -based gas sensors at room temperature such as $NO₂$, NO, SO2, CO, NH3, H2, ethanol, methanol, formaldehyde, and benzene, $MoS₂$ seems show strong adsorption interaction for N-based gases such as $NO₂$ and $NH₃$. $NO₂$ as an electron acceptor exhibits high electrophilicity, which can easily trap electrons from the conduction band of $MoS₂$. In contrast to NO2, NH3 acts as an electron donor with a pair of lone electrons that can give more electrons to $MoS₂$, and thus the resistance of $MoS₂$ sensors change greatly. Besides $NO₂$ and $NH₃$, $H₂$ can also be detected by $MoS₂$ -based gas sensors at room temperature. Several researchers have proposed that H_2 in nature favor absorption along the edges of $MoS₂$, which behave like metallic inter-connecting wires to attract H_2 at RT. The detection of other VOC gases such as ethanol, methanol, formaldehyde, and benzene by $MoS₂$ nanocomposite gas sensors has also been reported, which is mainly related to the strong force on these gases at one of the special adsorption sites in the composites. To date, the sensing mechanisms of $MoS₂$ -based gas sensors for the above-mentioned gases are mainly based on the adsorption/ desorption theories. The target gases react with the adsorbed oxygen ions O_{2ads}[−] and release electrons to the conduction band of $MoS₂$, resulting in a change in resistance and sensitive response.

Although the above-mentioned strategies have made great progress to improve the gas sensing properties of $MoS₂$ -based gas sensors at room temperature, there are still some interesting research directions and challenges that deserve to be explored.

Firstly, besides the strong interaction between $MoS₂$ and gas molecules, the deeper reasons for the slow or incomplete recovery of $MoS₂$ sensors to gases need to be investigated. The transduction mechanism, intrinsic characteristics, and desorption reaction seem to affect the recovery rate. In addition, $NH₃$ is more easily desorbed from the surface of $MoS₂$ than $NO₂$ in the case of the same N-based gases, which is worth further discussion. Secondly, the gas sensing response, selectivity, and long-term stability of MoS2-based gas sensors are still unsatisfactory. Therefore, novel MoS₂-based room temperature gas sensors should receive more attention. Some strategies such as adjusting the active sites of $MoS₂$ from basal plane to edges, constructing advanced structured $MoS₂$ nanocomposites, and optimizing the fabrication process of devices may be interesting points. Finally, the gas sensing mechanisms of $MoS₂$ materials not only depend on the theories of adsorption–desorption and charge carrier transport, where the whole reactive process is complicated, and thus more crucial interactions between $MoS₂$ and gas molecules need to be further studied.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 41876055 and 61761047), the Yunnan Provincial Department of Science and Technology through the Key Project for the Science and Technology (Grant No. 2017FA025), Program for Innovative Research Team (in Science and Technology) in University of Yunnan Province, and Project of the Department of Education of Yunnan Province (2022Y003).

References

- 1 Y. Zhou, X. Li, Y. J. Wang, H. L. Tai and Y. C. Guo, Anal. Chem., 2019, 91, 3311–3318.
- 2 T. Jarvinen, G. S. Lorite, J. Perantie, G. Toth, S. Saarakkala, V. K. Virtanen and K. Kordas, Nanotechnology, 2019, 30, 405501.
- 3 Y. J. Wang, Y. Zhou, Y. H. Wang, R. J. Zhang, J. Li, X. Li and Z. G. Zang, Sens. Actuators, B, 2021, 349, 130770.
- 4 M. Sajjad and P. Feng, Mater. Res. Bull., 2014, 49, 35–38.
- 5 Y. Zhou, Y. H. Wang, Y. J. Wang, H. C. Yu, R. J. Zhang, J. Li, Z. G. Zang and X. Li, ACS Appl. Mater. Interfaces, 2021, 13, 56485–56497.
- 6 M. Barzegar and B. Tudu, Surf. Innovations, 2018, 6, 205–230.
- 7 Q. Li, J. P. Meng and Z. Li, J. Mater. Chem. A, 2022, 10, 8107–8128.
- 8 X. H. Liu, T. T. Ma, N. Pinna and J. Zhang, Adv. Funct. Mater., 2017, 27, 1702168.
- 9 T. H. Kim, Y. H. Kim, S. Y. Park and H. W. Jang, Chemosensors, 2017, 5, 15.
- 10 G. Neri, Chemosensors, 2017, 5, 21.
- 11 R. Kumar, N. Goel, M. Hojamberdiev and M. Kumar, Sens. Actuators, A, 2020, 303, 111875.
- 12 K. F. Mak, C. Lee, J. Hone, J. Shan and T. F. Heinz, Phys. Rev. Lett., 2010, 105, 136805.
- 13 G. C. Lu, X. H. Liu, W. Zheng, J. Y. Xie, Z. S. Li, C. M. Lou, G. L. Lei and J. Zhang, Rare Met., 2022, 41(5), 1520–1528.
- 14 Y. S. Xu, J. Y. Xie, Y. F. Zhang, F. H. Tian, C. Yang, W. Zheng, X. H. Liu, J. Zhang and N. Pinna, J. Hazard. Mater., 2021, 411, 125120.
- 15 A. V. Agrawal, R. Kumar, S. Venkatesan, A. Zakhidov, G. Yang, J. M. Bao, M. Kumar and M. Kumar, ACS Sens., 2018, 3, 998–1004.
- 16 C. Yang, J. Y. Xie, C. M. Lou, W. Zheng, X. H. Liu and J. Zhang, Sens. Actuators, B, 2021, 333, 129571.
- 17 M. Kumar, A. V. Agrawal, M. Moradi and R. Yousefi, Nanomater. Air Rem., 2020, 107–130, DOI: [10.1016/B978-0-](https://doi.org/10.1016/B978-0-12-818821-7.00006-3) [12-818821-7.00006-3](https://doi.org/10.1016/B978-0-12-818821-7.00006-3).
- 18 A. V. Agrawal, N. Kumar and M. Kumar, Nano-Micro Lett., 2021, 13, 305–362.
- 19 Q. Y. He, Z. Y. Zeng, Z. Y. Yin, H. Li, S. X. Wu, X. Huang and H. Zhang, Small, 2012, 8, 2994–2999.
- 20 S. M. Cui, Z. H. Wen, X. K. Huang, J. B. Chang and J. H. Chen, Small, 2015, 11, 2305–2313.
- 21 B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti and A. Kis, Nat. Nanotechnol., 2011, 6, 147–150.
- 22 K. Y. Ko, J. G. Song, Y. Kim, T. Choi, S. Shin and C. W. Lee, ACS Nano, 2016, 10, 9287–9296.
- 23 M. Kan, J. Y. Wang, X. W. Li, S. H. Zhang, Y. W. Li, Y. Kawazoe, Q. Sun and P. Jena, J. Phys. Chem. C, 2014, 118, 1515–5122.
- 24 D. Voiry, A. Mohiteb and M. Chhowalla, Chem. Soc. Rev., 2015, 44, 2702–2712.
- 25 R. Kumar, W. Zheng, X. H. Liu, J. Zhang and M. Kumar, Adv. Mater. Technol., 2020, 5, 1901062.
- 26 W. Zheng, X. H. Liu, J. Y. Xie, G. C. Lu and J. Zhang, Coord. Chem. Rev., 2021, 447, 214151.
- 27 A. Hermawan, N. L. W. Septiani, A. Taufik, B. Yuliarto, Suyatman and S. Yin, Nano-Micro Lett., 2021, 13, 207.
- 28 Z. X. Gan, L. Z. Liu, H. Y. Wu, Y. L. Hao, Y. Shan, X. L. Wu and P. K. Chu, Appl. Phys. Lett., 2015, 106, 233113.
- 29 Y. Niu, W. C. Jiao, R. G. Wang, G. M. Ding and Y. F. Huang, J. Mater. Chem. A, 2016, 4, 8198–8203.
- 30 R. Kumar, N. Goel and M. Kumar, Appl. Phys. Lett., 2018, 112, 053502.
- 31 D. J. Late, Y. K. Huang, B. Liu, J. Acharya, S. N. Shirodkar, J. J. Luo, A. M. Yan, D. Charles, U. V. Waghmare and V. P. Dravid, ACS Nano, 2013, 7, 4879–4891.
- 32 W. L. Li, Y. Zhang, X. Long, J. X. Cao, X. Xin, X. X. Guan, J. F. Peng and X. J. Zheng, Sensors, 2019, 19, 2123.
- 33 W. X. Wang, Y. H. Zhen, J. Y. Zhang, Y. D. Li, H. Zhong, Z. L. Jia, Y. Xiong, Q. Z. Xue, Y. G. Yan and N. S. Alharbi, Sens. Actuators, B, 2020, 321, 128471. Open Access Article. Published on 23 December 2022. Downloaded on 2/3/2025 5:09:22 AM. This article is licensed under a [Creative Commons Attribution-NonCommercial 3.0 Unported Licence.](http://creativecommons.org/licenses/by-nc/3.0/) **[View Article Online](https://doi.org/10.1039/d2sd00208f)**
	- 34 N. T. Thang, L. T. Hong, T. H. Nguyen, C. M. Hung, N. V. Duy, N. V. Hieu and N. D. Hoa, RSC Adv., 2020, 10, 12759–12771.
	- 35 H. Long, A. Harley-Trochimczyk, T. Pham, Z. Tang, T. Shi, A. Zettl, C. Carraro, M. A. Worsley and R. Maboudian, Adv. Funct. Mater., 2016, 26, 5158–5165.
	- 36 J. H. Hong, Z. X. Hu, M. Probert, K. Li, D. H. Lv, X. N. Yang, L. Gu, N. N. Mao, Q. L. Feng and L. M. Xie, Nat. Commun., 2015, 6, 6293.
	- 37 H. Y. Nan, Z. L. Wang, W. H. Wang, Z. Liang, Y. Lu, Q. Chen, D. W. He, P. H. Tan, F. Miao and X. R. Wang, ACS Nano, 2014, 8, 5738–5745.
	- 38 Z. Y. Qin, K. Xu, H. C. Yue, H. Wang, J. Zhang, C. Ouyang, C. S. Xie and D. W. Zeng, Sens. Actuators, B, 2018, 262, 771–779.
	- 39 D. Burman, R. Ghosh, S. Santra, S. K. Ray and P. K. Guha, Nanotechnology, 2017, 28, 435502.
	- 40 R. Kumar, N. Goel, A. V. Agrawal, R. Raliya, S. Rajamani, G. Gupta, P. Biswas, M. Kumar and M. Kumar, IEEE Sens. J., 2020, 19, 10214–10220.
	- 41 H. X. Li, M. Huang and G. Y. Cao, Phys. Chem. Chem. Phys., 2016, 21, 15110–15117.
	- 42 X. W. Chen, J. Shi, T. Wang, S. Y. Zheng, W. Lv, X. Y. Chen, J. H. Yang, M. Zeng, N. T. Hu and Y. J. Su, ACS Sens., 2022, 7, 816–826.
	- 43 Y. Xia, C. Y. Hu, S. H. Guo, L. B. Zhang, M. J. Wang, J. H. Peng, L. Xu and J. Wang, ACS Appl. Nano Mater., 2020, 3, 665–673.
	- 44 H. P. Komsa, J. Kotakoski, S. Kurasch, O. Lehtinen, U. Kaiser and A. V. Krasheninnikov, Phys. Rev. Lett., 2012, 109, 035503.
	- 45 L. C. Zhang, Y. Y. Liang, L. M. Yu, H. J. Wang and M. L. Yin, Sens. Actuators, B, 2022, 359, 131539.
	- 46 F. F. Li and C. M. Shi, Appl. Surf. Sci., 2018, 434, 294–306.
	- 47 X. Tian, X. X. Cui, T. R. Lai, J. R. Z. C. Yang, M. J. Xiao, B. S. Wang, X. C. Xiao and Y. D. Wang, Nano Mater. Sci., 2021, 3, 390–403.
	- 48 N. Sakhuja, A. Gupta, R. Jha and N. Bhat, J. Alloys Compd., 2022, 899, 163166.
	- 49 J. Jaiswal, P. Tiwari, P. Singh and R. Chandra, Sens. Actuators, B, 2020, 325, 128800.
	- 50 P. Halvaee, S. Dehghani and M. Mohammadzadeh, IEEE Sens. J., 2021, 21, 4233–4240.
	- 51 J. Park, J. H. Mun, J. S. Shin and S. W. Kang, R. Soc. Open Sci., 2019, 5, 181462.
	- 52 H. Peng, J. Lu, C. X. Wu, Z. X. Yang, H. Chen, W. J. Song, P. Q. Li and H. Z. Yin, Appl. Surf. Sci., 2015, 353, 1003–1012.
	- 53 C. Liu, Y. Zhang, J. Y. Hu, J. X. Ren, Y. Q. Song, J. F. Peng, M. Ma and J. J. Tan, Mater. Lett., 2020, 273, 127961.
	- 54 S. G. Ramaraj, S. Nundy, P. Zhao, D. Elamaran, A. A. Tahir, Y. Hayakawa, M. Muruganathan, H. Mizuta and S. W. Kim, ACS Omega, 2022, 7, 10492–10501.
- 55 Z. Xiao, W. Wu, X. W. Wu and Y. F. Zhang, Chem. Phys. Lett., 2020, 755, 137768.
- 56 W. J. Hou, H. W. Mi, R. C. Peng, S. D. Peng, W. Zeng and Q. Zhou, Nanomaterials, 2021, 11, 314.
- 57 R. Y. Zhang, D. Fu, J. M. Ni, C. B. Sun and S. X. Song, Chem. Phys. Lett., 2019, 715, 273–277.
- 58 P. Bharathi, S. Harish, M. Shimomura, S. Ponnusamy, M. K. Mohan, J. Archana and M. Navaneethan, Sens. Actuators, B, 2022, 360, 131600.
- 59 R. Z. Wu, J. Y. Hao, S. L. Zheng, Q. Sun, T. T. Wang, D. Zhang, H. Zhang, Y. Wang and X. Zhou, Appl. Surf. Sci., 2021, 571, 151162.
- 60 T. E. Gber, H. Louis, A. E. Owen, B. E. Etinwa, I. Benjamin, F. C. Asogwa, M. M. Orosun and E. A. Eno, RSC Adv., 2022, 12, 25992–26010.
- 61 A. Kazemi, M. Rodner, M. R. Fadavieslam, P. D. Kaushik, I. G. Ivanov, J. Eriksson, M. Syvajarvi, R. Yakimova and G. R. Yazdi, Surf. Interfaces, 2021, 25, 101200.
- 62 J. Zhu, H. Zhang, Y. W. Tong, L. Zhao, Y. F. Zhang, Y. Z. Qiu and X. N. Lin, Appl. Surf. Sci., 2017, 419, 522–530.
- 63 E. Salih and A. I. Ayesh, Phys. E, 2021, 131, 114736.
- 64 K. N. Ding, Y. H. Lin and M. Y. Huang, Vacuum, 2016, 130, 146–153.
- 65 M. J. Szary, Appl. Surf. Sci., 2021, 547, 149026.
- 66 Y. Zhou, C. Zou, X. G. Lin and Y. C. Guo, Appl. Phys. Lett., 2018, 113, 082103.
- 67 J. Guo, R. M. Wen, J. Y. Zhai and Z. L. Wang, Sci. Bull., 2019, 64, 128–135.
- 68 Y. Z. Chen, S. W. Wang, C. C. Yang, C. H. Chung, Y. C. Wang, S. W. H. Chen, C. W. Chen, T. Y. Su, H. N. Lin, H. C. Kuo and Y. L. Chueh, Nanoscale, 2019, 11, 10410–10419.
- 69 T. Pham, G. Li, E. Bekyarova, M. E. Itkis and A. Mulchandani, ACS Nano, 2019, 13, 3196–3205.
- 70 P. C. Chen, S. Sukcharoenchoke, K. Ryu, L. G. Arco, A. Badmaev, C. Wang and C. Zhou, Adv. Mater., 2010, 22, 1900.
- 71 D. L. Wang, A. T. Chen and A. K. Y. Jen, Phys. Chem. Chem. Phys., 2013, 15, 5017–5021.
- 72 J. Wang, H. Y. Deng, X. Li, C. Yang and Y. Xia, Sens. Actuators, B, 2019, 304, 127317.
- 73 Y. Kang, S. Pyo, E. Jo and J. Kim, Nanotechnology, 2019, 30, 355504.
- 74 M. Donarelli, S. Prezioso, F. Perrozzi, F. Bisti, M. Nardone, L. Giancaterini, C. Cantalini and L. Ottaviano, Sens. Actuators, B, 2015, 207, 602–613.
- 75 J. H. Zhang, T. T. Li, J. Y. Guo, Y. Q. Hu and D. Z. Zhang, Appl. Surf. Sci., 2021, 568, 150942.
- 76 X. Chang, X. F. Li, X. R. Qiao, K. Li, Y. X. Li, T. C. Guo, L. Zhu and Q. Z. Xue, Sens. Actuators, B, 2019, 304, 127430.
- 77 Y. T. Han, Y. J. Ma, Y. Liu, S. S. Xu, X. W. Chen, M. Zeng, N. T. Hu, Y. J. Su, Z. H. Zhou and Z. Yang, Appl. Surf. Sci., 2020, 493, 613–619.
- 78 D. H. Baek, G. Choi, Y. Kwak, B. H. Cho and J. Kim, Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems, MEMS 2019, 2019, pp. 468–471.
- 79 Y. N. Liu, S. Li, S. Xiao and K. Du, Colloids Surf., A, 2022, 648, 129435.
- 80 P. X. Zhao, Y. Tang, J. Mao, Y. X. Chen, H. Song, J. W. Wang, Y. Song, Y. Q. Liang and X. M. Zhang, J. Alloys Compd., 2016, 674, 252–258. **Server & Diagnostics**

Server Access Articles. Published on 23 December 2022. Attack a particle is likensed on 24 December 2022. Attack a Creative Commons Article is likensed at the same of the same of the same of the sa
	- 81 R. Kumar, N. Goel, M. Mishra, G. Gupta, M. Fanetti, M. Valant and M. Kumar, Adv. Mater. Interfaces, 2018, 5, 1800071.
	- 82 S. Sharma, A. Kumar, N. Singh and D. Kaur, Sens. Actuators, B, 2018, 275, 499–507.
	- 83 Y. Xiong, W. D. Liu, K. C. Wu, T. Liu, Y. M. Chen, X. Z. Wang and J. Tian, J. Alloys Compd., 2022, 927, 166962.
	- 84 D. Z. Zhang, Y. B. Jin and Y. H. Cao, J. Mater. Sci.: Mater. Electron., 2019, 30, 573–581.
	- 85 Y. Q. Ding, X. Z. Guo, B. S. Du, X. F. Hu, X. Yang, Y. He, Y. Zhou and Z. G. Zang, J. Mater. Chem. C, 2021, 9, 4838–4846.
	- 86 H. Yan, M. J. Zhong, Z. Lv and P. B. Wan, Small, 2017, 13, 1701697.
	- 87 S. Ahmad, I. Khan, A. Husain, A. Khan and A. M. Asiri, Polymer, 2021, 12, 3047.
	- 88 X. Bai, H. Lv, Z. Liu, J. K. Chen, J. Wang, B. H. Sun, Y. Zhang, R. H. Wang and K. Y. Shi, J. Hazard. Mater., 2021, 416, 125830.
	- 89 D. Z. Zhang, C. X. Jiang, P. Li and Y. E. Sun, ACS Appl. Mater. Interfaces, 2017, 9, 6462–6471.
	- 90 J. Sun, N. Lin, H. Ren, C. Tang, L. T. Yang and X. Zhao, RSC Adv., 2016, 6, 17494–17503.
	- 91 M. Ikram, L. J. Liu, Y. Liu, L. F. Ma, H. Lv, M. Ullah, L. He, H. Y. Wu, R. H. Wang and K. Y. Shi, J. Mater. Chem. A, 2019, 7, 14602–14612.
	- 92 S. Dhara, H. Jawa, S. Ghosh, A. Varghese, D. Karmakar and S. Lodha, ACS Appl. Mater. Interfaces, 2021, 13, 30785–30796.
	- 93 S. H. Zhang, J. Y. Wang, N. L. Torad, W. Xia, M. A. Aslam, Y. V. Kaneti, Z. F. Hou, Z. J. Ding, B. Da and A. Fatehmulla, Small, 2019, 16, 1901718.
	- 94 G. Liu, S. L. Rumyantsev, C. Jiang, M. S. Shur and A. A. Balandin, IEEE Electron Device Lett., 2015, 36, 1202–1204.
	- 95 V. Le, Y. Vasseghian, V. Doan, T. T. T. Nguyen, T. T. T. Vo, K. B. Vu, Q. H. Vu, T. D. Lam and V. A. Tran, Chemosphere, 2022, 291, 133025.
	- 96 R. Zen, Y. B. Shi, T. M. Song, T. Wang, B. L. Tang, H. D. Niu and X. Y. Yu, Chemosphere, 2022, 9, 345.
	- 97 W. B. Li, H. Li, R. Qian, S. J. Zhuo, P. F. Ju and Q. Chen, Nanomaterials, 2022, 12, 1300.
	- 98 C. Yang, Y. Y. Wang, Z. K. Wu, Z. B. Zhang, N. T. Hu and C. S. Peng, Nanomaterials, 2022, 12, 901.
	- 99 I. Jahangir, M. A. Uddin, A. K. Singh, M. V. S. Chandrashekhar and G. Koley, IEEE Sens. J., 2021, 21, 26549–26555.
	- 100 W. Zheng, Y. S. Xu, L. L. Zheng, C. Yang, N. Pinna, X. H. Liu and J. Zhang, Adv. Funct. Mater., 2020, 30, 2000435.
	- 101 H. Yan, L. H. Chu, Z. Li, C. X. Sun, Y. X. Shi and J. Ma, Sensors and Actuators Reports, 2022, 4, 100103.
	- 102 F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson and K. S. Novoselov, Nat. Mater., 2007, 6, 652–655.
- 103 M. Sangeetha and D. Madhan, Opt. Laser Technol., 2020, 127, 106193.
- 104 J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner and B. H. Weiller, ACS Nano, 2009, 3, 301–306.
- 105 F. L. Meng, Z. Guo and X. J. Huang, TrAC, Trends Anal. Chem., 2015, 68, 37–47.
- 106 S. Singh and S. Sharma, Mater. Today, 2021, 45, 4910–4913.
- 107 T. Xie, G. Z. Xie, Y. J. Su, H. F. Du, Z. B. Ye and Y. D. Jiang, Nanotechnology, 2016, 27, 065502.
- 108 M. Ikram, H. Lv, Z. Liu, M. Khan, L. J. Liu, F. Raziq, X. Bai, M. Ullah, Y. Zhang and K. Y. Shi, Chem. Mater., 2020, 32, 7215–7225.
- 109 X. Xin, Y. Zhang, X. Guan, J. Cao, W. Li, X. Long and X. Tan, ACS Appl. Mater. Interfaces, 2019, 11, 9438–9447.
- 110 N. Goel, R. Kumar, S. K. Jain, S. Rajamani, B. Roul, G. Gupta, M. Kumar and S. B. Krupanidhi, Nanotechnology, 2019, 30, 314001.
- 111 J. Jaiswal, A. Sanger, P. Tiwari and R. Chandra, Sens. Actuators, B, 2020, 305, 127437.
- 112 C. Liu, X. W. Chen, H. Y. Luo, B. L. Li, J. Shi, C. Fan, J. H. Yang, M. Zeng, Z. H. Zhou and N. T. Hu, Sens. Actuators, B, 2021, 347, 130608.
- 113 J. B. Liu, J. Y. Hu, C. Liu, Y. M. Tan, X. Peng and Y. Zhang, Rare Met., 2020, 40, 1536–1544.
- 114 X. Tian, L. J. X. X. Cui, R. J. Zhao, T. Chen, X. C. Xiao and Y. D. Wang, J. Mater. Chem. A, 2022, 10, 5505–5519.
- 115 Y. Q. Ding, X. Z. Guo, D. L. Kuang, X. F. Hu, Y. Zhou, Y. He and Z. G. Zang, J. Hazard. Mater., 2021, 416, 126218.
- 116 Q. Yue, Z. Z. Shao, S. L. Chang and J. B. Li, Nanoscale Res. Lett., 2013, 8, 425.
- 117 W. F. Jiang, K. F. Chen, J. W. Wang, D. Geng, N. A. D. Lu and L. Li, Mater. Res. Express, 2021, 8, 055010.
- 118 Y. T. Han, D. Huang, Y. G. Ma, G. L. He, J. Hu, J. Zhang, N. T. Hu, Y. J. Su, Z. H. Zhou, Y. F. Zhang and Z. Yang, ACS Appl. Mater. Interfaces, 2018, 10, 22640–22649.
- 119 A. P. Lee and B. J. Reedy, Sens. Actuators, B, 1999, 60, 35–42.
- 120 N. Barsan and U. Weimar, J. Electroceram., 2001, 7, 143–167.
- 121 D. Z. Zhang, Y. E. Sun, C. X. Jiang, Y. Yao, D. Y. Wang and Y. Zhang, Sens. Actuators, B, 2017, 253, 1120–1128.
- 122 D. Z. Zhang, J. F. Wu, P. Li and Y. H. Cao, J. Mater. Chem. A, 2017, 5, 20666–20677.
- 123 Y. Fu, J. Z. Li and H. Y. Xu, Mater. Sci. Semicond. Process., 2020, 114, 105073.
- 124 Y. S. Shim, K. C. Kwon, J. M. Suh, K. S. Choi, Y. G. Song, W. Sohn, S. Choi, K. Hong, J. M. Jeon and S. P. Hong, ACS Appl. Mater. Interfaces, 2018, 10, 31594–31602.
- 125 B. L. Liu, L. Chen, G. Liu, A. N. Abbas, M. Fathi and C. W. Zhou, ACS Nano, 2014, 8, 5304–5314.
- 126 T. T. Xu, Y. Y. Pei, Y. Y. Liu, D. Wu, Z. F. Shi, J. M. Xu, Y. T. Tian and X. J. Li, J. Alloys Compd., 2-17, 725, 253–259.
- 127 H. H. Hau, T. T. H. Duong, N. K. Man, T. T. V. Nga, C. T. Xuan, D. T. T. Le, N. V. Toan, C. M. Hung, N. V. Duy, N. V. Hieu and N. D. Hoa, Sens. Actuators, A, 2021, 332, 113137.
- 128 S. Y. Cho, S. J. Kim, Y. Lee, J.-S. Kim, W. B. Jung, H. W. Yoo, J. Kim and H. Jung, ACS Nano, 2015, 9, 9314.
- 129 R. Kumar, P. K. Kulriya and M. Kumar, Nanotechnology, 2018, 29, 464001.
- 130 R. Kumar, N. Goel and M. Kumar, ACS Sens., 2017, 2, 1744–1752.
- 131 P. Chen, J. Y. Hu and Y. Zhang, ACS Appl. Mater. Interfaces, 2021, 4, 5981–5991.
- 132 K. Rathi, A. N. Kumar and K. Pal, Nanotechnology, 2020, 31, 395504.
- 133 P. Bharathi, S. Harish, G. Mathankumar, M. K. Mohan, J. Archana, S. Kamalakannan, M. Prakash, M. Shimomura and M. Navaneethan, Appl. Surf. Sci., 2022, 600, 154086.
- 134 H. E. Bai, H. Guo, C. Feng, J. Wang, B. Liu, Z. L. Xie, F. Q. Guo, D. J. Chen, R. Zhang and Y. D. Zheng, Sens. Actuators, B, 2022, 368, 132131. **Paper**

100 M. Sangectha and D. Mathma, Opt. Later Technol., 129 R. Kuner, 17. K. kultima and M. Kunnar, Article. Sens, 2022. 2022. 2022. 2022. 2022. 2022. 2022. 2022. 2022. 2022. 2022. 2022. 2022. 2022. 2022. 2022. 2022.
	- 135 Z. M. Yang, D. Z. Zhang and H. N. Chen, Sens. Actuators, B, 2019, 300, 127037.
	- 136 M. Ikram, L. Liu, Y. Liu, M. Ullah, L. Ma and S. U. H. Bakhtiar, Nanoscale, 2019, 11, 8554–8564.
	- 137 L. J. Liu, M. Ikram, L. F. Ma, X. Y. Zhang, H. Lv, M. Ullah, M. Khan, H. T. Yu and K. Y. Shi, J. Hazard. Mater., 2020, 393, 122325.
	- 138 Q. N. Zhao, W. Z. Zhou, M. X. Zhang, Y. Wang, Z. H. Duan, C. L. Tan, B. H. Liu, F. P. Ouyang, Z. Yuan and H. L. Tai, Adv. Funct. Mater., 2022, 32, 2203528.
	- 139 N. Kanaujiya, A. K. Golimar, P. C. Pandey and J. G. D. Varma, AIP Conf. Proc., 2018, 1953, 030142, DOI: [10.1063/](https://doi.org/10.1063/1.5032477) [1.5032477](https://doi.org/10.1063/1.5032477).
	- 140 A. Taufik, Y. Asakura, T. Hasegawa and S. Yin, ACS Appl. Nano Mater., 2021, 4, 6861–6871.
	- 141 S. Ramu, T. Chandrakalavathi, G. Murali, K. S. Kumar, A. Sudharani, M. Ramanadha, K. R. Peta, R. Jeyalakshmi and R. P. Vijayalakshmi, Mater. Res. Express, 2019, 6, 085075.
	- 142 S. Y. Hou, R. Pang, S. L. Chang, L. Ye, J. Xu, X. C. Wang, Y. J. Zhang, Y. Y. Shang and A. Y. Cao, ACS Appl. Mater. Interfaces, 2020, 12, 29778–29786.
	- 143 D. Wu, Z. H. Lou, Y. G. Wang, T. T. Xu, Z. F. Shi, J. M. Xu, Y. T. Tian and X. J. Li, Nanotechnology, 2017, 28, 435503.
	- 144 X. X. He, Z. H. Ying, F. Wen, L. L. Li, X. L. Zheng, P. Zheng and G. F. Wang, Mater. Sci. Semicond. Process., 2021, 134, 105997.
	- 145 Y. P. Miao, H. W. Bao, W. Fan, Y. Li and F. Ma, Surf. Interfaces, 2021, 27, 101580.
	- 146 B. Zhao, C. Y. Li, L. L. Liu, B. Zhou, Q. K. Zhang, Z. Q. Chen and Z. Tang, Appl. Surf. Sci., 2016, 382, 280–287.
	- 147 S. Sharma, A. Kumar and D. Kaur, AIP Conf. Proc., 2018, 1953, 030261.
	- 148 S. Singh and S. Sharma, AIP Conf. Proc., 2021, 2265, 030690.
	- 149 D. Z. Zhang, C. X. Jiang and Y. E. Sun, J. Alloys Compd., 2017, 698, 476–483.
	- 150 S. Singh, S. Sharma, R. C. Singh and S. Sharma, Appl. Surf. Sci., 2020, 532, 147373.
	- 151 S. Singh, R. M. Sattigeri, S. Kumar, P. K. Jha and S. Sharma, ACS Omega, 2021, 6, 11602–11613.
	- 152 A. Liu, S. Y. Lv, L. Jiang, F. M. Liu, L. J. Zhao, J. Wang, X. L. Hu, Z. J. Yang, J. M. He, C. G. Wang and G. Y. Lu, Sens. Actuators, B, 2021, 332, 129444.
- 153 A. Q. Jian, J. H. Wang, H. Y. Lin, S. Q. Xu, D. Han, Z. Y. Yuan and K. Zhuo, ACS Omega, 2022, 7, 11664–11670.
- 154 S. Singh, J. Deb, U. Sarkar and S. Sharma, ACS Sustainable Chem. Eng., 2021, 9, 7328–7340.
- 155 D. Z. Zhang, Z. L. Wu, P. Li, X. Q. Zong, G. K. Dong and Y. Zhang, Sens. Actuators, B, 2018, 258, 895–905.
- 156 K. J. Yoon, S. I. Lee, H. An, J. Kim, J. W. Son, J. H. Lee, H. J. Je, H. W. Lee and B. K. Kim, Int. J. Hydrogen Energy, 2014, 39, 3868–3878.
- 157 S. E. Hosseini and M. A. Wahid, Renewable Sustainable Energy Rev., 2016, 57, 850–866.
- 158 M. M. Y. A. Alsaif, S. Balendhran, M. R. Field, K. Latham, W. Wlodarski, J. Z. Ou and K. K. Zadeh, Sens. Actuators, B, 2014, 192, 196–204.
- 159 F. K. Perkins, A. L. Friedman, E. Cobas, P. M. Campbell, G. G. Jernigan and B. T. Jonker, Nano Lett., 2013, 13, 668–673.
- 160 M. V. Bollinger, J. V. Lauritsen, K. W. Jacobsen, J. K. Nørskov, S. Helveg and F. Besenbacher, Phys. Rev. Lett., 2001, 87, 196803.
- 161 K. Dolui, I. Rungger and S. Sanvito, Phys. Rev. B: Condens. Matter Mater. Phys., 2013, 87, 165402.
- 162 A. Castellanos-Gomez, N. Agrait and G. Rubio-Bollinger, Appl. Phys. Lett., 2010, 96, 213116.
- 163 Z. Zhang, K. Chen, Q. Zhao, M. Huang and X. P. Ouyang, Mater. Res. Express, 2020, 7, 015501.
- 164 D. H. Baek and J. Kim, Sens. Actuators, B, 2017, 250, 686–691.
- 165 H. D. Mai, S. Jeong, T. K. Nguyen, J. S. Youn, S. Ahn, C. M. Park and K. J. Jeon, ACS Appl. Mater. Interfaces, 2012, 13, 14657–14665.
- 166 S. L. Yang, G. Lei, Z. G. Lan, W. Xie, B. P. Yang, H. X. Xu, Z. Wang and H. S. Gu, Int. J. Hydrogen Energy, 2019, 44, 7725–7733.
- 167 W. Wu, Z. Liu, L. A. Jauregui, Q. Yu, R. Pillai, H. Cao, J. Bao, Y. P. Chen and S. S. Pei, Sens. Actuators, B, 2010, 150, 296–300.
- 168 C. Pijolat, G. Tournier, P. Breuil, D. Matarin and P. Nivet, Sens. Actuators, B, 2002, 82, 166–175.
- 169 C. M. Wu, K. G. Motora, G. Y. Chen, D. H. Kuo and N. S. Gultom, Front. Mater. Sci., 2022, 9, 831725.
- 170 A. Saravanan, B. R. Huang, J. P. Chu, A. Prasannan and H. C. Tsai, Sens. Actuators, B, 2019, 292, 70–79.
- 171 D. Kathiravan, B. R. Huang, A. Saravanan, A. Prasannan and P. D. Hong, Sens. Actuators, B, 2019, 279, 138–147.
- 172 (a) A. Venkatesan, S. Rathi, I. Y. Lee, J. Park, D. Lim, M. Kang, H. I. Joh, G. H. Kim and E. S. Kannan, Nanotechnology, 2017, 28, 365501. **Sensors & Diagnostics**

Sensitive Articles. Published on 23 AM, D. Han, Z. Y. 189 C. M. W., K. G. Mother, C. Common Access Articles. C. 2022. P. 13723. C. 2022. P. 13723. C. 2022. P. 13723. C. 2022. P. 13723. C. 2022. P.
	- 173 D. Z. Zhang, Y. E. Sun, C. X. Jiang and Y. Zhang, Sens. Actuators, B, 2017, 242, 15–24.
	- 174 L. Z. Hao, Y. J. Liu, W. Gao, Y. M. Liu, Z. D. Han, L. Q. Yu, Q. Z. Xue and J. Zhu, J. Alloys Compd., 2016, 682, 29–34.
	- 175 A. V. Agrawal, R. Kumar, S. Venkatesan, A. Zakhidov, Z. Zhu, J. M. Bao and M. Kumar, Appl. Phys. Lett., 2017, 111, 093102.
	- 176 S. L. Yang, Z. Chen, Z. Wang, G. Lei, J. Xiong, H. X. Xu and H. S. Gu, Sens. Actuators, B, 2022, 367, 132026.
	- 177 V. Munusami, K. Arutselvan, S. Vadivel and S. Govindasamy, Ceram. Int., 2022, 48, 29322–29331.
	- 178 A. K. Vivekanandan, B. R. Huang, D. Kathiravan, A. Saravanan, A. Prasannan, H. C. Tsai and S. H. Chen, J. Alloys Compd., 2021, 854, 157102.
	- 179 J. F. Wu, D. Z. Zhang and Y. H. Cao, J. Colloid Interface Sci., 2018, 529, 556–567.
	- 180 B. Chakraborty, I. Maity, P. Chung, M. Ho and P. Bhattacharyya, IEEE Sens. J., 2021, 21, 16484–16491.
	- 181 X. X. Deng, X. Y. Liang, S. P. Ng and C. M. L. Wu, Appl. Surf. Sci., 2019, 484, 1244–1252.
	- 182 D. Z. Zhang, C. X. Jiang and X. Y. Zhou, Talanta, 2018, 182, 324–332.
	- 183 D. Z. Zhang, X. Fan, A. J. Yang and X. Q. Zong, J. Colloid Interface Sci., 2018, 523, 217–225.
	- 184 X. Li, J. Wang, D. Xie, J. L. Xu, Y. Xia, L. Xiang and S. Komarneni, Mater. Lett., 2017, 189, 42–45.
	- 185 D. Z. Zhang, C. X. Jiang and J. F. Wu, Sens. Actuators, B, 2018, 273, 176–184.
	- 186 X. Li, J. Wang, D. Xie, J. L. Xu, Y. Xia, W. W. Li, L. Xiang, Z. M. Li, S. W. Xu and S. Komarneni, Nanotechnology, 2017, 28, 325501.